Skip to content
2000
Volume 26, Issue 13
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Background

In organ-specific therapy, artificial intelligence (AI) is primarily used to improve surgical planning through image analysis, predict post-transplant outcomes, personalize treatment plans based on patient data, optimize organ allocation logistics, and donor-recipient precision mapping for organs to improve transplants. Furthermore, all these applications ultimately lead to better patient outcomes and enhanced organ therapy.

Objective

This review aims to examine the revolutionary effects of AI in some key healthcare fields, such as nanomedicine, cancer treatment, clinical applications, and organ-specific delivery.

Methods

This review article discusses in detail the role of AI in nanomedicine, cancer therapy, clinical applications, organ-specific delivery (, cardiovascular, gastroenterology, kidney, liver, lung, ophthalmology, skin, ), diagnosis, and radiotherapy. In addition, it also discusses limitations and challenges of AI in healthcare.

Results

AI-based clinical translation has potential but faces challenges like artifact vulnerability, ethical and legal considerations, and security measures. Restrictive data-use policies may hinder accurate analysis. Regulations and collaboration with data-sharing mechanisms could overcome barriers.

Conclusion

AI is being utilized in organ-specific therapy to enhance donor-recipient matching, surgical planning, post-transplant outcomes prediction, and personalized treatment plans by analyzing patient data.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501394785250715165404
2025-07-22
2026-01-26
Loading full text...

Full text loading...

References

  1. KumarY. MarchenaJ. AwllaA.H. LiJ.J. AbdallaH.B. The AI-powered evolution of big data.Appl. Sci.202414221017610.3390/app142210176
    [Google Scholar]
  2. TaherdoostH. MadanchianM. AI advancements: Comparison of innovative techniques.AI202351385410.3390/ai5010003
    [Google Scholar]
  3. KumariG.V. ChapaB.P. ChaitanyaN.K. MahajanR.G. ShahakarM. Introduction to data-driven intelligent systems.Data-Driven Systems and Intelligent ApplicationsBoca Raton, FLCRC Press202410.1201/9781003388449‑1
    [Google Scholar]
  4. IqbalM.J. JavedZ. SadiaH. QureshiI.A. IrshadA. AhmedR. MalikK. RazaS. AbbasA. PezzaniR. Sharifi-RadJ. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: Looking into the future.Cancer Cell Int.202121127010.1186/s12935‑021‑01981‑134020642
    [Google Scholar]
  5. MaH. SuM. Whom to sue? Liability of unaccountability in AI decisions.Organ. Dyn.202410112310.1016/j.orgdyn.2024.101123
    [Google Scholar]
  6. TopolE.J. High-performance medicine: The convergence of human and artificial intelligence.Nat. Med.2019251445610.1038/s41591‑018‑0300‑730617339
    [Google Scholar]
  7. TariqS. IftikharA. ChaudharyP. KhurshidK. Is the ‘Technological singularity scenario’ Possible: Can AI parallel and surpass all human mental capabilities?World Futures202379220026610.1080/02604027.2022.2050879
    [Google Scholar]
  8. MoloiT. MarwalaT. Artificial intelligence in economics and finance theories.Advanced Information and Knowledge Processing2020112510.1007/978‑3‑030‑42962‑1
    [Google Scholar]
  9. UmamaheswariS. ValarmathiA. Role of artificial intelligence in the banking sector.J. Surv. Fish. Sci.20231028412849
    [Google Scholar]
  10. RashidA.B. KausikA.K. AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications.Hybrid Adv.2024710027710.1016/j.hybadv.2024.100277
    [Google Scholar]
  11. YaiprasertC. HidayantoA.N. AI-powered ensemble machine learning to optimize cost strategies in logistics business.International Journal of Information Management Data Insights20244110020910.1016/j.jjimei.2023.100209
    [Google Scholar]
  12. RompianesiG. PegoraroF. CeresaC.D.L. MontaltiR. TroisiR.I. Artificial intelligence in the diagnosis and management of colorectal cancer liver metastases.World J. Gastroenterol.202228110812210.3748/wjg.v28.i1.10835125822
    [Google Scholar]
  13. VeerankuttyF.H. JayanG. YadavM.K. ManojK.S. YadavA. NairS.R.S. ShabeeraliT.U. YeldhoV. SasidharanM. RatherS.A. Artificial Intelligence in hepatology, liver surgery and transplantation: Emerging applications and frontiers of research.World J. Hepatol.202113121977199010.4254/wjh.v13.i12.197735070002
    [Google Scholar]
  14. Noorbakhsh-SabetN. ZandR. ZhangY. AbediV. Artificial intelligence transforms the future of health care.Am. J. Med.2019132779580110.1016/j.amjmed.2019.01.01730710543
    [Google Scholar]
  15. WangH. FuT. DuY. GaoW. HuangK. LiuZ. ChandakP. LiuS. Van KatwykP. DeacA. AnandkumarA. BergenK. GomesC.P. HoS. KohliP. LasenbyJ. LeskovecJ. LiuT.Y. ManraiA. MarksD. RamsundarB. SongL. SunJ. TangJ. VeličkovićP. WellingM. ZhangL. ColeyC.W. BengioY. ZitnikM. Scientific discovery in the age of artificial intelligence.Nature20236207972476010.1038/s41586‑023‑06221‑237532811
    [Google Scholar]
  16. HanR. YoonH. KimG. LeeH. LeeY. Revolutionizing medicinal chemistry: The application of artificial intelligence (AI) in early drug discovery.Pharmaceuticals2023169125910.3390/ph1609125937765069
    [Google Scholar]
  17. YounisH.A. EisaT.A.E. NasserM. SahibT.M. NoorA.A. AlyasiriO.M. SalisuS. HayderI.M. YounisH.A. A systematic review and meta-analysis of artificial intelligence tools in medicine and healthcare: Applications, considerations, limitations, motivation and challenges.Diagnostics202414110910.3390/diagnostics1401010938201418
    [Google Scholar]
  18. TorkamaniA. AndersenK.G. SteinhublS.R. TopolE.J. High-definition medicine.Cell2017170582884310.1016/j.cell.2017.08.00728841416
    [Google Scholar]
  19. SolankiS.L. PandrowalaS. NayakA. BhandareM. AmbulkarR.P. ShrikhandeS.V. Artificial intelligence in perioperative management of major gastrointestinal surgeries.World J. Gastroenterol.202127212758277010.3748/wjg.v27.i21.275834135552
    [Google Scholar]
  20. XuW. DainoffM.J. GeL. GaoZ. Transitioning to human interaction with AI systems: New challenges and opportunities for HCI professionals to enable human-centered AI.Int. J. Hum. Comput. Interact.202339349451810.1080/10447318.2022.2041900
    [Google Scholar]
  21. MathenyM.E. WhicherD. Thadaney IsraniS. Artificial Intelligence in Health Care.JAMA2020323650951010.1001/jama.2019.2157931845963
    [Google Scholar]
  22. XiQ. YangQ. WangM. HuangB. ZhangB. LiZ. LiuS. YangL. ZhuL. JinL. Individualized embryo selection strategy developed by stacking machine learning model for better in vitro fertilization outcomes: An application study.Reprod. Biol. Endocrinol.20211915310.1186/s12958‑021‑00734‑z33820565
    [Google Scholar]
  23. Ulloa CernaA.E. JingL. GoodC.W. vanMaanenD.P. RaghunathS. SueverJ.D. NeviusC.D. WehnerG.J. HartzelD.N. LeaderJ.B. AlsaidA. PatelA.A. KirchnerH.L. PfeiferJ.M. CarryB.J. PattichisM.S. HaggertyC.M. FornwaltB.K. Deep-learning-assisted analysis of echocardiographic videos improves predictions of all- cause mortality.Nat. Biomed. Eng.20215654655410.1038/s41551‑020‑00667‑933558735
    [Google Scholar]
  24. BalsanoC. AlisiA. BrunettoM.R. InvernizziP. BurraP. PiscagliaF. AlvaroD. BoninoF. CarboneM. FaitaF. GerussiA. PersicoM. SantiniS.J. ZanettoA. The application of artificial intelligence in hepatology: A systematic review.Dig. Liver Dis.202254329930810.1016/j.dld.2021.06.01134266794
    [Google Scholar]
  25. HashimotoD.A. RosmanG. RusD. MeirelesO.R. Artificial Intelligence in Surgery: Promises and Perils.Ann. Surg.20182681707610.1097/SLA.000000000000269329389679
    [Google Scholar]
  26. HamedB.A. IbrahimO.A.S. Abd El-HafeezT. Optimizing classification efficiency with machine learning techniques for pattern matching.J. Big Data202310112410.1186/s40537‑023‑00804‑6
    [Google Scholar]
  27. ChaudhuriS. LongA. ZhangH. MonaghanC. LarkinJ.W. KotankoP. KalaskarS. KoomanJ.P. van der SandeF.M. MadduxF.W. UsvyatL.A. Artificial intelligence enabled applications in kidney disease.Semin. Dial.202134151610.1111/sdi.1291532924202
    [Google Scholar]
  28. YiT.W. LaingC. KretzlerM. NkulikiyinkaR. LegrandM. JardineM. RossignolP. SmythB. Digital health and artificial intelligence in kidney research: A report from the 2020 Kidney Disease Clinical Trialists (KDCT) meeting.Nephrol. Dial. Transplant.202237462062710.1093/ndt/gfab32034791422
    [Google Scholar]
  29. SerovN. VinogradovV. Artificial intelligence to bring nanomedicine to life.Adv. Drug Deliv. Rev.202218411419410.1016/j.addr.2022.11419435283223
    [Google Scholar]
  30. Le PianeF. VozzaM. BaldoniM. MercuriF. Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies.Beilstein J. Nanotechnol.2024151498152110.3762/bjnano.15.11939624205
    [Google Scholar]
  31. MisraS.K. OstadhosseinF. DazaE. JohnsonE.V. PanD. Hyperspectral imaging offers visual and quantitative evidence of drug release from zwitterionic-phospholipid-nanocarbon when concurrently tracked in 3d intracellular space.Adv. Funct. Mater.201626448031804110.1002/adfm.201602966
    [Google Scholar]
  32. KhadelaA PopatS AjabiyaJ ValuD SavaleS ChavdaVP. AI ML and other bioinformatics tools for preclinical and clinical development of drug products.Hoboken, New JerseyWiley Online Library202310.1002/9781119865728.ch12
    [Google Scholar]
  33. JamialahmadiH. Khalili-TanhaG. NazariE. Rezaei-TaviraniM. Artificial intelligence and bioinformatics: A journey from traditional techniques to smart approaches.Gastroenterol. Hepatol. Bed Bench202417324125239308539
    [Google Scholar]
  34. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑333844136
    [Google Scholar]
  35. ChakrabortyC. BhattacharyaM. LeeS.S. WenZ.H. LoY.H. The changing scenario of drug discovery using AI to deep learning: Recent advancement, success stories, collaborations, and challenges.Mol. Ther. Nucleic Acids202435310229510.1016/j.omtn.2024.10229539257717
    [Google Scholar]
  36. GangwalA. AnsariA. AhmadI. AzadA.K. Wan SulaimanW.M.A. Current strategies to address data scarcity in artificial intelligence-based drug discovery: A comprehensive review.Comput. Biol. Med.202417910873410.1016/j.compbiomed.2024.10873438964243
    [Google Scholar]
  37. AmasyaG. BadilliU. AksuB. TarimciN. Quality by design case study 1: Design of 5-fluorouracil loaded lipid nanoparticles by the W/O/W double emulsion — Solvent evaporation method.Eur. J. Pharm. Sci.2016849210210.1016/j.ejps.2016.01.00326780593
    [Google Scholar]
  38. ShenY. LiuT. ChenJ. LiX. LiuL. ShenJ. WangJ. ZhangR. SunM. WangZ. SongW. QiT. TangY. MengX. ZhangL. HoD. HoC-M. DingX. LuH-Z. Harnessing artificial intelligence to optimize long-term maintenance dosing for antiretroviral-naive adults with HIV-1 infection.Adv. Ther.202034190011410.1002/adtp.201900114
    [Google Scholar]
  39. RekerD. RybakovaY. KirtaneA.R. CaoR. YangJ.W. NavamajitiN. GardnerA. ZhangR.M. EsfandiaryT. L’HeureuxJ. von ErlachT. SmekalovaE.M. LeboeufD. HessK. LopesA. RognerJ. CollinsJ. TamangS.M. IshidaK. ChamberlainP. YunD. Lytton-JeanA. SouleC.K. CheahJ.H. HaywardA.M. LangerR. TraversoG. Computationally guided high-throughput design of self-assembling drug nanoparticles.Nat. Nanotechnol.202116672573310.1038/s41565‑021‑00870‑y33767382
    [Google Scholar]
  40. TuK.H. HuangH. LeeS. LeeW. SunZ. Alexander-KatzA. RossC.A. Machine learning predictions of block copolymer self-assembly.Adv. Mater.20203252200571310.1002/adma.20200571333206426
    [Google Scholar]
  41. LiY. AbbaspourM.R. GrootendorstP.V. RauthA.M. WuX.Y. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology.Eur. J. Pharm. Biopharm.20159417017910.1016/j.ejpb.2015.04.02825986587
    [Google Scholar]
  42. Mekki-BerradaF RenZ HuangT WongWK ZhengF XieJ TianIPS JayaveluS MahfoudZ BashD HippalgaonkarK KhanS BuonassisiT LiQ WangX Two-step machine learning enables optimized nanoparticle synthesis.npj Comput. Mater.202175510.1038/s41524‑021‑00520‑w
    [Google Scholar]
  43. HuY.H. TaiC.T. TsaiC.F. HuangM.W. Improvement of adequate digoxin dosage: An application of machine learning approach.J. Healthc. Eng.201820181910.1155/2018/394824530210752
    [Google Scholar]
  44. PantuckA.J. LeeD.K. KeeT. WangP. LakhotiaS. SilvermanM.H. MathisC. DrakakiA. BelldegrunA.S. HoC.M. HoD. Modulating BET bromodomain inhibitor zen-3694 and enzalutamide combination dosing in a metastatic prostate cancer patient using CURATE.AI, an artificial intelligence platform.Adv. Ther.201816180010410.1002/adtp.201800104
    [Google Scholar]
  45. YamankurtG. BernsE.J. XueA. LeeA. BagheriN. MrksichM. MirkinC.A. Exploration of the nanomedicine-design space with high-throughput screening and machine learning.Nat. Biomed. Eng.20193431832710.1038/s41551‑019‑0351‑130952978
    [Google Scholar]
  46. MetwallyA.A. HathoutR.M. Computer-assisted drug formulation design: Novel approach in drug delivery.Mol. Pharm.20151282800281010.1021/mp500740d26107396
    [Google Scholar]
  47. NematiS. GhassemiM.M. CliffordG.D. Optimal medication dosing from suboptimal clinical examples: A deep reinforcement learning approach.2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)2016, pp. 2978-2981.10.1109/EMBC.2016.7591355
    [Google Scholar]
  48. MullisA.S. BroderickS.R. BinneboseA.M. Peroutka-BigusN. BellaireB.H. RajanK. NarasimhanB. Data analytics approach for rational design of nanomedicines with programmable drug release.Mol. Pharm.20191651917192810.1021/acs.molpharmaceut.8b0127230973741
    [Google Scholar]
  49. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx103729126136
    [Google Scholar]
  50. TangJ. LiuR. ZhangY.L. LiuM.Z. HuY.F. ShaoM.J. ZhuL.J. XinH.W. FengG.W. ShangW.J. MengX.G. ZhangL.R. MingY.Z. ZhangW. Application of machine-learning models to predict tacrolimus stable dose in renal transplant recipients.Sci. Rep.2017714219210.1038/srep4219228176850
    [Google Scholar]
  51. XueR. LiaoJ. ShaoX. HanK. LongJ. ShaoL. AiN. FanX. Prediction of adverse drug reactions by combining biomedical tripartite network and graph representation model.Chem. Res. Toxicol.202033120221010.1021/acs.chemrestox.9b0023831777246
    [Google Scholar]
  52. LiuX. GaoY. PengJ. XuY. WangY. ZhouN. XingJ. LuoX. JiangH. ZhengM. TarPred: A web application for predicting therapeutic and side effect targets of chemical compounds.Bioinformatics201531122049205110.1093/bioinformatics/btv09925686637
    [Google Scholar]
  53. RajaK. PatrickM. ElderJ.T. TsoiL.C. Machine learning workflow to enhance predictions of Adverse Drug Reactions (ADRs) through drug-gene interactions: Application to drugs for cutaneous diseases.Sci. Rep.201771369010.1038/s41598‑017‑03914‑328623363
    [Google Scholar]
  54. VilanovaO. MittagJ.J. KellyP.M. MilaniS. DawsonK.A. RädlerJ.O. FranzeseG. Understanding the Kinetics of Protein–Nanoparticle Corona Formation.ACS Nano20161012108421085010.1021/acsnano.6b0485828024351
    [Google Scholar]
  55. LiuR. JiangW. WalkeyC.D. ChanW.C.W. CohenY. Prediction of nanoparticles-cell association based on corona proteins and physicochemical properties.Nanoscale20157219664967510.1039/C5NR01537E25959034
    [Google Scholar]
  56. AfolabiL.T. SaeedF. HashimH. PetinrinO.O. Ensemble learning method for the prediction of new bioactive molecules.PLoS One2018131018953810.1371/journal.pone.018953829329334
    [Google Scholar]
  57. NaskarS. SharmaS. KuotsuK. HalderS. PalG. SahaS. MondalS. BiswasU.K. JanaM. BhattacharjeeS. The biomedical applications of artificial intelligence: An overview of decades of research.J. Drug Target.202533571774810.1080/1061186X.2024.244871139744873
    [Google Scholar]
  58. MukherjeeJ. SharmaR. DuttaP. BhuniaB. Artificial intelligence in healthcare: A mastery.Biotechnol. Genet. Eng. Rev.20244031659170810.1080/02648725.2023.219647637013913
    [Google Scholar]
  59. BhinderB. GilvaryC. MadhukarN.S. ElementoO. Artificial intelligence in cancer research and precision medicine.Cancer Discov.202111490091510.1158/2159‑8290.CD‑21‑009033811123
    [Google Scholar]
  60. AliG. MijwilM.M. AdamopoulosI. BurugaB.A. GökM. SallamM. Harnessing the potential of artificial intelligence in managing viral hepatitis.Mesopot. J. Big Data2024202412816310.58496/MJBD/2024/010
    [Google Scholar]
  61. CharD.S. AbràmoffM.D. FeudtnerC. Identifying ethical considerations for machine learning healthcare applications.Am. J. Bioeth.2020201171710.1080/15265161.2020.181946933103967
    [Google Scholar]
  62. HassanJ. SaeedS.M. DekaL. UddinM.J. DasD.B. Applications of machine learning (ML) and mathematical modeling (MM) in healthcare with special focus on cancer prognosis and anticancer therapy: Current status and challenges.Pharmaceutics202416226010.3390/pharmaceutics1602026038399314
    [Google Scholar]
  63. BahlM. BarzilayR. YedidiaA.B. LocascioN.J. YuL. LehmanC.D. High-risk breast lesions: A machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision.Radiology2018286381081810.1148/radiol.201717054929039725
    [Google Scholar]
  64. JuwaraL. AroraN. GornitskyM. Saha-ChaudhuriP. VellyA.M. Identifying predictive factors for neuropathic pain after breast cancer surgery using machine learning.Int. J. Med. Inform.202014110417010.1016/j.ijmedinf.2020.10417032544823
    [Google Scholar]
  65. KhosraviP. KazemiE. ImielinskiM. ElementoO. HajirasoulihaI. Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images.EBioMedicine20182731732810.1016/j.ebiom.2017.12.02629292031
    [Google Scholar]
  66. DingL. BaileyM.H. Porta-PardoE. ThorssonV. ColapricoA. BertrandD. GibbsD.L. WeerasingheA. HuangK. TokheimC. Cortés-CirianoI. JayasingheR. ChenF. YuL. SunS. OlsenC. KimJ. TaylorA.M. CherniackA.D. AkbaniR. SuphavilaiC. NagarajanN. StuartJ.M. MillsG.B. WyczalkowskiM.A. VincentB.G. HutterC.M. ZenklusenJ.C. HoadleyK.A. WendlM.C. Shmulevich LazarA.J. WheelerD.A. GetzG. Caesar-JohnsonS.J. DemchokJ.A. FelauI. KasapiM. FergusonM.L. HutterC.M. SofiaH.J. TarnuzzerR. WangZ. YangL. ZenklusenJ.C. ZhangJ.J. ChudamaniS. LiuJ. LollaL. NareshR. PihlT. SunQ. WanY. WuY. ChoJ. DeFreitasT. FrazerS. GehlenborgN. GetzG. HeimanD.I. KimJ. LawrenceM.S. LinP. MeierS. NobleM.S. SaksenaG. VoetD. ZhangH. BernardB. ChambweN. DhankaniV. KnijnenburgT. KramerR. LeinonenK. LiuY. MillerM. ReynoldsS. ShmulevichI. ThorssonV. ZhangW. AkbaniR. BroomB.M. HegdeA.M. JuZ. KanchiR.S. KorkutA. LiJ. LiangH. LingS. LiuW. LuY. MillsG.B. NgK-S. RaoA. RyanM. WangJ. WeinsteinJ.N. ZhangJ. AbeshouseA. ArmeniaJ. ChakravartyD. ChatilaW.K. de BruijnI. GaoJ. GrossB.E. HeinsZ.J. KundraR. LaK. LadanyiM. LunaA. NissanM.G. OchoaA. PhillipsS.M. ReznikE. Sanchez-VegaF. SanderC. SchultzN. SheridanR. SumerS.O. SunY. TaylorB.S. WangJ. ZhangH. AnurP. PetoM. SpellmanP. BenzC. StuartJ.M. WongC.K. YauC. HayesD.N. ParkerJ.S. WilkersonM.D. AllyA. BalasundaramM. BowlbyR. BrooksD. CarlsenR. ChuahE. DhallaN. HoltR. JonesS.J.M. KasaianK. LeeD. MaY. MarraM.A. MayoM. MooreR.A. MungallA.J. MungallK. RobertsonA.G. SadeghiS. ScheinJ.E. SipahimalaniP. TamA. ThiessenN. TseK. WongT. BergerA.C. BeroukhimR. CherniackA.D. CibulskisC. GabrielS.B. GaoG.F. HaG. MeyersonM. SchumacherS.E. ShihJ. KucherlapatiM.H. KucherlapatiR.S. BaylinS. CopeL. DanilovaL. BootwallaM.S. LaiP.H. MaglinteD.T. Van Den BergD.J. WeisenbergerD.J. AumanJ.T. BaluS. BodenheimerT. FanC. HoadleyK.A. HoyleA.P. JefferysS.R. JonesC.D. MengS. MieczkowskiP.A. MoseL.E. PerouA.H. PerouC.M. RoachJ. ShiY. SimonsJ.V. SkellyT. SolowayM.G. TanD. VeluvoluU. FanH. HinoueT. LairdP.W. ShenH. ZhouW. BellairM. ChangK. CovingtonK. CreightonC.J. DinhH. DoddapaneniH.V. DonehowerL.A. DrummondJ. GibbsR.A. GlennR. HaleW. HanY. HuJ. KorchinaV. LeeS. LewisL. LiW. LiuX. MorganM. MortonD. MuznyD. SantibanezJ. ShethM. ShinbrotE. WangL. WangM. WheelerD.A. XiL. ZhaoF. HessJ. AppelbaumE.L. BaileyM. CordesM.G. DingL. FronickC.C. FultonL.A. FultonR.S. KandothC. MardisE.R. McLellanM.D. MillerC.A. SchmidtH.K. WilsonR.K. CrainD. CurleyE. GardnerJ. LauK. MalleryD. MorrisS. PaulauskisJ. PennyR. SheltonC. SheltonT. ShermanM. ThompsonE. YenaP. BowenJ. Gastier-FosterJ.M. GerkenM. LeraasK.M. LichtenbergT.M. RamirezN.C. WiseL. ZmudaE. CorcoranN. CostelloT. HovensC. CarvalhoA.L. de CarvalhoA.C. FregnaniJ.H. Longatto-FilhoA. ReisR.M. Scapulatempo-NetoC. SilveiraH.C.S. VidalD.O. BurnetteA. EschbacherJ. HermesB. NossA. SinghR. AndersonM.L. CastroP.D. IttmannM. HuntsmanD. KohlB. LeX. ThorpR. AndryC. DuffyE.R. LyadovV. PaklinaO. SetdikovaG. ShabuninA. TavobilovM. McPhersonC. WarnickR. BerkowitzR. CramerD. FeltmateC. HorowitzN. KibelA. MutoM. RautC.P. MalykhA. Barnholtz-SloanJ.S. BarrettW. DevineK. FulopJ. OstromQ.T. ShimmelK. WolinskyY. SloanA.E. De RoseA. GiulianteF. GoodmanM. KarlanB.Y. HagedornC.H. EckmanJ. HarrJ. MyersJ. TuckerK. ZachL.A. DeyarminB. HuH. KvecherL. LarsonC. MuralR.J. SomiariS. VichaA. ZelinkaT. BennettJ. IacoccaM. RabenoB. SwansonP. LatourM. LacombeL. TêtuB. BergeronA. McGrawM. StaugaitisS.M. ChabotJ. HibshooshH. SepulvedaA. SuT. WangT. PotapovaO. VoroninaO. DesjardinsL. MarianiO. Roman-RomanS. SastreX. SternM-H. ChengF. SignorettiS. BerchuckA. BignerD. LippE. MarksJ. McCallS. McLendonR. SecordA. SharpA. BeheraM. BratD.J. ChenA. DelmanK. ForceS. KhuriF. MaglioccaK. MaithelS. OlsonJ.J. OwonikokoT. PickensA. RamalingamS. ShinD.M. SicaG. Van Meir e.g. ZhangH. EijckenboomW. GillisA. KorpershoekE. LooijengaL. OosterhuisW. StoopH. van KesselK.E. ZwarthoffE.C. CalatozzoloC. CuppiniL. CuzzubboS. DiMecoF. FinocchiaroG. MatteiL. PerinA. PolloB. ChenC. HouckJ. LohavanichbutrP. HartmannA. StoehrC. StoehrR. TaubertH. WachS. WullichB. KyclerW. MurawaD. WiznerowiczM. ChungK. EdenfieldW.J. MartinJ. BaudinE. BubleyG. BuenoR. De RienzoA. RichardsW.G. KalkanisS. MikkelsenT. NoushmehrH. ScarpaceL. GirardN. AymerichM. CampoE. GinéE. GuillermoA.L. Van BangN. HanhP.T. PhuB.D. TangY. ColmanH. EvasonK. DottinoP.R. MartignettiJ.A. GabraH. JuhlH. AkeredoluT. StepaS. HoonD. AhnK. KangK.J. BeuschleinF. BreggiaA. BirrerM. BellD. BoradM. BryceA.H. CastleE. ChandanV. ChevilleJ. CoplandJ.A. FarnellM. FlotteT. GiamaN. HoT. KendrickM. KocherJ-P. KoppK. MoserC. NagorneyD. O’BrienD. O’NeillB.P. PatelT. PetersenG. QueF. RiveraM. RobertsL. SmallridgeR. SmyrkT. StantonM. ThompsonR.H. TorbensonM. YangJ.D. ZhangL. BrimoF. AjaniJ.A. GonzalezA.M.A. BehrensC. BondarukJ. BroaddusR. CzerniakB. EsmaeliB. FujimotoJ. GershenwaldJ. GuoC. LazarA.J. LogothetisC. Meric-BernstamF. MoranC. RamondettaL. RiceD. SoodA. TamboliP. ThompsonT. TroncosoP. TsaoA. WistubaI. CarterC. HayduL. HerseyP. JakrotV. KakavandH. KeffordR. LeeK. LongG. MannG. QuinnM. SawR. ScolyerR. ShannonK. SpillaneA. StretchJ. SynottM. ThompsonJ. WilmottJ. Al-AhmadieH. ChanT.A. GhosseinR. GopalanA. LevineD.A. ReuterV. SingerS. SinghB. TienN.V. BroudyT. MirsaidiC. NairP. DrwiegaP. MillerJ. SmithJ. ZarenH. ParkJ-W. HungN.P. KebebewE. LinehanW.M. MetwalliA.R. PacakK. PintoP.A. SchiffmanM. SchmidtL.S. VockeC.D. WentzensenN. WorrellR. YangH. MoncrieffM. GoparajuC. MelamedJ. PassH. BotnariucN. CaramanI. CernatM. ChemencedjiI. ClipcaA. DorucS. GorincioiG. MuraS. PirtacM. StanculI. TcaciucD. AlbertM. AlexopoulouI. ArnaoutA. BartlettJ. EngelJ. GilbertS. ParfittJ. SekhonH. ThomasG. RasslD.M. RintoulR.C. BifulcoC. TamakawaR. UrbaW. HaywardN. TimmersH. AntenucciA. FaccioloF. GraziG. MarinoM. MerolaR. de KrijgerR. Gimenez-RoqueploA-P. PichéA. ChevalierS. McKercherG. BirsoyK. BarnettG. BrewerC. FarverC. NaskaT. PennellN.A. RaymondD. SchileroC. SmolenskiK. WilliamsF. MorrisonC. BorgiaJ.A. LiptayM.J. PoolM. SederC.W. JunkerK. OmbergL. DinkinM. ManikhasG. AlvaroD. BragazziM.C. CardinaleV. CarpinoG. GaudioE. CheslaD. CottinghamS. DubinaM. MoiseenkoF. DhanasekaranR. BeckerK-F. JanssenK-P. Slotta-HuspeninaJ. Abdel-RahmanM.H. AzizD. BellS. CebullaC.M. DavisA. DuellR. ElderJ.B. HiltyJ. KumarB. LangJ. LehmanN.L. MandtR. NguyenP. PilarskiR. RaiK. SchoenfieldL. SenecalK. WakelyP. HansenP. LechanR. PowersJ. TischlerA. GrizzleW.E. SextonK.C. KastlA. HendersonJ. PortenS. WaldmannJ. FassnachtM. AsaS.L. SchadendorfD. CouceM. GraefenM. HulandH. SauterG. SchlommT. SimonR. TennstedtP. OlabodeO. NelsonM. BatheO. CarrollP.R. ChanJ.M. DisaiaP. GlennP. KelleyR.K. LandenC.N. PhillipsJ. PradosM. SimkoJ. Smith-McCuneK. VandenBergS. RogginK. FehrenbachA. KendlerA. SifriS. SteeleR. JimenoA. CareyF. ForgieI. MannelliM. CarneyM. HernandezB. CamposB. Herold-MendeC. JungkC. UnterbergA. von DeimlingA. BosslerA. GalbraithJ. JacobusL. KnudsonM. KnutsonT. MaD. MilhemM. SigmundR. GodwinA.K. MadanR. RosenthalH.G. AdebamowoC. AdebamowoS.N. BoussioutasA. BeerD. GiordanoT. Mes-MassonA-M. SaadF. BocklageT. LandrumL. MannelR. MooreK. MoxleyK. PostierR. WalkerJ. ZunaR. FeldmanM. ValdiviesoF. DhirR. LuketichJ. PineroE.M.M. Quintero-AguiloM. CarlottiC.G.Jr Dos SantosJ.S. KempR. SankarankutyA. TirapelliD. CattoJ. AgnewK. SwisherE. CreaneyJ. RobinsonB. ShelleyC.S. GodwinE.M. KendallS. ShipmanC. BradfordC. CareyT. HaddadA. MoyerJ. PetersonL. PrinceM. RozekL. WolfG. BowmanR. FongK.M. YangI. KorstR. RathmellW.K. Fantacone-CampbellJ.L. HookeJ.A. KovatichA.J. ShriverC.D. DiPersioJ. DrakeB. GovindanR. HeathS. LeyT. Van TineB. WesterveltP. RubinM.A. LeeJ.I. AredesN.D. MariamidzeA. Perspective on oncogenic processes at the end of the beginning of cancer genomics.Cell20181732305320.e1010.1016/j.cell.2018.03.03329625049
    [Google Scholar]
  67. AswathyR. ChalosV.A. SuganyaK. SumathiS. Advancing miRNA cancer research through artificial intelligence: From biomarker discovery to therapeutic targeting.Med. Oncol.20244213010.1007/s12032‑024‑02579‑z39688780
    [Google Scholar]
  68. LiosisK.C. MaroufA.A. RokneJ.G. GhoshS. BismarT.A. AlhajjR. Genomic biomarker discovery in disease progression and therapy response in bladder cancer utilizing machine learning.Cancers20231519480110.3390/cancers1519480137835496
    [Google Scholar]
  69. SharafaddiniA.M. EsfahaniK.K. MansouriN. Deep learning approaches to detect breast cancer: A comprehensive review.Multimedia Tools Appl.20241112
    [Google Scholar]
  70. LuganoR. RamachandranM. DimbergA. Tumor angiogenesis: Causes, consequences, challenges and opportunities.Cell. Mol. Life Sci.20207791745177010.1007/s00018‑019‑03351‑731690961
    [Google Scholar]
  71. EstevesM. MonteiroM.P. DuarteJ.A. The effects of vascularization on tumor development: A systematic review and meta-analysis of pre-clinical studies.Crit. Rev. Oncol. Hematol.202115910324510.1016/j.critrevonc.2021.10324533508446
    [Google Scholar]
  72. TimakovaA. AnanevV. FayzullinA. MakarovV. IvanovaE. ShekhterA. TimashevP. Artificial intelligence assists in the detection of blood vessels in whole slide images: Practical benefits for oncological pathology.Biomolecules2023139132710.3390/biom1309132737759727
    [Google Scholar]
  73. LinB. TanZ. MoY. YangX. LiuY. XuB. Intelligent oncology: The convergence of artificial intelligence and oncology.J. Natl. Cancer Cent.202331839110.1016/j.jncc.2022.11.00439036310
    [Google Scholar]
  74. ZhouQ. ZhouZ. ChenC. FanG. ChenG. HengH. JiJ. DaiY. Grading of hepatocellular carcinoma using 3D SE-DenseNet in dynamic enhanced MR images.Comput. Biol. Med.2019107475710.1016/j.compbiomed.2019.01.02630776671
    [Google Scholar]
  75. JiangY. LiangX. WangW. ChenC. YuanQ. ZhangX. LiN. ChenH. YuJ. XieY. XuY. ZhouZ. LiG. LiR. Noninvasive prediction of occult peritoneal metastasis in gastric cancer using deep learning.JAMA Netw. Open202141203226910.1001/jamanetworkopen.2020.3226933399858
    [Google Scholar]
  76. EstevaA. KuprelB. NovoaR.A. KoJ. SwetterS.M. BlauH.M. ThrunS. Dermatologist-level classification of skin cancer with deep neural networks.Nature2017542763911511810.1038/nature2105628117445
    [Google Scholar]
  77. Ehteshami BejnordiB. MulloolyM. PfeifferR.M. FanS. VacekP.M. WeaverD.L. HerschornS. BrintonL.A. van GinnekenB. KarssemeijerN. BeckA.H. GierachG.L. van der LaakJ.A.W.M. ShermanM.E. Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies.Mod. Pathol.201831101502151210.1038/s41379‑018‑0073‑z29899550
    [Google Scholar]
  78. NagpalK. FooteD. LiuY. ChenP.H.C. WulczynE. TanF. OlsonN. SmithJ.L. MohtashamianA. WrenJ.H. CorradoG.S. MacDonaldR. PengL.H. AminM.B. EvansA.J. SangoiA.R. MermelC.H. HippJ.D. StumpeM.C. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer.NPJ Digit. Med.2019214810.1038/s41746‑019‑0112‑231304394
    [Google Scholar]
  79. Angel Latha MaryS. Siva SubramanianS. PriyankaG. VijayakumarT. AlagumalaiS. Revolutionizing prostate cancer diagnosis: Unleashing the potential of an optimized deep belief network for accurate Gleason grading in histological images.Inter. J. Intellig. Net.2024524125410.1016/j.ijin.2024.05.004
    [Google Scholar]
  80. WangX. YangW. WeinrebJ. HanJ. LiQ. KongX. YanY. KeZ. LuoB. LiuT. WangL. Searching for prostate cancer by fully automated magnetic resonance imaging classification: Deep learning versus non-deep learning.Sci. Rep.2017711541510.1038/s41598‑017‑15720‑y29133818
    [Google Scholar]
  81. CoudrayN. OcampoP.S. SakellaropoulosT. NarulaN. SnuderlM. FenyöD. MoreiraA.L. RazavianN. TsirigosA. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning.Nat. Med.201824101559156710.1038/s41591‑018‑0177‑530224757
    [Google Scholar]
  82. MendenK. MaroufM. OllerS. DalmiaA. MagruderD.S. KloiberK. HeutinkP. BonnS. Deep learning–based cell composition analysis from tissue expression profiles.Sci. Adv.2020630eaba261910.1126/sciadv.aba261932832661
    [Google Scholar]
  83. HuM. ChikinaM. Heterogeneous pseudobulk simulation enables realistic benchmarking of cell-type deconvolution methods.Genome Biol.202425116910.1186/s13059‑024‑03292‑w38956606
    [Google Scholar]
  84. BaxiV. EdwardsR. MontaltoM. SahaS. Digital pathology and artificial intelligence in translational medicine and clinical practice.Mod. Pathol.2022351233210.1038/s41379‑021‑00919‑234611303
    [Google Scholar]
  85. KalitaA.J. BoruahA. DasT. MazumderN. JaiswalS.K. ZhuoG-Y. GogoiA. KakotyN.M. KaoF-J. Artificial intelligence in diagnostic medical image processing for advanced healthcare applications.Biomedical ImagingChamSpringer202416110.1007/978‑981‑97‑5345‑1_1
    [Google Scholar]
  86. ParvaizA. NasirE.S. FrazM.M. From Pixels to Prognosis: A Survey on AI-Driven Cancer Patient Survival Prediction Using Digital Histology Images.J. Imag. Infor. Med.20243741728175110.1007/s10278‑024‑01049‑238429563
    [Google Scholar]
  87. MuehlematterU.J. DanioreP. VokingerK.N. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): A comparative analysis.Lancet Digit. Health202133e195e20310.1016/S2589‑7500(20)30292‑233478929
    [Google Scholar]
  88. BenjamensS. DhunnooP. MeskóB. The state of artificial intelligence-based FDA-approved medical devices and algorithms: An online database.NPJ Digit. Med.20203111810.1038/s41746‑020‑00324‑032984550
    [Google Scholar]
  89. MrozP. ParwaniA.V. KuleszaP. Central pathology review for phase III clinical trials: The enabling effect of virtual microscopy.Arch. Pathol. Lab. Med.2013137449249510.5858/arpa.2012‑0093‑RA23544938
    [Google Scholar]
  90. KumarR KumarR. Machine learning and cognition in enterprises.Business Intelligence TransformedChamSpringer2017
    [Google Scholar]
  91. BeraK. SchalperK.A. RimmD.L. VelchetiV. MadabhushiA. Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology.Nat. Rev. Clin. Oncol.2019161170371510.1038/s41571‑019‑0252‑y31399699
    [Google Scholar]
  92. SaloI. NordlundL. EklundL. HoJ. SoiniM. KumarD. YeongJ. GuanF. MetsäläE. Advancements and applications of AI technologies in pathology: A scoping review.Comput. Methods Biomech. Biomed. Eng. Imaging Vis.2024121239659510.1080/21681163.2024.2396595
    [Google Scholar]
  93. HarveyC. KoubekR. BégatV. JacobS. Usability evaluation of a blood glucose monitoring system with a spill-resistant vial, easier strip handling, and connectivity to a mobile app.J. Diabetes Sci. Technol.20161051136114110.1177/193229681665805827390222
    [Google Scholar]
  94. LuS. SteinJ.E. RimmD.L. WangD.W. BellJ.M. JohnsonD.B. SosmanJ.A. SchalperK.A. AndersR.A. WangH. HoytC. PardollD.M. DanilovaL. TaubeJ.M. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade.JAMA Oncol.2019581195120410.1001/jamaoncol.2019.154931318407
    [Google Scholar]
  95. BrowningL. CollingR. RakhaE. RajpootN. RittscherJ. JamesJ.A. Salto-TellezM. SneadD.R.J. VerrillC. Digital pathology and artificial intelligence will be key to supporting clinical and academic cellular pathology through COVID-19 and future crises: The PathLAKE consortium perspective.J. Clin. Pathol.202174744344710.1136/jclinpath‑2020‑20685432620678
    [Google Scholar]
  96. WangX. BarreraC. VeluP. BeraK. PrasannaP. KhungerM. KhungerA. VelchetiV. MadabhushiA. Computer extracted features of cancer nuclei from H&E stained tissues of tumor predicts response to nivolumab in non-small cell lung cancer.J. Clin. Oncol.20183615_suppl120611206110.1200/JCO.2018.36.15_suppl.12061
    [Google Scholar]
  97. BarreraC. VeluP. BeraK. WangX. PrasannaP. KhungerM. KhungerA. VelchetiV. RomeroE. MadabhushiA. Computer-extracted features relating to spatial arrangement of tumor infiltrating lymphocytes to predict response to nivolumab in non-small cell lung cancer (NSCLC).J. Clin. Oncol.20183615_suppl121151211510.1200/JCO.2018.36.15_suppl.12115
    [Google Scholar]
  98. AlthammerS. TanT.H. SpitzmüllerA. RognoniL. WiestlerT. HerzT. WidmaierM. RebelattoM.C. KaplonH. DamotteD. AlifanoM. HammondS.A. Dieu-NosjeanM.C. RanadeK. SchmidtG. HiggsB.W. SteeleK.E. Automated image analysis of NSCLC biopsies to predict response to anti-PD-L1 therapy.J. Immunother. Cancer20197112110.1186/s40425‑019‑0589‑x31060602
    [Google Scholar]
  99. RankaS. ReddyM. NoheriaA. Artificial intelligence in cardiovascular medicine.Curr. Opin. Cardiol.2021361263510.1097/HCO.000000000000081233060388
    [Google Scholar]
  100. AminizadehS. HeidariA. DehghanM. ToumajS. RezaeiM. Jafari NavimipourN. StroppaF. UnalM. Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service.Artif. Intell. Med.202414910277910.1016/j.artmed.2024.10277938462281
    [Google Scholar]
  101. KnightD.R.T. AakreC.A. AnstineC.V. MunipalliB. BiazarP. MitriG. ValeryJ.R. BrighamT. NiaziS.K. PerlmanA.I. HalamkaJ.D. DabrhA.M.A. Artificial intelligence for patient scheduling in the real-world health care setting: A metanarrative review.Health Policy Technol.202312410082410.1016/j.hlpt.2023.100824
    [Google Scholar]
  102. StamateE. PiraianuA.I. CiobotaruO.R. CrassasR. DucaO. FulgaA. GrigoreI. VintilaV. FulgaI. CiobotaruO.C. Revolutionizing Cardiology through Artificial Intelligence—Big Data from Proactive Prevention to Precise Diagnostics and Cutting-Edge Treatment—A Comprehensive Review of the Past 5 Years.Diagnostics20241411110310.3390/diagnostics1411110338893630
    [Google Scholar]
  103. AdasuriyaG. HaldarS. Next generation ECG: The impact of artificial intelligence and machine learning.Curr. Cardiovasc. Risk Rep.202317814315410.1007/s12170‑023‑00723‑4
    [Google Scholar]
  104. GaoJ. ZhangK. WangY. GuoR. LiuH. JiaC. SunX. WuC. WangW. DuJ. ChenJ. A machine learning-driven study indicates emodin improves cardiac hypertrophy by modulation of mitochondrial SIRT3 signaling.Pharmacol. Res.202015510473910.1016/j.phrs.2020.10473932135248
    [Google Scholar]
  105. CherifaM. BletA. ChambazA. GayatE. Resche-RigonM. PirracchioR. Prediction of an acute hypotensive episode during an icu hospitalization with a super learner machine-learning algorithm.Anesth. Analg.202013051157116610.1213/ANE.000000000000453932287123
    [Google Scholar]
  106. NagelS. SinhaD. DayD. ReithW. ChapotR. PapanagiotouP. WarburtonE.A. GuylerP. TysoeS. FassbenderK. WalterS. EssigM. HeidenrichJ. KonstasA.A. HarrisonM. PapadakisM. GrevesonE. JolyO. GerryS. MaguireH. RoffeC. Hampton-TillJ. BuchanA.M. GrunwaldI.Q. e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients.Int. J. Stroke201712661562210.1177/174749301668102027899743
    [Google Scholar]
  107. Sahli-CostabalF. SeoK. AshleyE. KuhlE. Classifying drugs by their arrhythmogenic risk using machine learning.Biophys. J.202011851165117610.1016/j.bpj.2020.01.01232023435
    [Google Scholar]
  108. Sahli CostabalF. MatsunoK. YaoJ. PerdikarisP. KuhlE. Machine learning in drug development: Characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification.Comput. Methods Appl. Mech. Eng.201934831333310.1016/j.cma.2019.01.03332863454
    [Google Scholar]
  109. ChangK.C. HsiehP.H. WuM.Y. WangY.C. ChenJ.Y. TsaiF.J. ShihE.S.C. HwangM.J. HuangT.C. Usefulness of machine learning-based detection and classification of cardiac arrhythmias with 12-lead electrocardiograms.Can. J. Cardiol.20213719410410.1016/j.cjca.2020.02.09632585216
    [Google Scholar]
  110. HannunA.Y. RajpurkarP. HaghpanahiM. TisonG.H. BournC. TurakhiaM.P. NgA.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network.Nat. Med.2019251656910.1038/s41591‑018‑0268‑330617320
    [Google Scholar]
  111. SchläpferJ. WellensH.J. Computer-interpreted electrocardiograms.J. Am. Coll. Cardiol.20177091183119210.1016/j.jacc.2017.07.72328838369
    [Google Scholar]
  112. XiaoR. XuY. PelterM.M. FidlerR. BadiliniF. MortaraD.W. HuX. Monitoring significant ST changes through deep learning.J. Electrocardiol.2018516S78S8210.1016/j.jelectrocard.2018.07.02630082087
    [Google Scholar]
  113. PuszkarskiB. HryniówK. SarwasG. Comparison of neural basis expansion analysis for interpretable time series (N-BEATS) and recurrent neural networks for heart dysfunction classification.Physiol. Meas.202243606400610.1088/1361‑6579/ac6e5535537407
    [Google Scholar]
  114. BadertscherP. LischerM. MannhartD. KnechtS. IseneggerC. Du Fay de LavallazJ. SchaerB. OsswaldS. KühneM. SticherlingC. Clinical validation of a novel smartwatch for automated detection of atrial fibrillation.Heart Rhythm O220223220821010.1016/j.hroo.2022.02.00435496455
    [Google Scholar]
  115. ShahA.P. RubinS.A. Errors in the computerized electrocardiogram interpretation of cardiac rhythm.J. Electrocardiol.200740538539010.1016/j.jelectrocard.2007.03.00817531257
    [Google Scholar]
  116. Martínez-SellésM. Marina-BreysseM. Current and future use of artificial intelligence in electrocardiography.J. Cardiovasc. Dev. Dis.202310417510.3390/jcdd1004017537103054
    [Google Scholar]
  117. RogovoyN.M. HowellS.J. LeeT.L. HamiltonC. Perez-AldayE.A. KabirM.M. ZhangY. KimE.D. FitzpatrickJ. Monroy-TrujilloJ.M. EstrellaM.M. SozioS.M. JaarB.G. ParekhR.S. TereshchenkoL.G. Hemodialysis procedure–associated autonomic imbalance and cardiac arrhythmias: Insights from continuous 14-day ECG monitoring.J. Am. Heart Assoc.201981901374810.1161/JAHA.119.01374831564195
    [Google Scholar]
  118. MailleB. WilkinM. MillionM. RességuierN. FranceschiF. Koutbi-FranceschiL. HourdainJ. MartinezE. ZabernM. GardellaC. Tissot-DupontH. SinghJ.P. DeharoJ.C. FiorinaL. Smartwatch electrocardiogram and artificial intelligence for assessing cardiac-rhythm safety of drug therapy in the COVID-19 pandemic. The QT-logs study.Int. J. Cardiol.202133133333910.1016/j.ijcard.2021.01.00233524462
    [Google Scholar]
  119. MazidiM.H. EshghiM. RaoufyM.R. Premature ventricular contraction (PVC) detection system based on tunable q-factor wavelet transform.J. Biomed. Phys. Eng.2022121617410.31661/jbpe.v0i0.123535155294
    [Google Scholar]
  120. Casaclang-VerzosaG. ShresthaS. KhalilM.J. ChoJ.S. TokodiM. BallaS. AlkhouliM. BadhwarV. NarulaJ. MillerJ.D. SenguptaP.P. Network tomography for understanding phenotypic presentations in aortic stenosis.JACC Cardiovasc. Imaging201912223624810.1016/j.jcmg.2018.11.02530732719
    [Google Scholar]
  121. Haro AlonsoD. WernickM.N. YangY. GermanoG. BermanD.S. SlomkaP. Prediction of cardiac death after adenosine myocardial perfusion SPECT based on machine learning.J. Nucl. Cardiol.20192651746175410.1007/s12350‑018‑1250‑729542015
    [Google Scholar]
  122. BetancurJ. CommandeurF. MotlaghM. SharirT. EinsteinA.J. BokhariS. FishM.B. RuddyT.D. KaufmannP. SinusasA.J. MillerE.J. BatemanT.M. DorbalaS. Di CarliM. GermanoG. OtakiY. TamarappooB.K. DeyD. BermanD.S. SlomkaP.J. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT.JACC Cardiovasc. Imaging201811111654166310.1016/j.jcmg.2018.01.02029550305
    [Google Scholar]
  123. SlomkaP.J. DeyD. SitekA. MotwaniM. BermanD.S. GermanoG. Cardiac imaging: Working towards fully-automated machine analysis & interpretation.Expert Rev. Med. Devices201714319721210.1080/17434440.2017.130005728277804
    [Google Scholar]
  124. AmponsahD. ThammanR. BrandtE. JamesC. Spector-BagdadyK. YongC.M. Artificial intelligence to promote racial and ethnic cardiovascular health equity.Curr. Cardiovasc. Risk Rep.2024181115316210.1007/s12170‑024‑00745‑640144330
    [Google Scholar]
  125. KuilerE.W. McNeelyC.L. 12 - Panopticon implications of ethical AI: Equity, disparity, and inequality in healthcare.AI Assurance BatarsehF.A. FreemanL.J. United StatesAcademic Press202342945110.1016/B978‑0‑32‑391919‑7.00026‑3
    [Google Scholar]
  126. Uche-AnyaE. Anyane-YeboaA. BerzinT.M. GhassemiM. MayF.P. Artificial intelligence in gastroenterology and hepatology: How to advance clinical practice while ensuring health equity.Gut20227191909191510.1136/gutjnl‑2021‑32627135688612
    [Google Scholar]
  127. ChristouC.D. TsoulfasG. Challenges involved in the application of artificial intelligence in gastroenterology: The race is on!World J. Gastroenterol.202329486168617810.3748/wjg.v29.i48.616838186861
    [Google Scholar]
  128. SaxenaE. ParveenS. AhadM.A. YadavM. Unveiling the potential of AI in gastroenterology: Challenges and opportunities.ChamSpringer2024103114
    [Google Scholar]
  129. SungJ.J.Y. SavulescuJ. NgiamK.Y. AnB. AngT.L. YeohK.G. ChamT.J. TsaoS. ChuaT.S. Artificial intelligence for gastroenterology: Singapore artificial intelligence for Gastroenterology Working Group Position Statement.J. Gastroenterol. Hepatol.202338101669167610.1111/jgh.1624137277693
    [Google Scholar]
  130. KomuraD. IshikawaS. Machine learning approaches for pathologic diagnosis.Virchows Arch.2019475213113810.1007/s00428‑019‑02594‑w31222375
    [Google Scholar]
  131. WeiJ.W. WeiJ.W. JacksonC.R. RenB. SuriawinataA.A. HassanpourS. Automated Detection of Celiac Disease on Duodenal Biopsy Slides: A Deep Learning Approach.J. Pathol. Inform.2019101710.4103/jpi.jpi_87_1830984467
    [Google Scholar]
  132. MartinD.R. HansonJ.A. GullapalliR.R. SchultzF.A. SethiA. ClarkD.P. A deep learning convolutional neural network can recognize common patterns of injury in gastric pathology.Arch. Pathol. Lab. Med.2020144337037810.5858/arpa.2019‑0004‑OA31246112
    [Google Scholar]
  133. YuY. WangJ. NgC.W. MaY. MoS. FongE.L.S. XingJ. SongZ. XieY. SiK. WeeA. WelschR.E. SoP.T.C. YuH. Deep learning enables automated scoring of liver fibrosis stages.Sci. Rep.2018811601610.1038/s41598‑018‑34300‑230375454
    [Google Scholar]
  134. KorbarB. OlofsonA.M. MiraflorA.P. NickaC.M. SuriawinataM.A. TorresaniL. SuriawinataA.A. HassanpourS. Deep learning for classification of colorectal polyps on whole-slide images.J. Pathol. Inform.2017813010.4103/jpi.jpi_34_1728828201
    [Google Scholar]
  135. TomitaN. AbdollahiB. WeiJ. RenB. SuriawinataA. HassanpourS. Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides.JAMA Netw. Open2019211191464510.1001/jamanetworkopen.2019.1464531693124
    [Google Scholar]
  136. BychkovD. LinderN. TurkkiR. NordlingS. KovanenP.E. VerrillC. WallianderM. LundinM. HaglundC. LundinJ. Deep learning based tissue analysis predicts outcome in colorectal cancer.Sci. Rep.201881339510.1038/s41598‑018‑21758‑329467373
    [Google Scholar]
  137. KatherJ.N. PearsonA.T. HalamaN. JägerD. KrauseJ. LoosenS.H. MarxA. BoorP. TackeF. NeumannU.P. GrabschH.I. YoshikawaT. BrennerH. Chang-ClaudeJ. HoffmeisterM. TrautweinC. LueddeT. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.Nat. Med.20192571054105610.1038/s41591‑019‑0462‑y31160815
    [Google Scholar]
  138. da SilvaD.A. ten CatenC.S. dos SantosR.P. FogliattoF.S. HsuanJ. Predicting the occurrence of surgical site infections using text mining and machine learning.PLoS One20191412022627210.1371/journal.pone.022627231834905
    [Google Scholar]
  139. ChapmanA.B. MoweryD.L. SwordsD.S. ChapmanW.W. BucherB.T. Detecting evidence of intra-abdominal surgical site infections from radiology reports using natural language processing.AMIA Annu. Symp. Proc.2018201751552429854116
    [Google Scholar]
  140. BrennanM. PuriS. Ozrazgat-BaslantiT. FengZ. RuppertM. HashemighouchaniH. MomcilovicP. LiX. WangD.Z. BihoracA. Comparing clinical judgment with the mysurgeryrisk algorithm for preoperative risk assessment: A pilot usability study.Surgery201916551035104510.1016/j.surg.2019.01.00230792011
    [Google Scholar]
  141. Soguero-RuizC. HindbergK. Rojo-AlvarezJ.L. SkrovsethS.O. GodtliebsenF. MortensenK. RevhaugA. LindsetmoR.O. AugestadK.M. JenssenR. Support vector feature selection for early detection of anastomosis leakage from bag-of-words in electronic health records.IEEE J. Biomed. Health Inform.20162051404141510.1109/JBHI.2014.236168825312965
    [Google Scholar]
  142. ByrneM.F. ChapadosN. SoudanF. OertelC. Linares PérezM. KellyR. IqbalN. ChandelierF. RexD.K. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model.Gut20196819410010.1136/gutjnl‑2017‑31454729066576
    [Google Scholar]
  143. WayeJ.S. GrossS.A. Chapter 2 - Polypectomy: From landmark innovation to widespread resections to remote tele-video mentoring.Endoscopy - Past, Present, and Future CohenJ. GreenwaldD. United StatesAcademic Press2025132610.1016/B978‑0‑443‑31318‑9.00003‑7
    [Google Scholar]
  144. NehmeF. CoronelE. BarringerD.A. RomeroL.G. ShafiM.A. RossW.A. GeP.S. Performance and attitudes toward real-time computer-aided polyp detection during colonoscopy in a large tertiary referral center in the United States.Gastrointest. Endosc.2023981100109.e610.1016/j.gie.2023.02.01636801459
    [Google Scholar]
  145. KnielingF. NeufertC. HartmannA. ClaussenJ. UrichA. EggerC. VetterM. FischerS. PfeiferL. HagelA. KielischC. GörtzR.S. WildnerD. EngelM. RötherJ. UterW. SieblerJ. AtreyaR. RascherW. StrobelD. NeurathM.F. WaldnerM.J. Multispectral optoacoustic tomography for assessment of crohn’s disease activity.N. Engl. J. Med.2017376131292129410.1056/NEJMc161245528355498
    [Google Scholar]
  146. TianY. LiuX. WangZ. CaoS. LiuZ. JiQ. LiZ. SunY. ZhouX. WangD. ZhouY. Concordance between watson for oncology and a multidisciplinary clinical decision-making team for gastric cancer and the prognostic implications: Retrospective study.J. Med. Internet Res.20202221412210.2196/1412232130123
    [Google Scholar]
  147. SomashekharS.P. SepúlvedaM.J. NordenA.D. RauthanA. ArunK. PatilP. EthadkaR.Y. KumarR.C. Early experience with IBM Watson for Oncology (WFO) cognitive computing system for lung and colorectal cancer treatment.J. Clin. Oncol.20173515_suppl8527852710.1200/JCO.2017.35.15_suppl.8527
    [Google Scholar]
  148. HashemiS. YousefzadehZ. AbinA.A. EjmalianA. NabaviS. DabbaghA. Machine learning-guided anesthesiology: A review of recent advances and clinical applications.J. Cellul. Molec. Anesth.20249114536910.5812/jcma‑145369
    [Google Scholar]
  149. MihaiI. BoiceanA. TeodoruC.A. GrigoreN. IancuG.M. DuraH. BratuD.G. RomanM.D. MohorC.I. TodorS.B. IchimC. MătacuțăI.B. BăcilăC. BacalbașaN. BolcaC.N. HașeganA. Laparoscopic adrenalectomy: Tailoring approaches for the optimal resection of adrenal tumors.Diagnostics20231321335110.3390/diagnostics1321335137958247
    [Google Scholar]
  150. PerezA.A. Noe-KimV. LubnerM.G. SomsenD. GarrettJ.W. SummersR.M. PickhardtP.J. Automated deep learning artificial intelligence tool for spleen segmentation on CT: Defining volume-based thresholds for splenomegaly.AJR Am. J. Roentgenol.2023221561161910.2214/AJR.23.2947837377359
    [Google Scholar]
  151. OndaS. OkamotoT. KanehiraM. SuzukiF. ItoR. FujiokaS. SuzukiN. HattoriA. YanagaK. Identification of inferior pancreaticoduodenal artery during pancreaticoduodenectomy using augmented reality-based navigation system.J. Hepatobiliary Pancreat. Sci.201421428128710.1002/jhbp.2523970384
    [Google Scholar]
  152. FurubeT. TakeuchiM. KawakuboH. NomaK. MaedaN. DaikoH. IshiyamaK. OtsukaK. SatoY. KoyanagiK. TajimaK. GarciaR.N. MaedaY. MatsudaS. KitagawaY. Usefulness of an artificial intelligence model in recognizing recurrent laryngeal nerves during robot-assisted minimally invasive esophagectomy.Ann. Surg. Oncol.202431139344935110.1245/s10434‑024‑16157‑039266790
    [Google Scholar]
  153. GumbsA.A. CronerR. RodriguezA. ZukerN. PerrakisA. GayetB. 200 Consecutive laparoscopic pancreatic resections performed with a robotically controlled laparoscope holder.Surg. Endosc.201327103781379110.1007/s00464‑013‑2969‑523644837
    [Google Scholar]
  154. GillenS. PletzerB. HeiligensetzerA. WolfP. KleeffJ. FeussnerH. FürstA. Solo-surgical laparoscopic cholecystectomy with a joystick-guided camera device: A case–control study.Surg. Endosc.201428116417010.1007/s00464‑013‑3142‑x23990155
    [Google Scholar]
  155. KitaguchiD. TakeshitaN. MatsuzakiH. TakanoH. OwadaY. EnomotoT. OdaT. MiuraH. YamanashiT. WatanabeM. SatoD. SugomoriY. HaraS. ItoM. Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach.Surg. Endosc.202034114924493110.1007/s00464‑019‑07281‑031797047
    [Google Scholar]
  156. Miller-AtkinsG. Acevedo-MorenoL.A. GroveD. DweikR.A. TonelliA.R. BrownJ.M. AllendeD.S. AucejoF. RotroffD.M. Breath metabolomics provides an accurate and noninvasive approach for screening cirrhosis, primary, and secondary liver tumors.Hepatol. Commun.2020471041105510.1002/hep4.149932626836
    [Google Scholar]
  157. Steenhuise.g.M. SchoenakerI.J.H. de GrootJ.W.B. FiebrichH.B. de GraafJ.C. BrohetR.M. van DijkJ.D. van WestreenenH.L. SiersemaP.D. de Vos tot Nederveen CappelW.H. Feasibility of volatile organic compound in breath analysis in the follow-up of colorectal cancer: A pilot study.Eur. J. Surg. Oncol.202046112068207310.1016/j.ejso.2020.07.02832778485
    [Google Scholar]
  158. BonrathE.M. GordonL.E. GrantcharovT.P. Characterising ‘ near miss ’ events in complex laparoscopic surgery through video analysis.BMJ Qual. Saf.201524851652110.1136/bmjqs‑2014‑00381625947330
    [Google Scholar]
  159. JansenM.J.A. KuijfH.J. NiekelM. VeldhuisW.B. WesselsF.J. ViergeverM.A. PluimJ.P.W. Liver segmentation and metastases detection in MR images using convolutional neural networks.J. Med. Imaging201964110.1117/1.JMI.6.4.04400331620549
    [Google Scholar]
  160. HanI.W. ChoK. RyuY. ShinS.H. HeoJ.S. ChoiD.W. ChungM.J. KwonO.C. ChoB.H. Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial intelligence.World J. Gastroenterol.202026304453446410.3748/wjg.v26.i30.445332874057
    [Google Scholar]
  161. RobertsonA.R. SeguiS. WenzekH. KoulaouzidisA. Artificial intelligence for the detection of polyps or cancer with colon capsule endoscopy.Ther. Adv. Gastrointest. Endosc.2021142631774521102027710.1177/2631774521102027734179779
    [Google Scholar]
  162. AhmadO.F. StoyanovD. LovatL.B. Barriers and pitfalls for artificial intelligence in gastroenterology: Ethical and regulatory issues.Tech. Innov. Gastrointest. Endosc.2020222808410.1016/j.tgie.2019.150636
    [Google Scholar]
  163. SofferS. KlangE. ShimonO. NachmiasN. EliakimR. Ben-HorinS. KopylovU. BarashY. Deep learning for wireless capsule endoscopy: A systematic review and meta-analysis.Gastrointest. Endosc.2020924831839.e810.1016/j.gie.2020.04.03932334015
    [Google Scholar]
  164. RepiciA. BadalamentiM. MaselliR. CorrealeL. RadaelliF. RondonottiE. FerraraE. SpadacciniM. AlkandariA. FugazzaA. AnderloniA. GaltieriP.A. PellegattaG. CarraraS. Di LeoM. CraviottoV. LamonacaL. LorenzettiR. AndrealliA. AntonelliG. WallaceM. SharmaP. RoschT. HassanC. Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial.Gastroenterology20201592512520.e710.1053/j.gastro.2020.04.06232371116
    [Google Scholar]
  165. CutilloC.M. SharmaK.R. FoschiniL. KunduS. MackintoshM. MandlK.D. BeckT. CollierE. ColvisC. GersingK. GordonV. JensenR. ShabestariB. SouthallN. Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency.NPJ Digit. Med.2020314710.1038/s41746‑020‑0254‑232258429
    [Google Scholar]
  166. ZhaoD. WangW. TangT. ZhangY.Y. YuC. Current progress in artificial intelligence-assisted medical image analysis for chronic kidney disease: A literature review.Comput. Struct. Biotechnol. J.2023213315332610.1016/j.csbj.2023.05.02937333860
    [Google Scholar]
  167. SawhneyR. MalikA. SharmaS. NarayanV. A comparative assessment of artificial intelligence models used for early prediction and evaluation of chronic kidney disease.Decis. Analyt. J.2023610016910.1016/j.dajour.2023.100169
    [Google Scholar]
  168. DelrueC. De BruyneS. SpeeckaertM.M. Application of machine learning in chronic kidney disease: Current status and future prospects.Biomedicines202412356810.3390/biomedicines1203056838540181
    [Google Scholar]
  169. UsvyatL. DalrympleL.S. MadduxF.W. Using technology to inform and deliver precise personalized care to patients with end-stage kidney disease.Semin. Nephrol.201838441842510.1016/j.semnephrol.2018.05.01130082061
    [Google Scholar]
  170. WangY. WenQ. JinL. ChenW. Artificial intelligence-assisted renal pathology: Advances and prospects.J. Clin. Med.20221116491810.3390/jcm1116491836013157
    [Google Scholar]
  171. HammoudaN. NeyraJ.A. Can artificial intelligence assist in delivering continuous renal replacement therapy?Adv. Chronic Kidney Dis.202229543944910.1053/j.ackd.2022.08.00136253027
    [Google Scholar]
  172. TangriN. GramsM.E. LeveyA.S. CoreshJ. AppelL.J. AstorB.C. ChodickG. CollinsA.J. DjurdjevO. ElleyC.R. EvansM. GargA.X. HallanS.I. InkerL.A. ItoS. JeeS.H. KovesdyC.P. KronenbergF. HeerspinkH.J.L. MarksA. NadkarniG.N. NavaneethanS.D. NelsonR.G. TitzeS. SarnakM.J. StengelB. WoodwardM. IsekiK. ConsortiumC.K.D.P. Multinational assessment of accuracy of equations for predicting risk of kidney failure.JAMA2016315216417410.1001/jama.2015.1820226757465
    [Google Scholar]
  173. NorouziJ. YadollahpourA. MirbagheriS.A. MazdehM.M. HosseiniS.A. Predicting renal failure progression in chronic kidney disease using integrated intelligent fuzzy expert system.Comput. Math. Methods Med.201620161910.1155/2016/608081427022406
    [Google Scholar]
  174. ChauhanK. NadkarniG.N. FlemingF. McCulloughJ. HeC.J. QuackenbushJ. MurphyB. DonovanM.J. CocaS.G. BonventreJ.V. Initial validation of a machine learning-derived prognostic test (kidneyintelx) integrating biomarkers and electronic health record data to predict longitudinal kidney outcomes.Kidney36020201873173910.34067/KID.000225202035372952
    [Google Scholar]
  175. ChanL. NadkarniG.N. FlemingF. McCulloughJ.R. ConnollyP. MosoyanG. El SalemF. KattanM.W. VassalottiJ.A. MurphyB. DonovanM.J. CocaS.G. DamrauerS.M. Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease.Diabetologia20216471504151510.1007/s00125‑021‑05444‑033797560
    [Google Scholar]
  176. XiaoJ. DingR. XuX. GuanH. FengX. SunT. ZhuS. YeZ. Comparison and development of machine learning tools in the prediction of chronic kidney disease progression.J. Transl. Med.201917111910.1186/s12967‑019‑1860‑030971285
    [Google Scholar]
  177. LuF. MengY. SongX. LiX. LiuZ. GuC. ZhengX. JingY. CaiW. PinyopornpanishK. MancusoA. RomeiroF.G. Méndez-SánchezN. QiX. Artificial Intelligence in Liver Diseases: Recent Advances.Adv. Ther.202441396799010.1007/s12325‑024‑02781‑538286960
    [Google Scholar]
  178. ZhangP. GaoC. HuangY. ChenX. PanZ. WangL. DongD. LiS. QiX. Artificial intelligence in liver imaging: Methods and applications.Hepatol. Int.202418242243410.1007/s12072‑023‑10630‑w38376649
    [Google Scholar]
  179. SchattenbergJ.M. ChalasaniN. AlkhouriN. Artificial intelligence applications in hepatology.Clin. Gastroenterol. Hepatol.20232182015202510.1016/j.cgh.2023.04.00737088460
    [Google Scholar]
  180. ChalasaniN. YounossiZ. LavineJ.E. CharltonM. CusiK. RinellaM. HarrisonS.A. BruntE.M. SanyalA.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases.Hepatology201867132835710.1002/hep.2936728714183
    [Google Scholar]
  181. BenedictM. ZhangX. Non-alcoholic fatty liver disease: An expanded review.World J. Hepatol.201791671573210.4254/wjh.v9.i16.71528652891
    [Google Scholar]
  182. DecharatanachartP. ChaiteerakijR. TiyarattanachaiT. TreeprasertsukS. Application of artificial intelligence in chronic liver diseases: A systematic review and meta-analysis.BMC Gastroenterol.20212111010.1186/s12876‑020‑01585‑533407169
    [Google Scholar]
  183. HanA. ByraM. HebaE. AndreM.P. ErdmanJ.W.Jr LoombaR. SirlinC.B. O’BrienW.D.Jr Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat with radiofrequency ultrasound data using one-dimensional convolutional neural networks.Radiology2020295234235010.1148/radiol.202019116032096706
    [Google Scholar]
  184. FerrareseA. SartoriG. OrrùG. FrigoA.C. PelizzaroF. BurraP. SenzoloM. Machine learning in liver transplantation: A tool for some unsolved questions?Transpl. Int.202134339841110.1111/tri.1381833428298
    [Google Scholar]
  185. KanwalF. TaylorT.J. KramerJ.R. CaoY. SmithD. GiffordA.L. El-SeragH.B. NaikA.D. AschS.M. Development, Validation, and Evaluation of a Simple Machine Learning Model to Predict Cirrhosis Mortality.JAMA Netw. Open2020311202378010.1001/jamanetworkopen.2020.2378033141161
    [Google Scholar]
  186. SorinoP. CarusoM.G. MisciagnaG. BonfiglioC. CampanellaA. MirizziA. FrancoI. BiancoA. BuongiornoC. LiuzziR. CisterninoA.M. NotarnicolaM. ChiloiroM. PascoschiG. OsellaA.R. GroupM. Selecting the best machine learning algorithm to support the diagnosis of Non-Alcoholic Fatty Liver Disease: A meta learner study.PLoS One20201510024086710.1371/journal.pone.024086733079971
    [Google Scholar]
  187. CotterillJ. PriceN. RorijeE. PeijnenburgA. Development of a QSAR model to predict hepatic steatosis using freely available machine learning tools.Food Chem. Toxicol.202014211149410.1016/j.fct.2020.11149432553933
    [Google Scholar]
  188. MaH. XuC. ShenZ. YuC. LiY. Application of machine learning techniques for clinical predictive modeling: A cross-sectional study on nonalcoholic fatty liver disease in china.BioMed Res. Int.201820181910.1155/2018/430437630402478
    [Google Scholar]
  189. BertsimasD. KungJ. TrichakisN. WangY. HiroseR. VagefiP.A. Development and validation of an optimized prediction of mortality for candidates awaiting liver transplantation.Am. J. Transplant.20191941109111810.1111/ajt.1517230411495
    [Google Scholar]
  190. LauL. KankanigeY. RubinsteinB. JonesR. ChristophiC. MuralidharanV. BaileyJ. Machine-learning algorithms predict graft failure after liver transplantation.Transplantation20171014e125e13210.1097/TP.000000000000160027941428
    [Google Scholar]
  191. ZhuB. SongN. ShenR. AroraA. MachielaM.J. SongL. LandiM.T. GhoshD. ChatterjeeN. BaladandayuthapaniV. ZhaoH. Integrating clinical and multiple omics data for prognostic assessment across human cancers.Sci. Rep.2017711695410.1038/s41598‑017‑17031‑829209073
    [Google Scholar]
  192. HassanT.M. ElmogyM. SallamE.S. Diagnosis of focal liver diseases based on deep learning technique for ultrasound images.Arab. J. Sci. Eng.20174283127314010.1007/s13369‑016‑2387‑9
    [Google Scholar]
  193. ZhaoX. DouJ. CaoJ. WangY. GaoQ. ZengQ. LiuW. LiuB. CuiZ. TengL. ZhangJ. ZhaoC. Uncovering the potential differentially expressed miRNAs as diagnostic biomarkers for hepatocellular carcinoma based on machine learning in The Cancer Genome Atlas database.Oncol. Rep.20204361771178410.3892/or.2020.755132236623
    [Google Scholar]
  194. ShenJ. QiL. ZouZ. DuJ. KongW. ZhaoL. WeiJ. LinL. RenM. LiuB. Identification of a novel gene signature for the prediction of recurrence in HCC patients by machine learning of genome-wide databases.Sci. Rep.2020101443510.1038/s41598‑020‑61298‑332157118
    [Google Scholar]
  195. TaoK. BianZ. ZhangQ. GuoX. YinC. WangY. ZhouK. WanS. ShiM. BaoD. YangC. XingJ. Machine learning-based genome-wide interrogation of somatic copy number aberrations in circulating tumor DNA for early detection of hepatocellular carcinoma.EBioMedicine20205610281110.1016/j.ebiom.2020.10281132512514
    [Google Scholar]
  196. EatonJ.E. VesterhusM. McCauleyB.M. AtkinsonE.J. SchlichtE.M. JuranB.D. GossardA.A. LaRussoN.F. GoresG.J. KarlsenT.H. LazaridisK.N. Primary sclerosing cholangitis risk estimate tool (presto) predicts outcomes of the disease: A derivation and validation study using machine learning.Hepatology202071121422410.1002/hep.3008529742811
    [Google Scholar]
  197. MousaO.Y. JuranB.D. McCauleyB.M. VesterhusM.N. FolseraasT. TurgeonC.T. AliA.H. SchlichtE.M. AtkinsonE.J. HuC. HarnoisD. CareyE.J. GossardA.A. OglesbeeD. EatonJ.E. LaRussoN.F. GoresG.J. KarlsenT.H. LazaridisK.N. Bile acid profiles in primary sclerosing cholangitis and their ability to predict hepatic decompensation.Hepatology202174128129510.1002/hep.3165233226645
    [Google Scholar]
  198. ZhouL.Q. WangJ.Y. YuS.Y. WuG.G. WeiQ. DengY.B. WuX.L. CuiX.W. DietrichC.F. Artificial intelligence in medical imaging of the liver.World J. Gastroenterol.201925667268210.3748/wjg.v25.i6.67230783371
    [Google Scholar]
  199. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature1453926017442
    [Google Scholar]
  200. WangL. TanJ. GeY. TaoX. CuiZ. FeiZ. LuJ. ZhangH. PanZ. Assessment of liver metastases radiomic feature reproducibility with deep-learning-based semi-automatic segmentation software.Acta Radiol.202162329130110.1177/028418512092282232517533
    [Google Scholar]
  201. XuD. ShengJ.Q. HuP.J.H. HuangT.S. LeeW.C. Predicting hepatocellular carcinoma recurrences: A data-driven multiclass classification method incorporating latent variables.J. Biomed. Inform.20199610323710.1016/j.jbi.2019.10323731238108
    [Google Scholar]
  202. YamashitaR. NishioM. DoR.K.G. TogashiK. Convolutional neural networks: An overview and application in radiology.Insights Imaging20189461162910.1007/s13244‑018‑0639‑929934920
    [Google Scholar]
  203. ByraM. StyczynskiG. SzmigielskiC. KalinowskiP. MichałowskiŁ. PaluszkiewiczR. Ziarkiewicz-WróblewskaB. ZieniewiczK. SobierajP. NowickiA. Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images.Int. J. CARS201813121895190310.1007/s11548‑018‑1843‑230094778
    [Google Scholar]
  204. MinS. LeeB. YoonS. Deep learning in bioinformatics.Brief. Bioinform.201718585186927473064
    [Google Scholar]
  205. ParkK. KimJ. LeeJ. Visual field prediction using recurrent neural network.Sci. Rep.201991838510.1038/s41598‑019‑44852‑631182763
    [Google Scholar]
  206. KimS.H. KamayaA. WillmannJ.K. CT perfusion of the liver: Principles and applications in oncology.Radiology2014272232234410.1148/radiol.1413009125058132
    [Google Scholar]
  207. AfsharS. AfsharS. WardenE. ManochehriH. SaidijamM. Application of artificial neural network in mirna biomarker selection and precise diagnosis of colorectal cancer.Iran. Biomed. J.201923317518310.29252/ibj.23.3.17530056689
    [Google Scholar]
  208. GouF. LiuJ. XiaoC. WuJ. Research on artificial-intelligence-assisted medicine: A survey on medical artificial intelligence.Diagnostics20241414147210.3390/diagnostics1414147239061610
    [Google Scholar]
  209. San José EstéparR. Artificial intelligence in functional imaging of the lung.Br. J. Radiol.20229511322021052710.1259/bjr.2021052734890215
    [Google Scholar]
  210. SavadjievP. ChongJ. DohanA. VakalopoulouM. ReinholdC. ParagiosN. GallixB. Demystification of AI-driven medical image interpretation: Past, present and future.Eur. Radiol.20192931616162410.1007/s00330‑018‑5674‑x30105410
    [Google Scholar]
  211. Pinto-CoelhoL. How artificial intelligence is shaping medical imaging technology: A survey of innovations and applications.Bioengineering20231012143510.3390/bioengineering1012143538136026
    [Google Scholar]
  212. ZhaoW. LiuJ. Artificial intelligence in lung cancer: Application and future thinking.Zhong Nan Da Xue Xue Bao Yi Xue Ban2022478994100036097766
    [Google Scholar]
  213. CellinaM. CèM. IrmiciG. AscentiV. KhenkinaN. Toto-BrocchiM. MartinenghiC. PapaS. CarrafielloG. Artificial intelligence in lung cancer imaging: Unfolding the future.Diagnostics20221211264410.3390/diagnostics1211264436359485
    [Google Scholar]
  214. OhnoY. SeoJ.B. ParragaG. LeeK.S. GefterW.B. FainS.B. SchieblerM.L. HatabuH. Pulmonary functional imaging: Part 1—state-of-the-art technical and physiologic underpinnings.Radiology2021299350852310.1148/radiol.202120371133825513
    [Google Scholar]
  215. ArdilaD. KiralyA.P. BharadwajS. ChoiB. ReicherJ.J. PengL. TseD. EtemadiM. YeW. CorradoG. NaidichD.P. ShettyS. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography.Nat. Med.201925695496110.1038/s41591‑019‑0447‑x31110349
    [Google Scholar]
  216. ZhangY. JiangB. ZhangL. GreuterM.J.W. de BockG.H. ZhangH. XieX. Lung nodule detectability of artificial intelligence-assisted ct image reading in lung cancer screening.Curr. Med. Imaging202218332733410.2174/157340561766621080612595334365951
    [Google Scholar]
  217. FarhatH. SakrG.E. KilanyR. Deep learning applications in pulmonary medical imaging: Recent updates and insights on COVID-19.Mach. Vis. Appl.20203165310.1007/s00138‑020‑01101‑532834523
    [Google Scholar]
  218. SchmidhuberJ. Deep learning in neural networks: An overview.Neural Netw.2015618511710.1016/j.neunet.2014.09.00325462637
    [Google Scholar]
  219. VaswaniA. ShazeerN. ParmarN. UszkoreitJ. JonesL. GomezA.N. KaiserŁ. PolosukhinI. Attention is all you need.2017Available from: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
  220. ChauvieS. De MaggiA. BaralisI. DalmassoF. BerchiallaP. PriottoR. ViolinoP. MazzaF. MelloniG. GrossoM. Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial.Eur. Radiol.20203074134414010.1007/s00330‑020‑06783‑z32166491
    [Google Scholar]
  221. WangJ. DobbinsJ.T.III LiQ. Automated lung segmentation in digital chest tomosynthesis.Med. Phys.201239273274110.1118/1.367193922320783
    [Google Scholar]
  222. IsenseeF. JaegerP.F. KohlS.A.A. PetersenJ. Maier-HeinK.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation.Nat. Methods202118220321110.1038/s41592‑020‑01008‑z33288961
    [Google Scholar]
  223. GerardS.E. PattonT.J. ChristensenG.E. BayouthJ.E. ReinhardtJ.M. FissureNet: A deep learning approach for pulmonary fissure detection in CT images.IEEE Trans. Med. Imaging201938115616610.1109/TMI.2018.285820230106711
    [Google Scholar]
  224. GerardS.E. HerrmannJ. KaczkaD.W. MuschG. Fernandez-BustamanteA. ReinhardtJ.M. Multi-resolution convolutional neural networks for fully automated segmentation of acutely injured lungs in multiple species.Med. Image Anal.20206010159210.1016/j.media.2019.10159231760194
    [Google Scholar]
  225. GuoF. CapaldiD.P.I. McCormackD.G. FensterA. ParragaG. Ultra-short echo-time magnetic resonance imaging lung segmentation with under-Annotations and domain shift.Med. Image Anal.20217210210710.1016/j.media.2021.10210734153626
    [Google Scholar]
  226. AbascalJ.F.P.J. DucrosN. ProninaV. RitS. RodeschP.A. BroussaudT. BussodS. DouekP.C. HauptmannA. ArridgeS. PeyrinF. Material Decomposition in Spectral CT Using Deep Learning: A Sim2Real Transfer Approach.IEEE Access20219256322564710.1109/ACCESS.2021.3056150
    [Google Scholar]
  227. ZhangW. ZhangH. WangL. WangX. HuX. CaiA. LiL. NiuT. YanB. Image domain dual material decomposition for dual-energy CT using butterfly network.Med. Phys.20194652037205110.1002/mp.1348930883808
    [Google Scholar]
  228. HataA. YanagawaM. YoshidaY. MiyataT. TsubamotoM. HondaO. TomiyamaN. Combination of deep learning–based denoising and iterative reconstruction for ultra-low-dose CT of the chest: Image quality and lung-rads evaluation.AJR Am. J. Roentgenol.202021561321132810.2214/AJR.19.2268033052702
    [Google Scholar]
  229. XuY. HosnyA. ZeleznikR. ParmarC. CorollerT. FrancoI. MakR.H. AertsH.J.W.L. Deep learning predicts lung cancer treatment response from serial medical imaging.Clin. Cancer Res.201925113266327510.1158/1078‑0432.CCR‑18‑249531010833
    [Google Scholar]
  230. DuanC. DengH. XiaoS. XieJ. LiH. SunX. MaL. LouX. YeC. ZhouX. Fast and accurate reconstruction of human lung gas MRI with deep learning.Magn. Reson. Med.20198262273228510.1002/mrm.2788931322298
    [Google Scholar]
  231. ParkC. ChooK.S. JungY. JeongH.S. HwangJ.Y. YunM.S. CT iterative vs deep learning reconstruction: Comparison of noise and sharpness.Eur. Radiol.20213153156316410.1007/s00330‑020‑07358‑833057781
    [Google Scholar]
  232. BradyS.L. TroutA.T. SomasundaramE. AntonC.G. LiY. DillmanJ.R. Improving image quality and reducing radiation dose for pediatric CT by using deep learning reconstruction.Radiology2021298118018810.1148/radiol.202020231733201790
    [Google Scholar]
  233. KrugerS.J. NagleS.K. CouchM.J. OhnoY. AlbertM. FainS.B. Functional imaging of the lungs with gas agents.J. Magn. Reson. Imaging201643229531510.1002/jmri.2500226218920
    [Google Scholar]
  234. SluimerI. SchilhamA. ProkopM. van GinnekenB. Computer analysis of computed tomography scans of the lung: A survey.IEEE Trans. Med. Imaging200625438540510.1109/TMI.2005.86275316608056
    [Google Scholar]
  235. LjimaniA. HojdisM. StabinskaJ. ValentinB. FrenkenM. AppelE. AntochG. WittsackH.J. Analysis of different image-registration algorithms for Fourier decomposition MRI in functional lung imaging.Acta Radiol.202162787588110.1177/028418512094490232727212
    [Google Scholar]
  236. de VosB.D. BerendsenF.F. ViergeverM.A. SokootiH. StaringM. IšgumI. A deep learning framework for unsupervised affine and deformable image registration.Med. Image Anal.20195212814310.1016/j.media.2018.11.01030579222
    [Google Scholar]
  237. EstevaH. MarchevskyA. NúñezT. LunaC. EstevaM. Neural networks as a prognostic tool of surgical risk in lung resections.Ann. Thorac. Surg.20027351576158110.1016/S0003‑4975(02)03418‑512022553
    [Google Scholar]
  238. BendixenM. JørgensenO.D. KronborgC. AndersenC. LichtP.B. Postoperative pain and quality of life after lobectomy via video-assisted thoracoscopic surgery or anterolateral thoracotomy for early stage lung cancer: A randomised controlled trial.Lancet Oncol.201617683684410.1016/S1470‑2045(16)00173‑X27160473
    [Google Scholar]
  239. SomashekharS.P. SepúlvedaM.J. PuglielliS. NordenA.D. ShortliffeE.H. Rohit KumarC. RauthanA. Arun KumarN. PatilP. RheeK. RamyaY. Watson for Oncology and breast cancer treatment recommendations: Agreement with an expert multidisciplinary tumor board.Ann. Oncol.201829241842310.1093/annonc/mdx78129324970
    [Google Scholar]
  240. LuoS. XuJ. JiangZ. LiuL. WuQ. LeungE.L.H. LeungA.P. Artificial intelligence-based collaborative filtering method with ensemble learning for personalized lung cancer medicine without genetic sequencing.Pharmacol. Res.202016010503710.1016/j.phrs.2020.10503732590103
    [Google Scholar]
  241. ViswanathanV.S. ToroP. CorredorG. MukhopadhyayS. MadabhushiA. The state of the art for artificial intelligence in lung digital pathology.J. Pathol.2022257441342910.1002/path.596635579955
    [Google Scholar]
  242. DerrazB. BredaG. KaempfC. BaenkeF. CotteF. ReicheK. KöhlU. KatherJ.N. EskenazyD. GilbertS. New regulatory thinking is needed for AI-based personalised drug and cell therapies in precision oncology.NPJ Precis. Oncol.2024812310.1038/s41698‑024‑00517‑w38291217
    [Google Scholar]
  243. GhoshS. ZhaoX. AlimM. BrudnoM. BhatM. Artificial intelligence applied to ‘omics data in liver disease: Towards a personalised approach for diagnosis, prognosis and treatment.Gut202574229531110.1136/gutjnl‑2023‑33174039174307
    [Google Scholar]
  244. AdamisA.P. BrittainC.J. DandekarA. HopkinsJ.J. Building on the success of anti-vascular endothelial growth factor therapy: A vision for the next decade.Eye (Lond.)202034111966197210.1038/s41433‑020‑0895‑z32541890
    [Google Scholar]
  245. TingD.S.W. PengL. VaradarajanA.V. KeaneP.A. BurlinaP.M. ChiangM.F. SchmettererL. PasqualeL.R. BresslerN.M. WebsterD.R. AbramoffM. WongT.Y. Deep learning in ophthalmology: The technical and clinical considerations.Prog. Retin. Eye Res.20197210075910.1016/j.preteyeres.2019.04.00331048019
    [Google Scholar]
  246. De FauwJ. LedsamJ.R. Romera-ParedesB. NikolovS. TomasevN. BlackwellS. AskhamH. GlorotX. O’DonoghueB. VisentinD. van den DriesscheG. LakshminarayananB. MeyerC. MackinderF. BoutonS. AyoubK. ChopraR. KingD. KarthikesalingamA. HughesC.O. RaineR. HughesJ. SimD.A. EganC. TufailA. MontgomeryH. HassabisD. ReesG. BackT. KhawP.T. SuleymanM. CornebiseJ. KeaneP.A. RonnebergerO. Clinically applicable deep learning for diagnosis and referral in retinal disease.Nat. Med.20182491342135010.1038/s41591‑018‑0107‑630104768
    [Google Scholar]
  247. TingD.S.W. PasqualeL.R. PengL. CampbellJ.P. LeeA.Y. RamanR. TanG.S.W. SchmettererL. KeaneP.A. WongT.Y. Artificial intelligence and deep learning in ophthalmology.Br. J. Ophthalmol.2019103216717510.1136/bjophthalmol‑2018‑31317330361278
    [Google Scholar]
  248. BellemoV. LimZ.W. LimG. NguyenQ.D. XieY. YipM.Y.T. HamzahH. HoJ. LeeX.Q. HsuW. LeeM.L. MusondaL. ChandranM. Chipalo-MutatiG. MumaM. TanG.S.W. SivaprasadS. MenonG. WongT.Y. TingD.S.W. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: A clinical validation study.Lancet Digit. Health201911e35e4410.1016/S2589‑7500(19)30004‑433323239
    [Google Scholar]
  249. KanagasingamY. XiaoD. VignarajanJ. PreethamA. Tay-KearneyM.L. MehrotraA. Evaluation of artificial intelligence–based grading of diabetic retinopathy in primary care.JAMA Netw. Open20181518266510.1001/jamanetworkopen.2018.266530646178
    [Google Scholar]
  250. AbràmoffM.D. LavinP.T. BirchM. ShahN. FolkJ.C. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices.NPJ Digit. Med.2018113910.1038/s41746‑018‑0040‑631304320
    [Google Scholar]
  251. TufailA. KapetanakisV.V. Salas-VegaS. EganC. RudisillC. OwenC.G. LeeA. LouwV. AndersonJ. LiewG. BolterL. BaileyC. SaddaS. TaylorP. RudnickaA.R. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness.Health Technol. Assess.2016209217210.3310/hta2092027981917
    [Google Scholar]
  252. KernC. FuD.J. KortuemK. HuemerJ. BarkerD. DavisA. BalaskasK. KeaneP.A. McKinnonT. SimD.A. Implementation of a cloud-based referral platform in ophthalmology: Making telemedicine services a reality in eye care.Br. J. Ophthalmol.2020104331231710.1136/bjophthalmol‑2019‑31416131320383
    [Google Scholar]
  253. XieY. GunasekeranD.V. BalaskasK. KeaneP.A. SimD.A. BachmannL.M. MacraeC. TingD.S.W. Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening.Transl. Vis. Sci. Technol.2020922210.1167/tvst.9.2.2232818083
    [Google Scholar]
  254. GongY. ZhangY.Z. FangS. LiuC. NiuJ. LiG. LiF. LiX. ChengT. LaiW.Y. Artificial intelligent optoelectronic skin with anisotropic electrical and optical responses for multi-dimensional sensing.Appl. Phys. Rev.20229202140310.1063/5.0083278
    [Google Scholar]
  255. ChenY. ZhangX. LuC. Flexible piezoelectric materials and strain sensors for wearable electronics and artificial intelligence applications.Chem. Sci. (Camb.)20241540164361646610.1039/D4SC05166A39355228
    [Google Scholar]
  256. MahatoK. SahaT. DingS. SandhuS.S. ChangA.Y. WangJ. Hybrid multimodal wearable sensors for comprehensive health monitoring.Nat. Electron.20247973575010.1038/s41928‑024‑01247‑4
    [Google Scholar]
  257. FelminghamC.M. AdlerN.R. GeZ. MortonR.L. JandaM. MarV.J. The Importance of Incorporating Human Factors in the Design and Implementation of Artificial Intelligence for Skin Cancer Diagnosis in the Real World.Am. J. Clin. Dermatol.202122223324210.1007/s40257‑020‑00574‑433354741
    [Google Scholar]
  258. GilmoreS.J. Automated decision support in melanocytic lesion management.PLoS One2018139020345910.1371/journal.pone.020345930192804
    [Google Scholar]
  259. MarV.J. SoyerH.P. Artificial intelligence for melanoma diagnosis: How can we deliver on the promise?Ann. Oncol.20182981625162810.1093/annonc/mdy19329846499
    [Google Scholar]
  260. ChallenR. DennyJ. PittM. GompelsL. EdwardsT. Tsaneva-AtanasovaK. Artificial intelligence, bias and clinical safety.BMJ Qual. Saf.201928323123710.1136/bmjqs‑2018‑00837030636200
    [Google Scholar]
  261. JandaM. SoyerH.P. Can clinical decision making be enhanced by artificial intelligence?Br. J. Dermatol.2019180224724810.1111/bjd.1711030714102
    [Google Scholar]
  262. TschandlP. RinnerC. ApallaZ. ArgenzianoG. CodellaN. HalpernA. JandaM. LallasA. LongoC. MalvehyJ. PaoliJ. PuigS. RosendahlC. SoyerH.P. ZalaudekI. KittlerH. Human–computer collaboration for skin cancer recognition.Nat. Med.20202681229123410.1038/s41591‑020‑0942‑032572267
    [Google Scholar]
  263. HogartyD.T. SuJ.C. PhanK. AttiaM. HossnyM. NahavandiS. LenaneP. MoloneyF.J. YazdabadiA. Artificial intelligence in dermatology—where we are and the way to the future: A review.Am. J. Clin. Dermatol.2020211414710.1007/s40257‑019‑00462‑631278649
    [Google Scholar]
  264. EstevaA. RobicquetA. RamsundarB. KuleshovV. DePristoM. ChouK. CuiC. CorradoG. ThrunS. DeanJ. A guide to deep learning in healthcare.Nat. Med.2019251242910.1038/s41591‑018‑0316‑z30617335
    [Google Scholar]
  265. BrinkerT.J. HeklerA. EnkA.H. KlodeJ. HauschildA. BerkingC. SchillingB. HaferkampS. SchadendorfD. Holland-LetzT. UtikalJ.S. von KalleC. Ludwig-PeitschW. SirokayJ. HeinzerlingL. AlbrechtM. BaratellaK. BischofL. ChortiE. DithA. DrusioC. GieseN. GratsiasE. GriewankK. HallaschS. HanhartZ. HerzS. HohausK. JansenP. JockenhöferF. KanakiT. KnispelS. LeonhardK. MartakiA. MateiL. MatullJ. OlischewskiA. PetriM. PlackeJ-M. RaubS. SalvaK. SchlottS. SodyE. SteingrubeN. StoffelsI. UgurelS. ZarembaA. GebhardtC. BookenN. ChristoloukaM. Buder-BakhayaK. Bokor-BillmannT. EnkA. GholamP. HänßleH. SalzmannM. SchäferS. SchäkelK. SchankT. BohneA-S. DeffaaS. DrerupK. EgbertsF. ErkensA-S. EwaldB. FalkvollS. GerdesS. HardeV. HauschildA. JostM. KosovaK. MessingerL. MetznerM. MorrisonK. MotamediR. PinczkerA. RosenthalA. SchellerN. SchwarzT. StölzlD. ThielkingF. TomaschewskiE. WehkampU. WeichenthalM. WiedowO. BärC.M. Bender-SäbelkampfS. HorbrüggerM. KaroglanA. KraasL. FaulhaberJ. GeraudC. GuoZ. KochP. LinkeM. MaurierN. MüllerV. ThomasB. UtikalJ.S. AlamriA.S.M. BaczakoA. BerkingC. BetkeM. HaasC. HartmannD. HepptM.V. KilianK. KrammerS. LapczynskiN.L. MastnikS. NasifogluS. RuiniC. SattlerE. SchlaakM. WolffH. AchatzB. BergbreiterA. DrexlerK. EttingerM. HaferkampS. HalupczokA. HegemannM. DinauerV. MaagkM. MicklerM. PhilippB. WilmA. WittmannC. GesierichA. GlutschV. KahlertK. KerstanA. SchillingB. SchrüferP. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task.Eur. J. Cancer2019113475410.1016/j.ejca.2019.04.00130981091
    [Google Scholar]
  266. BrinkerT.J. HeklerA. EnkA.H. BerkingC. HaferkampS. HauschildA. WeichenthalM. KlodeJ. SchadendorfD. Holland-LetzT. von KalleC. FröhlingS. SchillingB. UtikalJ.S. Deep neural networks are superior to dermatologists in melanoma image classification.Eur. J. Cancer2019119111710.1016/j.ejca.2019.05.02331401469
    [Google Scholar]
  267. TschandlP. RosendahlC. AkayB.N. ArgenzianoG. BlumA. BraunR.P. CaboH. GourhantJ.Y. KreuschJ. LallasA. LapinsJ. MarghoobA. MenziesS. NeuberN.M. PaoliJ. RabinovitzH.S. RinnerC. ScopeA. SoyerH.P. SinzC. ThomasL. ZalaudekI. KittlerH. Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks.JAMA Dermatol.20191551586510.1001/jamadermatol.2018.437830484822
    [Google Scholar]
  268. HeklerA. UtikalJ.S. EnkA.H. HauschildA. WeichenthalM. MaronR.C. BerkingC. HaferkampS. KlodeJ. SchadendorfD. SchillingB. Holland-LetzT. IzarB. von KalleC. FröhlingS. BrinkerT.J. SchmittL. PeitschW.K. HoffmannF. BeckerJ.C. DrusioC. JansenP. KlodeJ. LoddeG. SammetS. SchadendorfD. SondermannW. UgurelS. ZaderJ. EnkA. SalzmannM. SchäferS. SchäkelK. WinklerJ. WölbingP. AsperH. BohneA-S. BrownV. BurbaB. DeffaaS. DietrichC. DietrichM. DrerupK.A. EgbertsF. ErkensA-S. GrevenS. HardeV. JostM. KaedingM. KosovaK. LischnerS. MaagkM. MessingerA.L. MetznerM. MotamediR. RosenthalA-C. SeidlU. StemmermannJ. TorzK. VelezJ.G. HaidukJ. AlterM. BärC. BergenthalP. GerlachA. HoltorfC. KaroglanA. KindermannS. KraasL. FelchtM. GaiserM.R. KlemkeC-D. KurzenH. LeibingT. MüllerV. ReinhardR.R. UtikalJ. WinterF. BerkingC. EicherL. HartmannD. HepptM. KilianK. KrammerS. LillD. NiesertA-C. OppelE. SattlerE. SennerS. WallmichrathJ. WolffH. GesierichA. GinerT. GlutschV. KerstanA. PresserD. SchrüferP. SchummerP. StolzeI. WeberJ. DrexlerK. HaferkampS. MicklerM. StaunerC.T. ThiemA. Superior skin cancer classification by the combination of human and artificial intelligence.Eur. J. Cancer201912011412110.1016/j.ejca.2019.07.01931518967
    [Google Scholar]
  269. ZakhemG.A. FakhouryJ.W. MotoskoC.C. HoR.S. Characterizing the role of dermatologists in developing artificial intelligence for assessment of skin cancer.J. Am. Acad. Dermatol.20218561544155610.1016/j.jaad.2020.01.02831972254
    [Google Scholar]
  270. NelsonC.A. Pérez-ChadaL.M. CreadoreA. LiS.J. LoK. ManjalyP. PournamdariA.B. TkachenkoE. BarbieriJ.S. KoJ.M. MenonA.V. HartmanR.I. MostaghimiA. Patient Perspectives on the Use of Artificial Intelligence for Skin Cancer Screening.JAMA Dermatol.2020156550151210.1001/jamadermatol.2019.501432159733
    [Google Scholar]
  271. KumarY. KoulA. SinglaR. IjazM.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda.J. Ambient Intell. Humaniz. Comput.20231478459848610.1007/s12652‑021‑03612‑z35039756
    [Google Scholar]
  272. PaudyalR. ShahA.D. AkinO. DoR.K.G. KonarA.S. HatzoglouV. MahmoodU. LeeN. WongR.J. BanerjeeS. ShinJ. VeeraraghavanH. Shukla-DaveA. Artificial intelligence in ct and mr imaging for oncological applications.Cancers2023159257310.3390/cancers1509257337174039
    [Google Scholar]
  273. WangF. LiY. ZengT. Deep Learning of radiology-genomics integration for computational oncology: A mini review.Comput. Struct. Biotechnol. J.2024232708271610.1016/j.csbj.2024.06.01939035833
    [Google Scholar]
  274. MontiC.B. CodariM. van AssenM. De CeccoC.N. VliegenthartR. Machine learning and deep neural networks applications in computed tomography for coronary artery disease and myocardial perfusion.J. Thorac. Imaging202035Suppl. 1S58S6510.1097/RTI.000000000000049032195886
    [Google Scholar]
  275. YıldırımÖ. PławiakP. TanR.S. AcharyaU.R. Arrhythmia detection using deep convolutional neural network with long duration ECG signals.Comput. Biol. Med.201810241142010.1016/j.compbiomed.2018.09.00930245122
    [Google Scholar]
  276. BhattV.K. PalV.K. An intelligent system for diagnosing thyroid disease in pregnant ladies through artificial neural network.International Conference on Advances in Engineering Science Management & Technology (ICAESMT)2019.10.2139/ssrn.3382654
    [Google Scholar]
  277. GoudaW. YasinR. COVID-19 disease: CT pneumonia analysis prototype by using artificial intelligence, predicting the disease severity.Egypt. J. Radiol. Nucl. Med.202051119610.1186/s43055‑020‑00309‑9
    [Google Scholar]
  278. KhanM.A. An IoT framework for heart disease prediction based on mdcnn classifier.IEEE Access20208347173472710.1109/ACCESS.2020.2974687
    [Google Scholar]
  279. KangD. DeyD. SlomkaP.J. ArsanjaniR. NakazatoR. KoH. BermanD.S. LiD. KuoC.C.J. Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography.J. Med. Imaging20152101400310.1117/1.JMI.2.1.01400326158081
    [Google Scholar]
  280. TescheC. GrayH.N. Machine learning and deep neural networks applications in coronary flow assessment.J. Thorac. Imaging202035Suppl. 1S66S7110.1097/RTI.000000000000048332091446
    [Google Scholar]
  281. DabowsaN.I.A. AmaitikN.M. MaatukA.M. AljawarnehS.A. A hybrid intelligent system for skin disease diagnosis.2017 International Conference on Engineering and Technology (ICET)2017, pp. 1-6.10.1109/ICEngTechnol.2017.8308157
    [Google Scholar]
  282. OwaisM. ArsalanM. ChoiJ. MahmoodT. ParkK.R. Artificial intelligence-based classification of multiple gastrointestinal diseases using endoscopy videos for clinical diagnosis.J. Clin. Med.20198798610.3390/jcm807098631284687
    [Google Scholar]
  283. GonsalvesA.H. ThabtahF. MohammadR.M.A. SinghG. Prediction of coronary heart disease using machine learning: An experimental analysis.Proceedings of the 2019 3rd International Conference on Deep Learning Technologies (ICDLT '19)New York, NY, USAAssociation for Computing Machinery2019515610.1145/3342999.3343015
    [Google Scholar]
  284. SkaaneP. BandosA.I. GullienR. EbenE.B. EksethU. HaakenaasenU. IzadiM. JebsenI.N. JahrG. KragerM. NiklasonL.T. HofvindS. GurD. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program.Radiology20132671475610.1148/radiol.1212137323297332
    [Google Scholar]
  285. IjazM. AlfianG. SyafrudinM. RheeJ. Hybrid prediction model for type 2 diabetes and hypertension using DBSCAN-based outlier detection, synthetic minority over sampling technique (SMOTE), and random forest.Appl. Sci.201888132510.3390/app8081325
    [Google Scholar]
  286. SrinivasuP.N. SivaSaiJ.G. IjazM.F. BhoiA.K. KimW. KangJ.J. Classification of skin disease using deep learning neural networks with mobilenet V2 and LSTM.Sensors2021218285210.3390/s2108285233919583
    [Google Scholar]
  287. Naga SrinivasuP. AhmedS. AlhumamA. Bhoi KumarA. Fazal IjazM. An AW-HARIS based automated segmentation of human liver using CT images.Comput. Mater. Continua20216933303331910.32604/cmc.2021.018472
    [Google Scholar]
  288. TranB.X. LatkinC.A. VuG.T. NguyenH.L.T. NghiemS. TanM.X. LimZ.K. HoC.S.H. HoR.C.M. The current research landscape of the application of artificial intelligence in managing cerebrovascular and heart diseases: A bibliometric and content analysis.Int. J. Environ. Res. Public Health20191615269910.3390/ijerph1615269931362340
    [Google Scholar]
  289. ShabutA.M. Hoque TaniaM. LwinK.T. EvansB.A. YusofN.A. Abu-HassanK.J. HossainM.A. An intelligent mobile-enabled expert system for tuberculosis disease diagnosis in real time.Expert Syst. Appl.2018114657710.1016/j.eswa.2018.07.014
    [Google Scholar]
  290. IjazM.F. AttiqueM. SonY. Data-driven cervical cancer prediction model with outlier detection and over-sampling methods.Sensors20202010280910.3390/s2010280932429090
    [Google Scholar]
  291. FrancoliniG. DesideriI. StocchiG. SalvestriniV. CicconeL.P. GarlattiP. LoiM. LiviL. Artificial intelligence in radiotherapy: State of the art and future directions.Med. Oncol.20203765010.1007/s12032‑020‑01374‑w32323066
    [Google Scholar]
  292. BaiX. ShanG. ChenM. WangB. Approach and assessment of automated stereotactic radiotherapy planning for early stage non-small-cell lung cancer.Biomed. Eng. Online201918110110.1186/s12938‑019‑0721‑731619263
    [Google Scholar]
  293. TsengH.H. LuoY. CuiS. ChienJ.T. Ten HakenR.K. Naqa i.e. Deep reinforcement learning for automated radiation adaptation in lung cancer.Med. Phys.201744126690670510.1002/mp.1262529034482
    [Google Scholar]
  294. MaloneC. FennellL. FolliardT. KellyC. Using a neural network to predict deviations in mean heart dose during the treatment of left-sided deep inspiration breath hold patients.Phys. Med.20196513714210.1016/j.ejmp.2019.08.01431465979
    [Google Scholar]
  295. BibaultJ.E. GiraudP. HoussetM. DurduxC. TaiebJ. BergerA. CoriatR. ChaussadeS. DoussetB. NordlingerB. BurgunA. Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer.Sci. Rep.2018811261110.1038/s41598‑018‑30657‑630135549
    [Google Scholar]
  296. LiS. WangK. HouZ. YangJ. RenW. GaoS. MengF. WuP. LiuB. LiuJ. YanJ. Use of radiomics combined with machine learning method in the recurrence patterns after intensity- modulated radiotherapy for nasopharyngeal carcinoma: A preliminary study.Front. Oncol.2018864810.3389/fonc.2018.0064830622931
    [Google Scholar]
  297. ZunairH. Ben HamzaA. Sharp U-Net: Depthwise convolutional network for biomedical image segmentation.Comput. Biol. Med.202113610469910.1016/j.compbiomed.2021.10469934348214
    [Google Scholar]
  298. VermaR. KumarN. PatilA. KurianN.C. RaneS. GrahamS. VuQ.D. ZwagerM. RazaS.E.A. RajpootN. WuX. ChenH. HuangY. WangL. JungH. BrownG.T. LiuY. LiuS. JahromiS.A.F. KhaniA.A. MontahaeiE. BaghshahM.S. BehrooziH. SemkinP. RassadinA. DutandeP. LodayaR. BaidU. BahetiB. TalbarS. MahbodA. EckerR. EllingerI. LuoZ. DongB. XuZ. YaoY. LvS. FengM. XuK. ZunairH. HamzaA.B. SmileyS. YinT.K. FangQ.R. SrivastavaS. MahapatraD. TrnavskaL. ZhangH. NarayananP.L. LawJ. YuanY. TejomayA. MitkariA. KokaD. RamachandraV. KiniL. SethiA. MoNuSAC2020: A multi-organ nuclei segmentation and classification challenge.IEEE Trans. Med. Imaging202140123413342310.1109/TMI.2021.308571234086562
    [Google Scholar]
  299. SalimI. HamzaA.B. Classification of developmental and brain disorders via graph convolutional aggregation.Cognit. Comput.202416270171610.1007/s12559‑023‑10224‑6
    [Google Scholar]
  300. LimantėA. Bias in facial recognition technologies used by law enforcement: Understanding the causes and searching for a way out.Nord. J. Hum. Rights202442211513410.1080/18918131.2023.2277581
    [Google Scholar]
  301. WehrliS. HertweckC. AmirianM. GlügeS. StadelmannT. Bias, awareness, and ignorance in deep-learning-based face recognition.AI Ethics20222350952210.1007/s43681‑021‑00108‑6
    [Google Scholar]
  302. HongC. LiuM. WojdylaD.M. HickeyJ. PencinaM. HenaoR. Trans-balance: Reducing demographic disparity for prediction models in the presence of class imbalance.J. Biomed. Inform.202414910453210.1016/j.jbi.2023.10453238070817
    [Google Scholar]
  303. TasciE. ZhugeY. CamphausenK. KrauzeA.V. Bias and class imbalance in oncologic data—towards inclusive and transferrable ai in large scale oncology data sets.Cancers20221412289710.3390/cancers1412289735740563
    [Google Scholar]
  304. GichoyaJ.W. BanerjeeI. BhimireddyA.R. BurnsJ.L. CeliL.A. ChenL.C. CorreaR. DullerudN. GhassemiM. HuangS.C. KuoP.C. LungrenM.P. PalmerL.J. PriceB.J. PurkayasthaS. PyrrosA.T. Oakden-RaynerL. OkechukwuC. Seyyed-KalantariL. TrivediH. WangR. ZaimanZ. ZhangH. AI recognition of patient race in medical imaging: A modelling study.Lancet Digit. Health202246e406e41410.1016/S2589‑7500(22)00063‑235568690
    [Google Scholar]
  305. WangH. LiJ. WuH. HovyE. SunY. Pre-trained language models and their applications.Engineering202325516510.1016/j.eng.2022.04.024
    [Google Scholar]
  306. PessachD. ShmueliE. Improving fairness of artificial intelligence algorithms in Privileged-Group Selection Bias data settings.Expert Syst. Appl.202118511566710.1016/j.eswa.2021.115667
    [Google Scholar]
  307. WaelenR. WieczorekM. The struggle for AI’s recognition: Understanding the normative implications of gender bias in AI with Honneth’s theory of recognition.Philos. Technol.20223525310.1007/s13347‑022‑00548‑w
    [Google Scholar]
  308. JohnsonG.M. Algorithmic bias: On the implicit biases of social technology.Synthese2021198109941996110.1007/s11229‑020‑02696‑y
    [Google Scholar]
  309. FarhudD.D. ZokaeiS. Ethical issues of artificial intelligence in medicine and healthcare.Iran. J. Public Health20215011iv10.18502/ijph.v50i11.760035223619
    [Google Scholar]
  310. JaimeF.J. MuñozA. Rodríguez-GómezF. Jerez-CaleroA. Strengthening Privacy and Data Security in Biomedical Microelectromechanical Systems by IoT Communication Security and Protection in Smart Healthcare.Sensors20232321894410.3390/s2321894437960646
    [Google Scholar]
  311. BertolacciniL. FalcozP.E. BrunelliA. BatirelH. FurakJ. PassaniS. SzantoZ. The significance of general data protection regulation in the compliant data contribution to the European Society of Thoracic Surgeons database.Eur. J. Cardiothorac. Surg.2023643ezad28910.1093/ejcts/ezad28937589648
    [Google Scholar]
  312. TimmonsA.C. DuongJ.B. Simo FialloN. LeeT. VoH.P.Q. AhleM.W. ComerJ.S. BrewerL.C. FrazierS.L. ChaspariT. A call to action on assessing and mitigating bias in artificial intelligence applications for mental health.Perspect. Psychol. Sci.20231851062109610.1177/1745691622113449036490369
    [Google Scholar]
  313. NazerL.H. ZatarahR. WaldripS. KeJ.X.C. MoukheiberM. KhannaA.K. HicklenR.S. MoukheiberL. MoukheiberD. MaH. MathurP. Bias in artificial intelligence algorithms and recommendations for mitigation.PLOS Digit. Health202326000027810.1371/journal.pdig.000027837347721
    [Google Scholar]
  314. UedaD. KakinumaT. FujitaS. KamagataK. FushimiY. ItoR. MatsuiY. NozakiT. NakauraT. FujimaN. TatsugamiF. YanagawaM. HirataK. YamadaA. TsuboyamaT. KawamuraM. FujiokaT. NaganawaS. Fairness of artificial intelligence in healthcare: Review and recommendations.Jpn. J. Radiol.202442131510.1007/s11604‑023‑01474‑337540463
    [Google Scholar]
  315. ChenY. ClaytonE.W. NovakL.L. AndersS. MalinB. Human-centered design to address biases in artificial intelligence.J. Med. Internet Res.2023254325110.2196/4325136961506
    [Google Scholar]
  316. KiselevaA. KotzinosD. De HertP. Transparency of AI in healthcare as a multilayered system of accountabilities: Between legal requirements and technical limitations.Front. Artif. Intell.2022587960310.3389/frai.2022.87960335707765
    [Google Scholar]
  317. Di MartinoF. DelmastroF. Explainable AI for clinical and remote health applications: A survey on tabular and time series data.Artif. Intell. Rev.20235665261531510.1007/s10462‑022‑10304‑336320613
    [Google Scholar]
  318. ShickA.A. WebberC.M. KiarashiN. WeinbergJ.P. DeorasA. PetrickN. SahaA. DiamondM.C. Transparency of artificial intelligence/machine learning-enabled medical devices.NPJ Digit. Med.2024712110.1038/s41746‑023‑00992‑838273098
    [Google Scholar]
  319. MillerM.I. ShihL.C. KolachalamaV.B. Machine learning in clinical trials: A primer with applications to neurology.Neurotherapeutics20232041066108010.1007/s13311‑023‑01384‑237249836
    [Google Scholar]
  320. van RoyenF.S. AsselbergsF.W. AlfonsoF. VardasP. van SmedenM. Five critical quality criteria for artificial intelligence-based prediction models.Eur. Heart J.202344464831483410.1093/eurheartj/ehad72737897346
    [Google Scholar]
  321. MorleyJ. MurphyL. MishraA. JoshiI. KarpathakisK. Governing data and artificial intelligence for health care: Developing an international understanding.JMIR Form. Res.2022613162310.2196/3162335099403
    [Google Scholar]
  322. MennellaC. ManiscalcoU. De PietroG. EspositoM. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review.Heliyon20241042629710.1016/j.heliyon.2024.e2629738384518
    [Google Scholar]
  323. AhmedZ. MohamedK. ZeeshanS. DongX. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine.Database20202020baaa01010.1093/database/baaa01032185396
    [Google Scholar]
  324. HabliI. LawtonT. PorterZ. Artificial intelligence in health care: Accountability and safety.Bull. World Health Organ.202098425125610.2471/BLT.19.23748732284648
    [Google Scholar]
  325. BajwaJ. MunirU. NoriA. WilliamsB. Artificial intelligence in healthcare: Transforming the practice of medicine.Future Healthc. J.202182e188e19410.7861/fhj.2021‑009534286183
    [Google Scholar]
  326. ElenduC. AmaechiD.C. ElenduT.C. JingwaK.A. OkoyeO.K. John OkahM. LadeleJ.A. FarahA.H. AlimiH.A. Ethical implications of AI and robotics in healthcare: A review.Medicine2023102503667110.1097/MD.000000000003667138115340
    [Google Scholar]
  327. Harishbhai TilalaM. Kumar ChenchalaP. ChoppadandiA. KaurJ. NaguriS. SaojiR. DevaguptapuB. Ethical Considerations in the use of artificial intelligence and machine learning in health care: A comprehensive review.Cureus20241666244310.7759/cureus.6244339011215
    [Google Scholar]
  328. TellezD. LitjensG. BándiP. BultenW. BokhorstJ.M. CiompiF. van der LaakJ. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology.Med. Image Anal.20195810154410.1016/j.media.2019.10154431466046
    [Google Scholar]
  329. WangD. KhoslaA. GargeyaR. IrshadH. BeckA.H. Deep learning for identifying metastatic breast cancer.arXiv:1606.0571820161510.48550/arXiv.1606.05718
    [Google Scholar]
  330. HoS.Y. PhuaK. WongL. Bin GohW.W. Extensions of the external validation for checking learned model interpretability and generalizability.Patterns20201810012910.1016/j.patter.2020.10012933294870
    [Google Scholar]
  331. DistanteA. MarandinoL. BertoloR. IngelsA. PavanN. PecoraroA. MarchioniM. CarbonaraU. ErdemS. AmparoreD. CampiR. RousselE. CaliòA. WuZ. PalumboC. BorregalesL.D. MuldersP. MuselaersC.H.J. GroupE.A.U.Y.A.U.R.C.W. Artificial intelligence in renal cell carcinoma histopathology: Current applications and future perspectives.Diagnostics20231313229410.3390/diagnostics1313229437443687
    [Google Scholar]
  332. KellyC.J. KarthikesalingamA. SuleymanM. CorradoG. KingD. Key challenges for delivering clinical impact with artificial intelligence.BMC Med.201917119510.1186/s12916‑019‑1426‑231665002
    [Google Scholar]
  333. AlafeefM. SrivastavaI. PanD. Machine learning for precision breast cancer diagnosis and prediction of the nanoparticle cellular internalization.ACS Sens.2020561689169810.1021/acssensors.0c0032932466640
    [Google Scholar]
  334. LiyanageH. LiawS.T. JonnagaddalaJ. SchreiberR. KuziemskyC. TerryA.L. de LusignanS. Artificial intelligence in primary health care: Perceptions, issues, and challenges.Yearb. Med. Inform.201928104104610.1055/s‑0039‑167790131022751
    [Google Scholar]
  335. YuK.H. BeamA.L. KohaneI.S. Artificial intelligence in healthcare.Nat. Biomed. Eng.201821071973110.1038/s41551‑018‑0305‑z31015651
    [Google Scholar]
  336. PagèsF. MlecnikB. MarliotF. BindeaG. OuF.S. BifulcoC. LugliA. ZlobecI. RauT.T. BergerM.D. NagtegaalI.D. Vink-BörgerE. HartmannA. GeppertC. KolwelterJ. MerkelS. GrützmannR. Van den EyndeM. Jouret-MourinA. KartheuserA. LéonardD. RemueC. WangJ.Y. BaviP. RoehrlM.H.A. OhashiP.S. NguyenL.T. HanS. MacGregorH.L. Hafezi-BakhtiariS. WoutersB.G. MasucciG.V. AnderssonE.K. ZavadovaE. VockaM. SpacekJ. PetruzelkaL. KonopasekB. DundrP. SkalovaH. NemejcovaK. BottiG. TatangeloF. DelrioP. CilibertoG. MaioM. LaghiL. GrizziF. FredriksenT. ButtardB. AngelovaM. VasaturoA. MabyP. ChurchS.E. AngellH.K. LafontaineL. BruniD. El SissyC. HaicheurN. KirilovskyA. BergerA. LagorceC. MeyersJ.P. PaustianC. FengZ. Ballesteros-MerinoC. DijkstraJ. van de WaterC. van Lent-van VlietS. KnijnN. MușinăA.M. ScripcariuD.V. PopivanovaB. XuM. FujitaT. HazamaS. SuzukiN. NaganoH. OkunoK. TorigoeT. SatoN. FuruhataT. TakemasaI. ItohK. PatelP.S. VoraH.H. ShahB. PatelJ.B. RajvikK.N. PandyaS.J. ShuklaS.N. WangY. ZhangG. KawakamiY. MarincolaF.M. AsciertoP.A. SargentD.J. FoxB.A. GalonJ. International validation of the consensus Immunoscore for the classification of colon cancer: A prognostic and accuracy study.Lancet2018391101352128213910.1016/S0140‑6736(18)30789‑X29754777
    [Google Scholar]
  337. DavenportT. KalakotaR. The potential for artificial intelligence in healthcare.Future Healthc. J.201962949810.7861/futurehosp.6‑2‑9431363513
    [Google Scholar]
  338. RonyM.K.K. AkterK. DebnathM. RahmanM.M. JohraF. AkterF. Chandra DasD. MondalS. Mousumi Das UddinM.J. Rina ParvinM. Strengths, weaknesses, opportunities and threats (SWOT) analysis of artificial intelligence adoption in nursing care.Journal of Medicine, Surgery, and Public Health2024310011310.1016/j.glmedi.2024.100113
    [Google Scholar]
  339. BandyopadhyayA. OksM. SunH. PrasadB. RuskS. JeffersonF. MalkaniR.G. HaghayeghS. SachdevaR. HwangD. AgustssonJ. MignotE. SummersM. FabbriD. DeakM. AnastasiM. SampsonA. Van HoutS. SeixasA. Strengths, weaknesses, opportunities, and threats of using AI-enabled technology in sleep medicine: A commentary.J. Clin. Sleep Med.20242071183119110.5664/jcsm.1113238533757
    [Google Scholar]
  340. ZhaoT. ZhengY. WuZ. Improving computational efficiency of machine learning modeling of nonlinear processes using sensitivity analysis and active learning.Digit. Chem. Eng.2022310002710.1016/j.dche.2022.100027
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501394785250715165404
Loading
/content/journals/cdt/10.2174/0113894501394785250715165404
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test