Skip to content
2000
image of Role of Artificial Intelligence in Nanomedicine and Organ-specific Therapy: An Updated Review

Abstract

Background

In organ-specific therapy, artificial intelligence (AI) is primarily used to improve surgical planning through image analysis, predict post-transplant outcomes, personalize treatment plans based on patient data, optimize organ allocation logistics, and donor-recipient precision mapping for organs to improve transplants. Furthermore, all these applications ultimately lead to better patient outcomes and enhanced organ therapy.

Objective

This review aims to examine the revolutionary effects of AI in some key healthcare fields, such as nanomedicine, cancer treatment, clinical applications, and organ-specific delivery.

Methods

This review article discusses in detail the role of AI in nanomedicine, cancer therapy, clinical applications, organ-specific delivery (, cardiovascular, gastroenterology, kidney, liver, lung, ophthalmology, skin, ), diagnosis, and radiotherapy. In addition, it also discusses limitations and challenges of AI in healthcare.

Results

AI-based clinical translation has potential but faces challenges like artifact vulnerability, ethical and legal considerations, and security measures. Restrictive data-use policies may hinder accurate analysis. Regulations and collaboration with data-sharing mechanisms could overcome barriers.

Conclusion

AI is being utilized in organ-specific therapy to enhance donor-recipient matching, surgical planning, post-transplant outcomes prediction, and personalized treatment plans by analyzing patient data.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501394785250715165404
2025-07-22
2025-09-02
Loading full text...

Full text loading...

References

  1. Kumar Y. Marchena J. Awlla A.H. Li J.J. Abdalla H.B. The AI-powered evolution of big data. Appl. Sci. 2024 14 22 10176 10.3390/app142210176
    [Google Scholar]
  2. Taherdoost H. Madanchian M. AI advancements: Comparison of innovative techniques. AI 2023 5 1 38 54 10.3390/ai5010003
    [Google Scholar]
  3. Kumari G.V. Chapa B.P. Chaitanya N.K. Mahajan R.G. Shahakar M. Introduction to data-driven intelligent systems. Data-Driven Systems and Intelligent Applications Boca Raton, FL CRC Press 2024 10.1201/9781003388449‑1
    [Google Scholar]
  4. Iqbal M.J. Javed Z. Sadia H. Qureshi I.A. Irshad A. Ahmed R. Malik K. Raza S. Abbas A. Pezzani R. Sharifi-Rad J. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: Looking into the future. Cancer Cell Int. 2021 21 1 270 10.1186/s12935‑021‑01981‑1 34020642
    [Google Scholar]
  5. Ma H. Su M. Whom to sue? Liability of unaccountability in AI decisions. Organ. Dyn. 2024 101123 10.1016/j.orgdyn.2024.101123
    [Google Scholar]
  6. Topol E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019 25 1 44 56 10.1038/s41591‑018‑0300‑7 30617339
    [Google Scholar]
  7. Tariq S. Iftikhar A. Chaudhary P. Khurshid K. Is the ‘Technological singularity scenario’ Possible: Can AI parallel and surpass all human mental capabilities? World Futures 2023 79 2 200 266 10.1080/02604027.2022.2050879
    [Google Scholar]
  8. Moloi T. Marwala T. Artificial intelligence in economics and finance theories. Advanced Information and Knowledge Processing 2020 1 125 10.1007/978‑3‑030‑42962‑1
    [Google Scholar]
  9. Umamaheswari S. Valarmathi A. Role of artificial intelligence in the banking sector. J. Surv. Fish. Sci. 2023 10 2841 2849
    [Google Scholar]
  10. Rashid A.B. Kausik A.K. AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Adv. 2024 7 100277 10.1016/j.hybadv.2024.100277
    [Google Scholar]
  11. Yaiprasert C. Hidayanto A.N. AI-powered ensemble machine learning to optimize cost strategies in logistics business. International Journal of Information Management Data Insights 2024 4 1 100209 10.1016/j.jjimei.2023.100209
    [Google Scholar]
  12. Rompianesi G. Pegoraro F. Ceresa C.D.L. Montalti R. Troisi R.I. Artificial intelligence in the diagnosis and management of colorectal cancer liver metastases. World J. Gastroenterol. 2022 28 1 108 122 10.3748/wjg.v28.i1.108 35125822
    [Google Scholar]
  13. Veerankutty F.H. Jayan G. Yadav M.K. Manoj K.S. Yadav A. Nair S.R.S. Shabeerali T.U. Yeldho V. Sasidharan M. Rather S.A. Artificial Intelligence in hepatology, liver surgery and transplantation: Emerging applications and frontiers of research. World J. Hepatol. 2021 13 12 1977 1990 10.4254/wjh.v13.i12.1977 35070002
    [Google Scholar]
  14. Noorbakhsh-Sabet N. Zand R. Zhang Y. Abedi V. Artificial intelligence transforms the future of health care. Am. J. Med. 2019 132 7 795 801 10.1016/j.amjmed.2019.01.017 30710543
    [Google Scholar]
  15. Wang H. Fu T. Du Y. Gao W. Huang K. Liu Z. Chandak P. Liu S. Van Katwyk P. Deac A. Anandkumar A. Bergen K. Gomes C.P. Ho S. Kohli P. Lasenby J. Leskovec J. Liu T.Y. Manrai A. Marks D. Ramsundar B. Song L. Sun J. Tang J. Veličković P. Welling M. Zhang L. Coley C.W. Bengio Y. Zitnik M. Scientific discovery in the age of artificial intelligence. Nature 2023 620 7972 47 60 10.1038/s41586‑023‑06221‑2 37532811
    [Google Scholar]
  16. Han R. Yoon H. Kim G. Lee H. Lee Y. Revolutionizing medicinal chemistry: The application of artificial intelligence (AI) in early drug discovery. Pharmaceuticals 2023 16 9 1259 10.3390/ph16091259 37765069
    [Google Scholar]
  17. Younis H.A. Eisa T.A.E. Nasser M. Sahib T.M. Noor A.A. Alyasiri O.M. Salisu S. Hayder I.M. Younis H.A. A systematic review and meta-analysis of artificial intelligence tools in medicine and healthcare: Applications, considerations, limitations, motivation and challenges. Diagnostics 2024 14 1 109 10.3390/diagnostics14010109 38201418
    [Google Scholar]
  18. Torkamani A. Andersen K.G. Steinhubl S.R. Topol E.J. High-definition medicine. Cell 2017 170 5 828 843 10.1016/j.cell.2017.08.007 28841416
    [Google Scholar]
  19. Solanki S.L. Pandrowala S. Nayak A. Bhandare M. Ambulkar R.P. Shrikhande S.V. Artificial intelligence in perioperative management of major gastrointestinal surgeries. World J. Gastroenterol. 2021 27 21 2758 2770 10.3748/wjg.v27.i21.2758 34135552
    [Google Scholar]
  20. Xu W. Dainoff M.J. Ge L. Gao Z. Transitioning to human interaction with AI systems: New challenges and opportunities for HCI professionals to enable human-centered AI. Int. J. Hum. Comput. Interact. 2023 39 3 494 518 10.1080/10447318.2022.2041900
    [Google Scholar]
  21. Matheny M.E. Whicher D. Thadaney Israni S. Artificial Intelligence in Health Care. JAMA 2020 323 6 509 510 10.1001/jama.2019.21579 31845963
    [Google Scholar]
  22. Xi Q. Yang Q. Wang M. Huang B. Zhang B. Li Z. Liu S. Yang L. Zhu L. Jin L. Individualized embryo selection strategy developed by stacking machine learning model for better in vitro fertilization outcomes: An application study. Reprod. Biol. Endocrinol. 2021 19 1 53 10.1186/s12958‑021‑00734‑z 33820565
    [Google Scholar]
  23. Ulloa Cerna A.E. Jing L. Good C.W. vanMaanen D.P. Raghunath S. Suever J.D. Nevius C.D. Wehner G.J. Hartzel D.N. Leader J.B. Alsaid A. Patel A.A. Kirchner H.L. Pfeifer J.M. Carry B.J. Pattichis M.S. Haggerty C.M. Fornwalt B.K. Deep-learning-assisted analysis of echocardiographic videos improves predictions of all- cause mortality. Nat. Biomed. Eng. 2021 5 6 546 554 10.1038/s41551‑020‑00667‑9 33558735
    [Google Scholar]
  24. Balsano C. Alisi A. Brunetto M.R. Invernizzi P. Burra P. Piscaglia F. Alvaro D. Bonino F. Carbone M. Faita F. Gerussi A. Persico M. Santini S.J. Zanetto A. The application of artificial intelligence in hepatology: A systematic review. Dig. Liver Dis. 2022 54 3 299 308 10.1016/j.dld.2021.06.011 34266794
    [Google Scholar]
  25. Hashimoto D.A. Rosman G. Rus D. Meireles O.R. Artificial Intelligence in Surgery: Promises and Perils. Ann. Surg. 2018 268 1 70 76 10.1097/SLA.0000000000002693 29389679
    [Google Scholar]
  26. Hamed B.A. Ibrahim O.A.S. Abd El-Hafeez T. Optimizing classification efficiency with machine learning techniques for pattern matching. J. Big Data 2023 10 1 124 10.1186/s40537‑023‑00804‑6
    [Google Scholar]
  27. Chaudhuri S. Long A. Zhang H. Monaghan C. Larkin J.W. Kotanko P. Kalaskar S. Kooman J.P. van der Sande F.M. Maddux F.W. Usvyat L.A. Artificial intelligence enabled applications in kidney disease. Semin. Dial. 2021 34 1 5 16 10.1111/sdi.12915 32924202
    [Google Scholar]
  28. Yi T.W. Laing C. Kretzler M. Nkulikiyinka R. Legrand M. Jardine M. Rossignol P. Smyth B. Digital health and artificial intelligence in kidney research: A report from the 2020 Kidney Disease Clinical Trialists (KDCT) meeting. Nephrol. Dial. Transplant. 2022 37 4 620 627 10.1093/ndt/gfab320 34791422
    [Google Scholar]
  29. Serov N. Vinogradov V. Artificial intelligence to bring nanomedicine to life. Adv. Drug Deliv. Rev. 2022 184 114194 10.1016/j.addr.2022.114194 35283223
    [Google Scholar]
  30. Le Piane F. Vozza M. Baldoni M. Mercuri F. Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies. Beilstein J. Nanotechnol. 2024 15 1498 1521 10.3762/bjnano.15.119 39624205
    [Google Scholar]
  31. Misra S.K. Ostadhossein F. Daza E. Johnson E.V. Pan D. Hyperspectral imaging offers visual and quantitative evidence of drug release from zwitterionic-phospholipid-nanocarbon when concurrently tracked in 3d intracellular space. Adv. Funct. Mater. 2016 26 44 8031 8041 10.1002/adfm.201602966
    [Google Scholar]
  32. Khadela A Popat S Ajabiya J Valu D Savale S Chavda VP. AI ML and other bioinformatics tools for preclinical and clinical development of drug products. Hoboken, New Jersey Wiley Online Library 2023 10.1002/9781119865728.ch12
    [Google Scholar]
  33. Jamialahmadi H. Khalili-Tanha G. Nazari E. Rezaei-Tavirani M. Artificial intelligence and bioinformatics: A journey from traditional techniques to smart approaches. Gastroenterol. Hepatol. Bed Bench 2024 17 3 241 252 39308539
    [Google Scholar]
  34. Gupta R. Srivastava D. Sahu M. Tiwari S. Ambasta R.K. Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021 25 3 1315 1360 10.1007/s11030‑021‑10217‑3 33844136
    [Google Scholar]
  35. Chakraborty C. Bhattacharya M. Lee S.S. Wen Z.H. Lo Y.H. The changing scenario of drug discovery using AI to deep learning: Recent advancement, success stories, collaborations, and challenges. Mol. Ther. Nucleic Acids 2024 35 3 102295 10.1016/j.omtn.2024.102295 39257717
    [Google Scholar]
  36. Gangwal A. Ansari A. Ahmad I. Azad A.K. Wan Sulaiman W.M.A. Current strategies to address data scarcity in artificial intelligence-based drug discovery: A comprehensive review. Comput. Biol. Med. 2024 179 108734 10.1016/j.compbiomed.2024.108734 38964243
    [Google Scholar]
  37. Amasya G. Badilli U. Aksu B. Tarimci N. Quality by design case study 1: Design of 5-fluorouracil loaded lipid nanoparticles by the W/O/W double emulsion — Solvent evaporation method. Eur. J. Pharm. Sci. 2016 84 92 102 10.1016/j.ejps.2016.01.003 26780593
    [Google Scholar]
  38. Shen Y. Liu T. Chen J. Li X. Liu L. Shen J. Wang J. Zhang R. Sun M. Wang Z. Song W. Qi T. Tang Y. Meng X. Zhang L. Ho D. Ho C-M. Ding X. Lu H-Z. Harnessing artificial intelligence to optimize long-term maintenance dosing for antiretroviral-naive adults with HIV-1 infection. Adv. Ther. 2020 3 4 1900114 10.1002/adtp.201900114
    [Google Scholar]
  39. Reker D. Rybakova Y. Kirtane A.R. Cao R. Yang J.W. Navamajiti N. Gardner A. Zhang R.M. Esfandiary T. L’Heureux J. von Erlach T. Smekalova E.M. Leboeuf D. Hess K. Lopes A. Rogner J. Collins J. Tamang S.M. Ishida K. Chamberlain P. Yun D. Lytton-Jean A. Soule C.K. Cheah J.H. Hayward A.M. Langer R. Traverso G. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 2021 16 6 725 733 10.1038/s41565‑021‑00870‑y 33767382
    [Google Scholar]
  40. Tu K.H. Huang H. Lee S. Lee W. Sun Z. Alexander-Katz A. Ross C.A. Machine learning predictions of block copolymer self-assembly. Adv. Mater. 2020 32 52 2005713 10.1002/adma.202005713 33206426
    [Google Scholar]
  41. Li Y. Abbaspour M.R. Grootendorst P.V. Rauth A.M. Wu X.Y. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology. Eur. J. Pharm. Biopharm. 2015 94 170 179 10.1016/j.ejpb.2015.04.028 25986587
    [Google Scholar]
  42. Mekki-Berrada F Ren Z Huang T Wong WK Zheng F Xie J Tian IPS Jayavelu S Mahfoud Z Bash D Hippalgaonkar K Khan S Buonassisi T Li Q Wang X Two-step machine learning enables optimized nanoparticle synthesis. npj Comput. Mater. 2021 7 55 10.1038/s41524‑021‑00520‑w
    [Google Scholar]
  43. Hu Y.H. Tai C.T. Tsai C.F. Huang M.W. Improvement of adequate digoxin dosage: An application of machine learning approach. J. Healthc. Eng. 2018 2018 1 9 10.1155/2018/3948245 30210752
    [Google Scholar]
  44. Pantuck A.J. Lee D.K. Kee T. Wang P. Lakhotia S. Silverman M.H. Mathis C. Drakaki A. Belldegrun A.S. Ho C.M. Ho D. Modulating BET bromodomain inhibitor zen-3694 and enzalutamide combination dosing in a metastatic prostate cancer patient using CURATE.AI, an artificial intelligence platform. Adv. Ther. 2018 1 6 1800104 10.1002/adtp.201800104
    [Google Scholar]
  45. Yamankurt G. Berns E.J. Xue A. Lee A. Bagheri N. Mrksich M. Mirkin C.A. Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat. Biomed. Eng. 2019 3 4 318 327 10.1038/s41551‑019‑0351‑1 30952978
    [Google Scholar]
  46. Metwally A.A. Hathout R.M. Computer-assisted drug formulation design: Novel approach in drug delivery. Mol. Pharm. 2015 12 8 2800 2810 10.1021/mp500740d 26107396
    [Google Scholar]
  47. Nemati S. Ghassemi M.M. Clifford G.D. Optimal medication dosing from suboptimal clinical examples: A deep reinforcement learning approach. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2016, pp. 2978-2981. 10.1109/EMBC.2016.7591355
    [Google Scholar]
  48. Mullis A.S. Broderick S.R. Binnebose A.M. Peroutka-Bigus N. Bellaire B.H. Rajan K. Narasimhan B. Data analytics approach for rational design of nanomedicines with programmable drug release. Mol. Pharm. 2019 16 5 1917 1928 10.1021/acs.molpharmaceut.8b01272 30973741
    [Google Scholar]
  49. Wishart D.S. Feunang Y.D. Guo A.C. Lo E.J. Marcu A. Grant J.R. Sajed T. Johnson D. Li C. Sayeeda Z. Assempour N. Iynkkaran I. Liu Y. Maciejewski A. Gale N. Wilson A. Chin L. Cummings R. Le D. Pon A. Knox C. Wilson M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 46 D1 D1074 D1082 10.1093/nar/gkx1037 29126136
    [Google Scholar]
  50. Tang J. Liu R. Zhang Y.L. Liu M.Z. Hu Y.F. Shao M.J. Zhu L.J. Xin H.W. Feng G.W. Shang W.J. Meng X.G. Zhang L.R. Ming Y.Z. Zhang W. Application of machine-learning models to predict tacrolimus stable dose in renal transplant recipients. Sci. Rep. 2017 7 1 42192 10.1038/srep42192 28176850
    [Google Scholar]
  51. Xue R. Liao J. Shao X. Han K. Long J. Shao L. Ai N. Fan X. Prediction of adverse drug reactions by combining biomedical tripartite network and graph representation model. Chem. Res. Toxicol. 2020 33 1 202 210 10.1021/acs.chemrestox.9b00238 31777246
    [Google Scholar]
  52. Liu X. Gao Y. Peng J. Xu Y. Wang Y. Zhou N. Xing J. Luo X. Jiang H. Zheng M. TarPred: A web application for predicting therapeutic and side effect targets of chemical compounds. Bioinformatics 2015 31 12 2049 2051 10.1093/bioinformatics/btv099 25686637
    [Google Scholar]
  53. Raja K. Patrick M. Elder J.T. Tsoi L.C. Machine learning workflow to enhance predictions of Adverse Drug Reactions (ADRs) through drug-gene interactions: Application to drugs for cutaneous diseases. Sci. Rep. 2017 7 1 3690 10.1038/s41598‑017‑03914‑3 28623363
    [Google Scholar]
  54. Vilanova O. Mittag J.J. Kelly P.M. Milani S. Dawson K.A. Rädler J.O. Franzese G. Understanding the Kinetics of Protein–Nanoparticle Corona Formation. ACS Nano 2016 10 12 10842 10850 10.1021/acsnano.6b04858 28024351
    [Google Scholar]
  55. Liu R. Jiang W. Walkey C.D. Chan W.C.W. Cohen Y. Prediction of nanoparticles-cell association based on corona proteins and physicochemical properties. Nanoscale 2015 7 21 9664 9675 10.1039/C5NR01537E 25959034
    [Google Scholar]
  56. Afolabi L.T. Saeed F. Hashim H. Petinrin O.O. Ensemble learning method for the prediction of new bioactive molecules. PLoS One 2018 13 1 0189538 10.1371/journal.pone.0189538 29329334
    [Google Scholar]
  57. Naskar S. Sharma S. Kuotsu K. Halder S. Pal G. Saha S. Mondal S. Biswas U.K. Jana M. Bhattacharjee S. The biomedical applications of artificial intelligence: An overview of decades of research. J. Drug Target. 2025 33 5 717 748 10.1080/1061186X.2024.2448711 39744873
    [Google Scholar]
  58. Mukherjee J. Sharma R. Dutta P. Bhunia B. Artificial intelligence in healthcare: A mastery. Biotechnol. Genet. Eng. Rev. 2024 40 3 1659 1708 10.1080/02648725.2023.2196476 37013913
    [Google Scholar]
  59. Bhinder B. Gilvary C. Madhukar N.S. Elemento O. Artificial intelligence in cancer research and precision medicine. Cancer Discov. 2021 11 4 900 915 10.1158/2159‑8290.CD‑21‑0090 33811123
    [Google Scholar]
  60. Ali G. Mijwil M.M. Adamopoulos I. Buruga B.A. Gök M. Sallam M. Harnessing the potential of artificial intelligence in managing viral hepatitis. Mesopot. J. Big Data 2024 2024 128 163 10.58496/MJBD/2024/010
    [Google Scholar]
  61. Char D.S. Abràmoff M.D. Feudtner C. Identifying ethical considerations for machine learning healthcare applications. Am. J. Bioeth. 2020 20 11 7 17 10.1080/15265161.2020.1819469 33103967
    [Google Scholar]
  62. Hassan J. Saeed S.M. Deka L. Uddin M.J. Das D.B. Applications of machine learning (ML) and mathematical modeling (MM) in healthcare with special focus on cancer prognosis and anticancer therapy: Current status and challenges. Pharmaceutics 2024 16 2 260 10.3390/pharmaceutics16020260 38399314
    [Google Scholar]
  63. Bahl M. Barzilay R. Yedidia A.B. Locascio N.J. Yu L. Lehman C.D. High-risk breast lesions: A machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision. Radiology 2018 286 3 810 818 10.1148/radiol.2017170549 29039725
    [Google Scholar]
  64. Juwara L. Arora N. Gornitsky M. Saha-Chaudhuri P. Velly A.M. Identifying predictive factors for neuropathic pain after breast cancer surgery using machine learning. Int. J. Med. Inform. 2020 141 104170 10.1016/j.ijmedinf.2020.104170 32544823
    [Google Scholar]
  65. Khosravi P. Kazemi E. Imielinski M. Elemento O. Hajirasouliha I. Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images. EBioMedicine 2018 27 317 328 10.1016/j.ebiom.2017.12.026 29292031
    [Google Scholar]
  66. Ding L. Bailey M.H. Porta-Pardo E. Thorsson V. Colaprico A. Bertrand D. Gibbs D.L. Weerasinghe A. Huang K. Tokheim C. Cortés-Ciriano I. Jayasinghe R. Chen F. Yu L. Sun S. Olsen C. Kim J. Taylor A.M. Cherniack A.D. Akbani R. Suphavilai C. Nagarajan N. Stuart J.M. Mills G.B. Wyczalkowski M.A. Vincent B.G. Hutter C.M. Zenklusen J.C. Hoadley K.A. Wendl M.C. Shmulevich Lazar A.J. Wheeler D.A. Getz G. Caesar-Johnson S.J. Demchok J.A. Felau I. Kasapi M. Ferguson M.L. Hutter C.M. Sofia H.J. Tarnuzzer R. Wang Z. Yang L. Zenklusen J.C. Zhang J.J. Chudamani S. Liu J. Lolla L. Naresh R. Pihl T. Sun Q. Wan Y. Wu Y. Cho J. DeFreitas T. Frazer S. Gehlenborg N. Getz G. Heiman D.I. Kim J. Lawrence M.S. Lin P. Meier S. Noble M.S. Saksena G. Voet D. Zhang H. Bernard B. Chambwe N. Dhankani V. Knijnenburg T. Kramer R. Leinonen K. Liu Y. Miller M. Reynolds S. Shmulevich I. Thorsson V. Zhang W. Akbani R. Broom B.M. Hegde A.M. Ju Z. Kanchi R.S. Korkut A. Li J. Liang H. Ling S. Liu W. Lu Y. Mills G.B. Ng K-S. Rao A. Ryan M. Wang J. Weinstein J.N. Zhang J. Abeshouse A. Armenia J. Chakravarty D. Chatila W.K. de Bruijn I. Gao J. Gross B.E. Heins Z.J. Kundra R. La K. Ladanyi M. Luna A. Nissan M.G. Ochoa A. Phillips S.M. Reznik E. Sanchez-Vega F. Sander C. Schultz N. Sheridan R. Sumer S.O. Sun Y. Taylor B.S. Wang J. Zhang H. Anur P. Peto M. Spellman P. Benz C. Stuart J.M. Wong C.K. Yau C. Hayes D.N. Parker J.S. Wilkerson M.D. Ally A. Balasundaram M. Bowlby R. Brooks D. Carlsen R. Chuah E. Dhalla N. Holt R. Jones S.J.M. Kasaian K. Lee D. Ma Y. Marra M.A. Mayo M. Moore R.A. Mungall A.J. Mungall K. Robertson A.G. Sadeghi S. Schein J.E. Sipahimalani P. Tam A. Thiessen N. Tse K. Wong T. Berger A.C. Beroukhim R. Cherniack A.D. Cibulskis C. Gabriel S.B. Gao G.F. Ha G. Meyerson M. Schumacher S.E. Shih J. Kucherlapati M.H. Kucherlapati R.S. Baylin S. Cope L. Danilova L. Bootwalla M.S. Lai P.H. Maglinte D.T. Van Den Berg D.J. Weisenberger D.J. Auman J.T. Balu S. Bodenheimer T. Fan C. Hoadley K.A. Hoyle A.P. Jefferys S.R. Jones C.D. Meng S. Mieczkowski P.A. Mose L.E. Perou A.H. Perou C.M. Roach J. Shi Y. Simons J.V. Skelly T. Soloway M.G. Tan D. Veluvolu U. Fan H. Hinoue T. Laird P.W. Shen H. Zhou W. Bellair M. Chang K. Covington K. Creighton C.J. Dinh H. Doddapaneni H.V. Donehower L.A. Drummond J. Gibbs R.A. Glenn R. Hale W. Han Y. Hu J. Korchina V. Lee S. Lewis L. Li W. Liu X. Morgan M. Morton D. Muzny D. Santibanez J. Sheth M. Shinbrot E. Wang L. Wang M. Wheeler D.A. Xi L. Zhao F. Hess J. Appelbaum E.L. Bailey M. Cordes M.G. Ding L. Fronick C.C. Fulton L.A. Fulton R.S. Kandoth C. Mardis E.R. McLellan M.D. Miller C.A. Schmidt H.K. Wilson R.K. Crain D. Curley E. Gardner J. Lau K. Mallery D. Morris S. Paulauskis J. Penny R. Shelton C. Shelton T. Sherman M. Thompson E. Yena P. Bowen J. Gastier-Foster J.M. Gerken M. Leraas K.M. Lichtenberg T.M. Ramirez N.C. Wise L. Zmuda E. Corcoran N. Costello T. Hovens C. Carvalho A.L. de Carvalho A.C. Fregnani J.H. Longatto-Filho A. Reis R.M. Scapulatempo-Neto C. Silveira H.C.S. Vidal D.O. Burnette A. Eschbacher J. Hermes B. Noss A. Singh R. Anderson M.L. Castro P.D. Ittmann M. Huntsman D. Kohl B. Le X. Thorp R. Andry C. Duffy E.R. Lyadov V. Paklina O. Setdikova G. Shabunin A. Tavobilov M. McPherson C. Warnick R. Berkowitz R. Cramer D. Feltmate C. Horowitz N. Kibel A. Muto M. Raut C.P. Malykh A. Barnholtz-Sloan J.S. Barrett W. Devine K. Fulop J. Ostrom Q.T. Shimmel K. Wolinsky Y. Sloan A.E. De Rose A. Giuliante F. Goodman M. Karlan B.Y. Hagedorn C.H. Eckman J. Harr J. Myers J. Tucker K. Zach L.A. Deyarmin B. Hu H. Kvecher L. Larson C. Mural R.J. Somiari S. Vicha A. Zelinka T. Bennett J. Iacocca M. Rabeno B. Swanson P. Latour M. Lacombe L. Têtu B. Bergeron A. McGraw M. Staugaitis S.M. Chabot J. Hibshoosh H. Sepulveda A. Su T. Wang T. Potapova O. Voronina O. Desjardins L. Mariani O. Roman-Roman S. Sastre X. Stern M-H. Cheng F. Signoretti S. Berchuck A. Bigner D. Lipp E. Marks J. McCall S. McLendon R. Secord A. Sharp A. Behera M. Brat D.J. Chen A. Delman K. Force S. Khuri F. Magliocca K. Maithel S. Olson J.J. Owonikoko T. Pickens A. Ramalingam S. Shin D.M. Sica G. Van Meir e.g. Zhang H. Eijckenboom W. Gillis A. Korpershoek E. Looijenga L. Oosterhuis W. Stoop H. van Kessel K.E. Zwarthoff E.C. Calatozzolo C. Cuppini L. Cuzzubbo S. DiMeco F. Finocchiaro G. Mattei L. Perin A. Pollo B. Chen C. Houck J. Lohavanichbutr P. Hartmann A. Stoehr C. Stoehr R. Taubert H. Wach S. Wullich B. Kycler W. Murawa D. Wiznerowicz M. Chung K. Edenfield W.J. Martin J. Baudin E. Bubley G. Bueno R. De Rienzo A. Richards W.G. Kalkanis S. Mikkelsen T. Noushmehr H. Scarpace L. Girard N. Aymerich M. Campo E. Giné E. Guillermo A.L. Van Bang N. Hanh P.T. Phu B.D. Tang Y. Colman H. Evason K. Dottino P.R. Martignetti J.A. Gabra H. Juhl H. Akeredolu T. Stepa S. Hoon D. Ahn K. Kang K.J. Beuschlein F. Breggia A. Birrer M. Bell D. Borad M. Bryce A.H. Castle E. Chandan V. Cheville J. Copland J.A. Farnell M. Flotte T. Giama N. Ho T. Kendrick M. Kocher J-P. Kopp K. Moser C. Nagorney D. O’Brien D. O’Neill B.P. Patel T. Petersen G. Que F. Rivera M. Roberts L. Smallridge R. Smyrk T. Stanton M. Thompson R.H. Torbenson M. Yang J.D. Zhang L. Brimo F. Ajani J.A. Gonzalez A.M.A. Behrens C. Bondaruk J. Broaddus R. Czerniak B. Esmaeli B. Fujimoto J. Gershenwald J. Guo C. Lazar A.J. Logothetis C. Meric-Bernstam F. Moran C. Ramondetta L. Rice D. Sood A. Tamboli P. Thompson T. Troncoso P. Tsao A. Wistuba I. Carter C. Haydu L. Hersey P. Jakrot V. Kakavand H. Kefford R. Lee K. Long G. Mann G. Quinn M. Saw R. Scolyer R. Shannon K. Spillane A. Stretch J. Synott M. Thompson J. Wilmott J. Al-Ahmadie H. Chan T.A. Ghossein R. Gopalan A. Levine D.A. Reuter V. Singer S. Singh B. Tien N.V. Broudy T. Mirsaidi C. Nair P. Drwiega P. Miller J. Smith J. Zaren H. Park J-W. Hung N.P. Kebebew E. Linehan W.M. Metwalli A.R. Pacak K. Pinto P.A. Schiffman M. Schmidt L.S. Vocke C.D. Wentzensen N. Worrell R. Yang H. Moncrieff M. Goparaju C. Melamed J. Pass H. Botnariuc N. Caraman I. Cernat M. Chemencedji I. Clipca A. Doruc S. Gorincioi G. Mura S. Pirtac M. Stancul I. Tcaciuc D. Albert M. Alexopoulou I. Arnaout A. Bartlett J. Engel J. Gilbert S. Parfitt J. Sekhon H. Thomas G. Rassl D.M. Rintoul R.C. Bifulco C. Tamakawa R. Urba W. Hayward N. Timmers H. Antenucci A. Facciolo F. Grazi G. Marino M. Merola R. de Krijger R. Gimenez-Roqueplo A-P. Piché A. Chevalier S. McKercher G. Birsoy K. Barnett G. Brewer C. Farver C. Naska T. Pennell N.A. Raymond D. Schilero C. Smolenski K. Williams F. Morrison C. Borgia J.A. Liptay M.J. Pool M. Seder C.W. Junker K. Omberg L. Dinkin M. Manikhas G. Alvaro D. Bragazzi M.C. Cardinale V. Carpino G. Gaudio E. Chesla D. Cottingham S. Dubina M. Moiseenko F. Dhanasekaran R. Becker K-F. Janssen K-P. Slotta-Huspenina J. Abdel-Rahman M.H. Aziz D. Bell S. Cebulla C.M. Davis A. Duell R. Elder J.B. Hilty J. Kumar B. Lang J. Lehman N.L. Mandt R. Nguyen P. Pilarski R. Rai K. Schoenfield L. Senecal K. Wakely P. Hansen P. Lechan R. Powers J. Tischler A. Grizzle W.E. Sexton K.C. Kastl A. Henderson J. Porten S. Waldmann J. Fassnacht M. Asa S.L. Schadendorf D. Couce M. Graefen M. Huland H. Sauter G. Schlomm T. Simon R. Tennstedt P. Olabode O. Nelson M. Bathe O. Carroll P.R. Chan J.M. Disaia P. Glenn P. Kelley R.K. Landen C.N. Phillips J. Prados M. Simko J. Smith-McCune K. VandenBerg S. Roggin K. Fehrenbach A. Kendler A. Sifri S. Steele R. Jimeno A. Carey F. Forgie I. Mannelli M. Carney M. Hernandez B. Campos B. Herold-Mende C. Jungk C. Unterberg A. von Deimling A. Bossler A. Galbraith J. Jacobus L. Knudson M. Knutson T. Ma D. Milhem M. Sigmund R. Godwin A.K. Madan R. Rosenthal H.G. Adebamowo C. Adebamowo S.N. Boussioutas A. Beer D. Giordano T. Mes-Masson A-M. Saad F. Bocklage T. Landrum L. Mannel R. Moore K. Moxley K. Postier R. Walker J. Zuna R. Feldman M. Valdivieso F. Dhir R. Luketich J. Pinero E.M.M. Quintero-Aguilo M. Carlotti C.G. Jr Dos Santos J.S. Kemp R. Sankarankuty A. Tirapelli D. Catto J. Agnew K. Swisher E. Creaney J. Robinson B. Shelley C.S. Godwin E.M. Kendall S. Shipman C. Bradford C. Carey T. Haddad A. Moyer J. Peterson L. Prince M. Rozek L. Wolf G. Bowman R. Fong K.M. Yang I. Korst R. Rathmell W.K. Fantacone-Campbell J.L. Hooke J.A. Kovatich A.J. Shriver C.D. DiPersio J. Drake B. Govindan R. Heath S. Ley T. Van Tine B. Westervelt P. Rubin M.A. Lee J.I. Aredes N.D. Mariamidze A. Perspective on oncogenic processes at the end of the beginning of cancer genomics. Cell 2018 173 2 305 320.e10 10.1016/j.cell.2018.03.033 29625049
    [Google Scholar]
  67. Aswathy R. Chalos V.A. Suganya K. Sumathi S. Advancing miRNA cancer research through artificial intelligence: From biomarker discovery to therapeutic targeting. Med. Oncol. 2024 42 1 30 10.1007/s12032‑024‑02579‑z 39688780
    [Google Scholar]
  68. Liosis K.C. Marouf A.A. Rokne J.G. Ghosh S. Bismar T.A. Alhajj R. Genomic biomarker discovery in disease progression and therapy response in bladder cancer utilizing machine learning. Cancers 2023 15 19 4801 10.3390/cancers15194801 37835496
    [Google Scholar]
  69. Sharafaddini A.M. Esfahani K.K. Mansouri N. Deep learning approaches to detect breast cancer: A comprehensive review. Multimedia Tools Appl. 2024 1 112
    [Google Scholar]
  70. Lugano R. Ramachandran M. Dimberg A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 2020 77 9 1745 1770 10.1007/s00018‑019‑03351‑7 31690961
    [Google Scholar]
  71. Esteves M. Monteiro M.P. Duarte J.A. The effects of vascularization on tumor development: A systematic review and meta-analysis of pre-clinical studies. Crit. Rev. Oncol. Hematol. 2021 159 103245 10.1016/j.critrevonc.2021.103245 33508446
    [Google Scholar]
  72. Timakova A. Ananev V. Fayzullin A. Makarov V. Ivanova E. Shekhter A. Timashev P. Artificial intelligence assists in the detection of blood vessels in whole slide images: Practical benefits for oncological pathology. Biomolecules 2023 13 9 1327 10.3390/biom13091327 37759727
    [Google Scholar]
  73. Lin B. Tan Z. Mo Y. Yang X. Liu Y. Xu B. Intelligent oncology: The convergence of artificial intelligence and oncology. J. Natl. Cancer Cent. 2023 3 1 83 91 10.1016/j.jncc.2022.11.004 39036310
    [Google Scholar]
  74. Zhou Q. Zhou Z. Chen C. Fan G. Chen G. Heng H. Ji J. Dai Y. Grading of hepatocellular carcinoma using 3D SE-DenseNet in dynamic enhanced MR images. Comput. Biol. Med. 2019 107 47 57 10.1016/j.compbiomed.2019.01.026 30776671
    [Google Scholar]
  75. Jiang Y. Liang X. Wang W. Chen C. Yuan Q. Zhang X. Li N. Chen H. Yu J. Xie Y. Xu Y. Zhou Z. Li G. Li R. Noninvasive prediction of occult peritoneal metastasis in gastric cancer using deep learning. JAMA Netw. Open 2021 4 1 2032269 10.1001/jamanetworkopen.2020.32269 33399858
    [Google Scholar]
  76. Esteva A. Kuprel B. Novoa R.A. Ko J. Swetter S.M. Blau H.M. Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017 542 7639 115 118 10.1038/nature21056 28117445
    [Google Scholar]
  77. Ehteshami Bejnordi B. Mullooly M. Pfeiffer R.M. Fan S. Vacek P.M. Weaver D.L. Herschorn S. Brinton L.A. van Ginneken B. Karssemeijer N. Beck A.H. Gierach G.L. van der Laak J.A.W.M. Sherman M.E. Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies. Mod. Pathol. 2018 31 10 1502 1512 10.1038/s41379‑018‑0073‑z 29899550
    [Google Scholar]
  78. Nagpal K. Foote D. Liu Y. Chen P.H.C. Wulczyn E. Tan F. Olson N. Smith J.L. Mohtashamian A. Wren J.H. Corrado G.S. MacDonald R. Peng L.H. Amin M.B. Evans A.J. Sangoi A.R. Mermel C.H. Hipp J.D. Stumpe M.C. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digit. Med. 2019 2 1 48 10.1038/s41746‑019‑0112‑2 31304394
    [Google Scholar]
  79. Angel Latha Mary S. Siva Subramanian S. Priyanka G. Vijayakumar T. Alagumalai S. Revolutionizing prostate cancer diagnosis: Unleashing the potential of an optimized deep belief network for accurate Gleason grading in histological images. Inter. J. Intellig. Net. 2024 5 241 254 10.1016/j.ijin.2024.05.004
    [Google Scholar]
  80. Wang X. Yang W. Weinreb J. Han J. Li Q. Kong X. Yan Y. Ke Z. Luo B. Liu T. Wang L. Searching for prostate cancer by fully automated magnetic resonance imaging classification: Deep learning versus non-deep learning. Sci. Rep. 2017 7 1 15415 10.1038/s41598‑017‑15720‑y 29133818
    [Google Scholar]
  81. Coudray N. Ocampo P.S. Sakellaropoulos T. Narula N. Snuderl M. Fenyö D. Moreira A.L. Razavian N. Tsirigos A. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 2018 24 10 1559 1567 10.1038/s41591‑018‑0177‑5 30224757
    [Google Scholar]
  82. Menden K. Marouf M. Oller S. Dalmia A. Magruder D.S. Kloiber K. Heutink P. Bonn S. Deep learning–based cell composition analysis from tissue expression profiles. Sci. Adv. 2020 6 30 eaba2619 10.1126/sciadv.aba2619 32832661
    [Google Scholar]
  83. Hu M. Chikina M. Heterogeneous pseudobulk simulation enables realistic benchmarking of cell-type deconvolution methods. Genome Biol. 2024 25 1 169 10.1186/s13059‑024‑03292‑w 38956606
    [Google Scholar]
  84. Baxi V. Edwards R. Montalto M. Saha S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol. 2022 35 1 23 32 10.1038/s41379‑021‑00919‑2 34611303
    [Google Scholar]
  85. Kalita A.J. Boruah A. Das T. Mazumder N. Jaiswal S.K. Zhuo G-Y. Gogoi A. Kakoty N.M. Kao F-J. Artificial intelligence in diagnostic medical image processing for advanced healthcare applications. Biomedical Imaging Cham Springer 2024 1 61 10.1007/978‑981‑97‑5345‑1_1
    [Google Scholar]
  86. Parvaiz A. Nasir E.S. Fraz M.M. From Pixels to Prognosis: A Survey on AI-Driven Cancer Patient Survival Prediction Using Digital Histology Images. J. Imag. Infor. Med. 2024 37 4 1728 1751 10.1007/s10278‑024‑01049‑2 38429563
    [Google Scholar]
  87. Muehlematter U.J. Daniore P. Vokinger K.N. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): A comparative analysis. Lancet Digit. Health 2021 3 3 e195 e203 10.1016/S2589‑7500(20)30292‑2 33478929
    [Google Scholar]
  88. Benjamens S. Dhunnoo P. Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: An online database. NPJ Digit. Med. 2020 3 1 118 10.1038/s41746‑020‑00324‑0 32984550
    [Google Scholar]
  89. Mroz P. Parwani A.V. Kulesza P. Central pathology review for phase III clinical trials: The enabling effect of virtual microscopy. Arch. Pathol. Lab. Med. 2013 137 4 492 495 10.5858/arpa.2012‑0093‑RA 23544938
    [Google Scholar]
  90. Kumar R Kumar R. Machine learning and cognition in enterprises. Business Intelligence Transformed Cham Springer 2017
    [Google Scholar]
  91. Bera K. Schalper K.A. Rimm D.L. Velcheti V. Madabhushi A. Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 2019 16 11 703 715 10.1038/s41571‑019‑0252‑y 31399699
    [Google Scholar]
  92. Salo I. Nordlund L. Eklund L. Ho J. Soini M. Kumar D. Yeong J. Guan F. Metsälä E. Advancements and applications of AI technologies in pathology: A scoping review. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2024 12 1 2396595 10.1080/21681163.2024.2396595
    [Google Scholar]
  93. Harvey C. Koubek R. Bégat V. Jacob S. Usability evaluation of a blood glucose monitoring system with a spill-resistant vial, easier strip handling, and connectivity to a mobile app. J. Diabetes Sci. Technol. 2016 10 5 1136 1141 10.1177/1932296816658058 27390222
    [Google Scholar]
  94. Lu S. Stein J.E. Rimm D.L. Wang D.W. Bell J.M. Johnson D.B. Sosman J.A. Schalper K.A. Anders R.A. Wang H. Hoyt C. Pardoll D.M. Danilova L. Taube J.M. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade. JAMA Oncol. 2019 5 8 1195 1204 10.1001/jamaoncol.2019.1549 31318407
    [Google Scholar]
  95. Browning L. Colling R. Rakha E. Rajpoot N. Rittscher J. James J.A. Salto-Tellez M. Snead D.R.J. Verrill C. Digital pathology and artificial intelligence will be key to supporting clinical and academic cellular pathology through COVID-19 and future crises: The PathLAKE consortium perspective. J. Clin. Pathol. 2021 74 7 443 447 10.1136/jclinpath‑2020‑206854 32620678
    [Google Scholar]
  96. Wang X. Barrera C. Velu P. Bera K. Prasanna P. Khunger M. Khunger A. Velcheti V. Madabhushi A. Computer extracted features of cancer nuclei from H&E stained tissues of tumor predicts response to nivolumab in non-small cell lung cancer. J. Clin. Oncol. 2018 36 15_suppl 12061 12061 10.1200/JCO.2018.36.15_suppl.12061
    [Google Scholar]
  97. Barrera C. Velu P. Bera K. Wang X. Prasanna P. Khunger M. Khunger A. Velcheti V. Romero E. Madabhushi A. Computer-extracted features relating to spatial arrangement of tumor infiltrating lymphocytes to predict response to nivolumab in non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2018 36 15_suppl 12115 12115 10.1200/JCO.2018.36.15_suppl.12115
    [Google Scholar]
  98. Althammer S. Tan T.H. Spitzmüller A. Rognoni L. Wiestler T. Herz T. Widmaier M. Rebelatto M.C. Kaplon H. Damotte D. Alifano M. Hammond S.A. Dieu-Nosjean M.C. Ranade K. Schmidt G. Higgs B.W. Steele K.E. Automated image analysis of NSCLC biopsies to predict response to anti-PD-L1 therapy. J. Immunother. Cancer 2019 7 1 121 10.1186/s40425‑019‑0589‑x 31060602
    [Google Scholar]
  99. Ranka S. Reddy M. Noheria A. Artificial intelligence in cardiovascular medicine. Curr. Opin. Cardiol. 2021 36 1 26 35 10.1097/HCO.0000000000000812 33060388
    [Google Scholar]
  100. Aminizadeh S. Heidari A. Dehghan M. Toumaj S. Rezaei M. Jafari Navimipour N. Stroppa F. Unal M. Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service. Artif. Intell. Med. 2024 149 102779 10.1016/j.artmed.2024.102779 38462281
    [Google Scholar]
  101. Knight D.R.T. Aakre C.A. Anstine C.V. Munipalli B. Biazar P. Mitri G. Valery J.R. Brigham T. Niazi S.K. Perlman A.I. Halamka J.D. Dabrh A.M.A. Artificial intelligence for patient scheduling in the real-world health care setting: A metanarrative review. Health Policy Technol. 2023 12 4 100824 10.1016/j.hlpt.2023.100824
    [Google Scholar]
  102. Stamate E. Piraianu A.I. Ciobotaru O.R. Crassas R. Duca O. Fulga A. Grigore I. Vintila V. Fulga I. Ciobotaru O.C. Revolutionizing Cardiology through Artificial Intelligence—Big Data from Proactive Prevention to Precise Diagnostics and Cutting-Edge Treatment—A Comprehensive Review of the Past 5 Years. Diagnostics 2024 14 11 1103 10.3390/diagnostics14111103 38893630
    [Google Scholar]
  103. Adasuriya G. Haldar S. Next generation ECG: The impact of artificial intelligence and machine learning. Curr. Cardiovasc. Risk Rep. 2023 17 8 143 154 10.1007/s12170‑023‑00723‑4
    [Google Scholar]
  104. Gao J. Zhang K. Wang Y. Guo R. Liu H. Jia C. Sun X. Wu C. Wang W. Du J. Chen J. A machine learning-driven study indicates emodin improves cardiac hypertrophy by modulation of mitochondrial SIRT3 signaling. Pharmacol. Res. 2020 155 104739 10.1016/j.phrs.2020.104739 32135248
    [Google Scholar]
  105. Cherifa M. Blet A. Chambaz A. Gayat E. Resche-Rigon M. Pirracchio R. Prediction of an acute hypotensive episode during an icu hospitalization with a super learner machine-learning algorithm. Anesth. Analg. 2020 130 5 1157 1166 10.1213/ANE.0000000000004539 32287123
    [Google Scholar]
  106. Nagel S. Sinha D. Day D. Reith W. Chapot R. Papanagiotou P. Warburton E.A. Guyler P. Tysoe S. Fassbender K. Walter S. Essig M. Heidenrich J. Konstas A.A. Harrison M. Papadakis M. Greveson E. Joly O. Gerry S. Maguire H. Roffe C. Hampton-Till J. Buchan A.M. Grunwald I.Q. e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients. Int. J. Stroke 2017 12 6 615 622 10.1177/1747493016681020 27899743
    [Google Scholar]
  107. Sahli-Costabal F. Seo K. Ashley E. Kuhl E. Classifying drugs by their arrhythmogenic risk using machine learning. Biophys. J. 2020 118 5 1165 1176 10.1016/j.bpj.2020.01.012 32023435
    [Google Scholar]
  108. Sahli Costabal F. Matsuno K. Yao J. Perdikaris P. Kuhl E. Machine learning in drug development: Characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification. Comput. Methods Appl. Mech. Eng. 2019 348 313 333 10.1016/j.cma.2019.01.033 32863454
    [Google Scholar]
  109. Chang K.C. Hsieh P.H. Wu M.Y. Wang Y.C. Chen J.Y. Tsai F.J. Shih E.S.C. Hwang M.J. Huang T.C. Usefulness of machine learning-based detection and classification of cardiac arrhythmias with 12-lead electrocardiograms. Can. J. Cardiol. 2021 37 1 94 104 10.1016/j.cjca.2020.02.096 32585216
    [Google Scholar]
  110. Hannun A.Y. Rajpurkar P. Haghpanahi M. Tison G.H. Bourn C. Turakhia M.P. Ng A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019 25 1 65 69 10.1038/s41591‑018‑0268‑3 30617320
    [Google Scholar]
  111. Schläpfer J. Wellens H.J. Computer-interpreted electrocardiograms. J. Am. Coll. Cardiol. 2017 70 9 1183 1192 10.1016/j.jacc.2017.07.723 28838369
    [Google Scholar]
  112. Xiao R. Xu Y. Pelter M.M. Fidler R. Badilini F. Mortara D.W. Hu X. Monitoring significant ST changes through deep learning. J. Electrocardiol. 2018 51 6 S78 S82 10.1016/j.jelectrocard.2018.07.026 30082087
    [Google Scholar]
  113. Puszkarski B. Hryniów K. Sarwas G. Comparison of neural basis expansion analysis for interpretable time series (N-BEATS) and recurrent neural networks for heart dysfunction classification. Physiol. Meas. 2022 43 6 064006 10.1088/1361‑6579/ac6e55 35537407
    [Google Scholar]
  114. Badertscher P. Lischer M. Mannhart D. Knecht S. Isenegger C. Du Fay de Lavallaz J. Schaer B. Osswald S. Kühne M. Sticherling C. Clinical validation of a novel smartwatch for automated detection of atrial fibrillation. Heart Rhythm O2 2022 3 2 208 210 10.1016/j.hroo.2022.02.004 35496455
    [Google Scholar]
  115. Shah A.P. Rubin S.A. Errors in the computerized electrocardiogram interpretation of cardiac rhythm. J. Electrocardiol. 2007 40 5 385 390 10.1016/j.jelectrocard.2007.03.008 17531257
    [Google Scholar]
  116. Martínez-Sellés M. Marina-Breysse M. Current and future use of artificial intelligence in electrocardiography. J. Cardiovasc. Dev. Dis. 2023 10 4 175 10.3390/jcdd10040175 37103054
    [Google Scholar]
  117. Rogovoy N.M. Howell S.J. Lee T.L. Hamilton C. Perez-Alday E.A. Kabir M.M. Zhang Y. Kim E.D. Fitzpatrick J. Monroy-Trujillo J.M. Estrella M.M. Sozio S.M. Jaar B.G. Parekh R.S. Tereshchenko L.G. Hemodialysis procedure–associated autonomic imbalance and cardiac arrhythmias: Insights from continuous 14-day ECG monitoring. J. Am. Heart Assoc. 2019 8 19 013748 10.1161/JAHA.119.013748 31564195
    [Google Scholar]
  118. Maille B. Wilkin M. Million M. Rességuier N. Franceschi F. Koutbi-Franceschi L. Hourdain J. Martinez E. Zabern M. Gardella C. Tissot-Dupont H. Singh J.P. Deharo J.C. Fiorina L. Smartwatch electrocardiogram and artificial intelligence for assessing cardiac-rhythm safety of drug therapy in the COVID-19 pandemic. The QT-logs study. Int. J. Cardiol. 2021 331 333 339 10.1016/j.ijcard.2021.01.002 33524462
    [Google Scholar]
  119. Mazidi M.H. Eshghi M. Raoufy M.R. Premature ventricular contraction (PVC) detection system based on tunable q-factor wavelet transform. J. Biomed. Phys. Eng. 2022 12 1 61 74 10.31661/jbpe.v0i0.1235 35155294
    [Google Scholar]
  120. Casaclang-Verzosa G. Shrestha S. Khalil M.J. Cho J.S. Tokodi M. Balla S. Alkhouli M. Badhwar V. Narula J. Miller J.D. Sengupta P.P. Network tomography for understanding phenotypic presentations in aortic stenosis. JACC Cardiovasc. Imaging 2019 12 2 236 248 10.1016/j.jcmg.2018.11.025 30732719
    [Google Scholar]
  121. Haro Alonso D. Wernick M.N. Yang Y. Germano G. Berman D.S. Slomka P. Prediction of cardiac death after adenosine myocardial perfusion SPECT based on machine learning. J. Nucl. Cardiol. 2019 26 5 1746 1754 10.1007/s12350‑018‑1250‑7 29542015
    [Google Scholar]
  122. Betancur J. Commandeur F. Motlagh M. Sharir T. Einstein A.J. Bokhari S. Fish M.B. Ruddy T.D. Kaufmann P. Sinusas A.J. Miller E.J. Bateman T.M. Dorbala S. Di Carli M. Germano G. Otaki Y. Tamarappoo B.K. Dey D. Berman D.S. Slomka P.J. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT. JACC Cardiovasc. Imaging 2018 11 11 1654 1663 10.1016/j.jcmg.2018.01.020 29550305
    [Google Scholar]
  123. Slomka P.J. Dey D. Sitek A. Motwani M. Berman D.S. Germano G. Cardiac imaging: Working towards fully-automated machine analysis & interpretation. Expert Rev. Med. Devices 2017 14 3 197 212 10.1080/17434440.2017.1300057 28277804
    [Google Scholar]
  124. Amponsah D. Thamman R. Brandt E. James C. Spector-Bagdady K. Yong C.M. Artificial intelligence to promote racial and ethnic cardiovascular health equity. Curr. Cardiovasc. Risk Rep. 2024 18 11 153 162 10.1007/s12170‑024‑00745‑6 40144330
    [Google Scholar]
  125. Kuiler E.W. McNeely C.L. 12 - Panopticon implications of ethical AI: Equity, disparity, and inequality in healthcare. AI Assurance Batarseh F.A. Freeman L.J. United States Academic Press 2023 429 451 10.1016/B978‑0‑32‑391919‑7.00026‑3
    [Google Scholar]
  126. Uche-Anya E. Anyane-Yeboa A. Berzin T.M. Ghassemi M. May F.P. Artificial intelligence in gastroenterology and hepatology: How to advance clinical practice while ensuring health equity. Gut 2022 71 9 1909 1915 10.1136/gutjnl‑2021‑326271 35688612
    [Google Scholar]
  127. Christou C.D. Tsoulfas G. Challenges involved in the application of artificial intelligence in gastroenterology: The race is on! World J. Gastroenterol. 2023 29 48 6168 6178 10.3748/wjg.v29.i48.6168 38186861
    [Google Scholar]
  128. Saxena E. Parveen S. Ahad M.A. Yadav M. Unveiling the potential of AI in gastroenterology: Challenges and opportunities. Cham Springer 2024 103 114
    [Google Scholar]
  129. Sung J.J.Y. Savulescu J. Ngiam K.Y. An B. Ang T.L. Yeoh K.G. Cham T.J. Tsao S. Chua T.S. Artificial intelligence for gastroenterology: Singapore artificial intelligence for Gastroenterology Working Group Position Statement. J. Gastroenterol. Hepatol. 2023 38 10 1669 1676 10.1111/jgh.16241 37277693
    [Google Scholar]
  130. Komura D. Ishikawa S. Machine learning approaches for pathologic diagnosis. Virchows Arch. 2019 475 2 131 138 10.1007/s00428‑019‑02594‑w 31222375
    [Google Scholar]
  131. Wei J.W. Wei J.W. Jackson C.R. Ren B. Suriawinata A.A. Hassanpour S. Automated Detection of Celiac Disease on Duodenal Biopsy Slides: A Deep Learning Approach. J. Pathol. Inform. 2019 10 1 7 10.4103/jpi.jpi_87_18 30984467
    [Google Scholar]
  132. Martin D.R. Hanson J.A. Gullapalli R.R. Schultz F.A. Sethi A. Clark D.P. A deep learning convolutional neural network can recognize common patterns of injury in gastric pathology. Arch. Pathol. Lab. Med. 2020 144 3 370 378 10.5858/arpa.2019‑0004‑OA 31246112
    [Google Scholar]
  133. Yu Y. Wang J. Ng C.W. Ma Y. Mo S. Fong E.L.S. Xing J. Song Z. Xie Y. Si K. Wee A. Welsch R.E. So P.T.C. Yu H. Deep learning enables automated scoring of liver fibrosis stages. Sci. Rep. 2018 8 1 16016 10.1038/s41598‑018‑34300‑2 30375454
    [Google Scholar]
  134. Korbar B. Olofson A.M. Miraflor A.P. Nicka C.M. Suriawinata M.A. Torresani L. Suriawinata A.A. Hassanpour S. Deep learning for classification of colorectal polyps on whole-slide images. J. Pathol. Inform. 2017 8 1 30 10.4103/jpi.jpi_34_17 28828201
    [Google Scholar]
  135. Tomita N. Abdollahi B. Wei J. Ren B. Suriawinata A. Hassanpour S. Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides. JAMA Netw. Open 2019 2 11 1914645 10.1001/jamanetworkopen.2019.14645 31693124
    [Google Scholar]
  136. Bychkov D. Linder N. Turkki R. Nordling S. Kovanen P.E. Verrill C. Walliander M. Lundin M. Haglund C. Lundin J. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep. 2018 8 1 3395 10.1038/s41598‑018‑21758‑3 29467373
    [Google Scholar]
  137. Kather J.N. Pearson A.T. Halama N. Jäger D. Krause J. Loosen S.H. Marx A. Boor P. Tacke F. Neumann U.P. Grabsch H.I. Yoshikawa T. Brenner H. Chang-Claude J. Hoffmeister M. Trautwein C. Luedde T. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 2019 25 7 1054 1056 10.1038/s41591‑019‑0462‑y 31160815
    [Google Scholar]
  138. da Silva D.A. ten Caten C.S. dos Santos R.P. Fogliatto F.S. Hsuan J. Predicting the occurrence of surgical site infections using text mining and machine learning. PLoS One 2019 14 12 0226272 10.1371/journal.pone.0226272 31834905
    [Google Scholar]
  139. Chapman A.B. Mowery D.L. Swords D.S. Chapman W.W. Bucher B.T. Detecting evidence of intra-abdominal surgical site infections from radiology reports using natural language processing. AMIA Annu. Symp. Proc. 2018 2017 515 524 29854116
    [Google Scholar]
  140. Brennan M. Puri S. Ozrazgat-Baslanti T. Feng Z. Ruppert M. Hashemighouchani H. Momcilovic P. Li X. Wang D.Z. Bihorac A. Comparing clinical judgment with the mysurgeryrisk algorithm for preoperative risk assessment: A pilot usability study. Surgery 2019 165 5 1035 1045 10.1016/j.surg.2019.01.002 30792011
    [Google Scholar]
  141. Soguero-Ruiz C. Hindberg K. Rojo-Alvarez J.L. Skrovseth S.O. Godtliebsen F. Mortensen K. Revhaug A. Lindsetmo R.O. Augestad K.M. Jenssen R. Support vector feature selection for early detection of anastomosis leakage from bag-of-words in electronic health records. IEEE J. Biomed. Health Inform. 2016 20 5 1404 1415 10.1109/JBHI.2014.2361688 25312965
    [Google Scholar]
  142. Byrne M.F. Chapados N. Soudan F. Oertel C. Linares Pérez M. Kelly R. Iqbal N. Chandelier F. Rex D.K. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut 2019 68 1 94 100 10.1136/gutjnl‑2017‑314547 29066576
    [Google Scholar]
  143. Waye J.S. Gross S.A. Chapter 2 - Polypectomy: From landmark innovation to widespread resections to remote tele-video mentoring. Endoscopy - Past, Present, and Future Cohen J. Greenwald D. United States Academic Press 2025 13 26 10.1016/B978‑0‑443‑31318‑9.00003‑7
    [Google Scholar]
  144. Nehme F. Coronel E. Barringer D.A. Romero L.G. Shafi M.A. Ross W.A. Ge P.S. Performance and attitudes toward real-time computer-aided polyp detection during colonoscopy in a large tertiary referral center in the United States. Gastrointest. Endosc. 2023 98 1 100 109.e6 10.1016/j.gie.2023.02.016 36801459
    [Google Scholar]
  145. Knieling F. Neufert C. Hartmann A. Claussen J. Urich A. Egger C. Vetter M. Fischer S. Pfeifer L. Hagel A. Kielisch C. Görtz R.S. Wildner D. Engel M. Röther J. Uter W. Siebler J. Atreya R. Rascher W. Strobel D. Neurath M.F. Waldner M.J. Multispectral optoacoustic tomography for assessment of crohn’s disease activity. N. Engl. J. Med. 2017 376 13 1292 1294 10.1056/NEJMc1612455 28355498
    [Google Scholar]
  146. Tian Y. Liu X. Wang Z. Cao S. Liu Z. Ji Q. Li Z. Sun Y. Zhou X. Wang D. Zhou Y. Concordance between watson for oncology and a multidisciplinary clinical decision-making team for gastric cancer and the prognostic implications: Retrospective study. J. Med. Internet Res. 2020 22 2 14122 10.2196/14122 32130123
    [Google Scholar]
  147. Somashekhar S.P. Sepúlveda M.J. Norden A.D. Rauthan A. Arun K. Patil P. Ethadka R.Y. Kumar R.C. Early experience with IBM Watson for Oncology (WFO) cognitive computing system for lung and colorectal cancer treatment. J. Clin. Oncol. 2017 35 15_suppl 8527 8527 10.1200/JCO.2017.35.15_suppl.8527
    [Google Scholar]
  148. Hashemi S. Yousefzadeh Z. Abin A.A. Ejmalian A. Nabavi S. Dabbagh A. Machine learning-guided anesthesiology: A review of recent advances and clinical applications. J. Cellul. Molec. Anesth. 2024 9 1 145369 10.5812/jcma‑145369
    [Google Scholar]
  149. Mihai I. Boicean A. Teodoru C.A. Grigore N. Iancu G.M. Dura H. Bratu D.G. Roman M.D. Mohor C.I. Todor S.B. Ichim C. Mătacuță I.B. Băcilă C. Bacalbașa N. Bolca C.N. Hașegan A. Laparoscopic adrenalectomy: Tailoring approaches for the optimal resection of adrenal tumors. Diagnostics 2023 13 21 3351 10.3390/diagnostics13213351 37958247
    [Google Scholar]
  150. Perez A.A. Noe-Kim V. Lubner M.G. Somsen D. Garrett J.W. Summers R.M. Pickhardt P.J. Automated deep learning artificial intelligence tool for spleen segmentation on CT: Defining volume-based thresholds for splenomegaly. AJR Am. J. Roentgenol. 2023 221 5 611 619 10.2214/AJR.23.29478 37377359
    [Google Scholar]
  151. Onda S. Okamoto T. Kanehira M. Suzuki F. Ito R. Fujioka S. Suzuki N. Hattori A. Yanaga K. Identification of inferior pancreaticoduodenal artery during pancreaticoduodenectomy using augmented reality-based navigation system. J. Hepatobiliary Pancreat. Sci. 2014 21 4 281 287 10.1002/jhbp.25 23970384
    [Google Scholar]
  152. Furube T. Takeuchi M. Kawakubo H. Noma K. Maeda N. Daiko H. Ishiyama K. Otsuka K. Sato Y. Koyanagi K. Tajima K. Garcia R.N. Maeda Y. Matsuda S. Kitagawa Y. Usefulness of an artificial intelligence model in recognizing recurrent laryngeal nerves during robot-assisted minimally invasive esophagectomy. Ann. Surg. Oncol. 2024 31 13 9344 9351 10.1245/s10434‑024‑16157‑0 39266790
    [Google Scholar]
  153. Gumbs A.A. Croner R. Rodriguez A. Zuker N. Perrakis A. Gayet B. 200 Consecutive laparoscopic pancreatic resections performed with a robotically controlled laparoscope holder. Surg. Endosc. 2013 27 10 3781 3791 10.1007/s00464‑013‑2969‑5 23644837
    [Google Scholar]
  154. Gillen S. Pletzer B. Heiligensetzer A. Wolf P. Kleeff J. Feussner H. Fürst A. Solo-surgical laparoscopic cholecystectomy with a joystick-guided camera device: A case–control study. Surg. Endosc. 2014 28 1 164 170 10.1007/s00464‑013‑3142‑x 23990155
    [Google Scholar]
  155. Kitaguchi D. Takeshita N. Matsuzaki H. Takano H. Owada Y. Enomoto T. Oda T. Miura H. Yamanashi T. Watanabe M. Sato D. Sugomori Y. Hara S. Ito M. Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach. Surg. Endosc. 2020 34 11 4924 4931 10.1007/s00464‑019‑07281‑0 31797047
    [Google Scholar]
  156. Miller-Atkins G. Acevedo-Moreno L.A. Grove D. Dweik R.A. Tonelli A.R. Brown J.M. Allende D.S. Aucejo F. Rotroff D.M. Breath metabolomics provides an accurate and noninvasive approach for screening cirrhosis, primary, and secondary liver tumors. Hepatol. Commun. 2020 4 7 1041 1055 10.1002/hep4.1499 32626836
    [Google Scholar]
  157. Steenhuis e.g.M. Schoenaker I.J.H. de Groot J.W.B. Fiebrich H.B. de Graaf J.C. Brohet R.M. van Dijk J.D. van Westreenen H.L. Siersema P.D. de Vos tot Nederveen Cappel W.H. Feasibility of volatile organic compound in breath analysis in the follow-up of colorectal cancer: A pilot study. Eur. J. Surg. Oncol. 2020 46 11 2068 2073 10.1016/j.ejso.2020.07.028 32778485
    [Google Scholar]
  158. Bonrath E.M. Gordon L.E. Grantcharov T.P. Characterising ‘ near miss ’ events in complex laparoscopic surgery through video analysis. BMJ Qual. Saf. 2015 24 8 516 521 10.1136/bmjqs‑2014‑003816 25947330
    [Google Scholar]
  159. Jansen M.J.A. Kuijf H.J. Niekel M. Veldhuis W.B. Wessels F.J. Viergever M.A. Pluim J.P.W. Liver segmentation and metastases detection in MR images using convolutional neural networks. J. Med. Imaging 2019 6 4 1 10.1117/1.JMI.6.4.044003 31620549
    [Google Scholar]
  160. Han I.W. Cho K. Ryu Y. Shin S.H. Heo J.S. Choi D.W. Chung M.J. Kwon O.C. Cho B.H. Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial intelligence. World J. Gastroenterol. 2020 26 30 4453 4464 10.3748/wjg.v26.i30.4453 32874057
    [Google Scholar]
  161. Robertson A.R. Segui S. Wenzek H. Koulaouzidis A. Artificial intelligence for the detection of polyps or cancer with colon capsule endoscopy. Ther. Adv. Gastrointest. Endosc. 2021 14 26317745211020277 10.1177/26317745211020277 34179779
    [Google Scholar]
  162. Ahmad O.F. Stoyanov D. Lovat L.B. Barriers and pitfalls for artificial intelligence in gastroenterology: Ethical and regulatory issues. Tech. Innov. Gastrointest. Endosc. 2020 22 2 80 84 10.1016/j.tgie.2019.150636
    [Google Scholar]
  163. Soffer S. Klang E. Shimon O. Nachmias N. Eliakim R. Ben-Horin S. Kopylov U. Barash Y. Deep learning for wireless capsule endoscopy: A systematic review and meta-analysis. Gastrointest. Endosc. 2020 92 4 831 839.e8 10.1016/j.gie.2020.04.039 32334015
    [Google Scholar]
  164. Repici A. Badalamenti M. Maselli R. Correale L. Radaelli F. Rondonotti E. Ferrara E. Spadaccini M. Alkandari A. Fugazza A. Anderloni A. Galtieri P.A. Pellegatta G. Carrara S. Di Leo M. Craviotto V. Lamonaca L. Lorenzetti R. Andrealli A. Antonelli G. Wallace M. Sharma P. Rosch T. Hassan C. Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial. Gastroenterology 2020 159 2 512 520.e7 10.1053/j.gastro.2020.04.062 32371116
    [Google Scholar]
  165. Cutillo C.M. Sharma K.R. Foschini L. Kundu S. Mackintosh M. Mandl K.D. Beck T. Collier E. Colvis C. Gersing K. Gordon V. Jensen R. Shabestari B. Southall N. Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency. NPJ Digit. Med. 2020 3 1 47 10.1038/s41746‑020‑0254‑2 32258429
    [Google Scholar]
  166. Zhao D. Wang W. Tang T. Zhang Y.Y. Yu C. Current progress in artificial intelligence-assisted medical image analysis for chronic kidney disease: A literature review. Comput. Struct. Biotechnol. J. 2023 21 3315 3326 10.1016/j.csbj.2023.05.029 37333860
    [Google Scholar]
  167. Sawhney R. Malik A. Sharma S. Narayan V. A comparative assessment of artificial intelligence models used for early prediction and evaluation of chronic kidney disease. Decis. Analyt. J. 2023 6 100169 10.1016/j.dajour.2023.100169
    [Google Scholar]
  168. Delrue C. De Bruyne S. Speeckaert M.M. Application of machine learning in chronic kidney disease: Current status and future prospects. Biomedicines 2024 12 3 568 10.3390/biomedicines12030568 38540181
    [Google Scholar]
  169. Usvyat L. Dalrymple L.S. Maddux F.W. Using technology to inform and deliver precise personalized care to patients with end-stage kidney disease. Semin. Nephrol. 2018 38 4 418 425 10.1016/j.semnephrol.2018.05.011 30082061
    [Google Scholar]
  170. Wang Y. Wen Q. Jin L. Chen W. Artificial intelligence-assisted renal pathology: Advances and prospects. J. Clin. Med. 2022 11 16 4918 10.3390/jcm11164918 36013157
    [Google Scholar]
  171. Hammouda N. Neyra J.A. Can artificial intelligence assist in delivering continuous renal replacement therapy? Adv. Chronic Kidney Dis. 2022 29 5 439 449 10.1053/j.ackd.2022.08.001 36253027
    [Google Scholar]
  172. Tangri N. Grams M.E. Levey A.S. Coresh J. Appel L.J. Astor B.C. Chodick G. Collins A.J. Djurdjev O. Elley C.R. Evans M. Garg A.X. Hallan S.I. Inker L.A. Ito S. Jee S.H. Kovesdy C.P. Kronenberg F. Heerspink H.J.L. Marks A. Nadkarni G.N. Navaneethan S.D. Nelson R.G. Titze S. Sarnak M.J. Stengel B. Woodward M. Iseki K. Consortium C.K.D.P. Multinational assessment of accuracy of equations for predicting risk of kidney failure. JAMA 2016 315 2 164 174 10.1001/jama.2015.18202 26757465
    [Google Scholar]
  173. Norouzi J. Yadollahpour A. Mirbagheri S.A. Mazdeh M.M. Hosseini S.A. Predicting renal failure progression in chronic kidney disease using integrated intelligent fuzzy expert system. Comput. Math. Methods Med. 2016 2016 1 9 10.1155/2016/6080814 27022406
    [Google Scholar]
  174. Chauhan K. Nadkarni G.N. Fleming F. McCullough J. He C.J. Quackenbush J. Murphy B. Donovan M.J. Coca S.G. Bonventre J.V. Initial validation of a machine learning-derived prognostic test (kidneyintelx) integrating biomarkers and electronic health record data to predict longitudinal kidney outcomes. Kidney360 2020 1 8 731 739 10.34067/KID.0002252020 35372952
    [Google Scholar]
  175. Chan L. Nadkarni G.N. Fleming F. McCullough J.R. Connolly P. Mosoyan G. El Salem F. Kattan M.W. Vassalotti J.A. Murphy B. Donovan M.J. Coca S.G. Damrauer S.M. Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease. Diabetologia 2021 64 7 1504 1515 10.1007/s00125‑021‑05444‑0 33797560
    [Google Scholar]
  176. Xiao J. Ding R. Xu X. Guan H. Feng X. Sun T. Zhu S. Ye Z. Comparison and development of machine learning tools in the prediction of chronic kidney disease progression. J. Transl. Med. 2019 17 1 119 10.1186/s12967‑019‑1860‑0 30971285
    [Google Scholar]
  177. Lu F. Meng Y. Song X. Li X. Liu Z. Gu C. Zheng X. Jing Y. Cai W. Pinyopornpanish K. Mancuso A. Romeiro F.G. Méndez-Sánchez N. Qi X. Artificial Intelligence in Liver Diseases: Recent Advances. Adv. Ther. 2024 41 3 967 990 10.1007/s12325‑024‑02781‑5 38286960
    [Google Scholar]
  178. Zhang P. Gao C. Huang Y. Chen X. Pan Z. Wang L. Dong D. Li S. Qi X. Artificial intelligence in liver imaging: Methods and applications. Hepatol. Int. 2024 18 2 422 434 10.1007/s12072‑023‑10630‑w 38376649
    [Google Scholar]
  179. Schattenberg J.M. Chalasani N. Alkhouri N. Artificial intelligence applications in hepatology. Clin. Gastroenterol. Hepatol. 2023 21 8 2015 2025 10.1016/j.cgh.2023.04.007 37088460
    [Google Scholar]
  180. Chalasani N. Younossi Z. Lavine J.E. Charlton M. Cusi K. Rinella M. Harrison S.A. Brunt E.M. Sanyal A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018 67 1 328 357 10.1002/hep.29367 28714183
    [Google Scholar]
  181. Benedict M. Zhang X. Non-alcoholic fatty liver disease: An expanded review. World J. Hepatol. 2017 9 16 715 732 10.4254/wjh.v9.i16.715 28652891
    [Google Scholar]
  182. Decharatanachart P. Chaiteerakij R. Tiyarattanachai T. Treeprasertsuk S. Application of artificial intelligence in chronic liver diseases: A systematic review and meta-analysis. BMC Gastroenterol. 2021 21 1 10 10.1186/s12876‑020‑01585‑5 33407169
    [Google Scholar]
  183. Han A. Byra M. Heba E. Andre M.P. Erdman J.W. Jr Loomba R. Sirlin C.B. O’Brien W.D. Jr Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat with radiofrequency ultrasound data using one-dimensional convolutional neural networks. Radiology 2020 295 2 342 350 10.1148/radiol.2020191160 32096706
    [Google Scholar]
  184. Ferrarese A. Sartori G. Orrù G. Frigo A.C. Pelizzaro F. Burra P. Senzolo M. Machine learning in liver transplantation: A tool for some unsolved questions? Transpl. Int. 2021 34 3 398 411 10.1111/tri.13818 33428298
    [Google Scholar]
  185. Kanwal F. Taylor T.J. Kramer J.R. Cao Y. Smith D. Gifford A.L. El-Serag H.B. Naik A.D. Asch S.M. Development, Validation, and Evaluation of a Simple Machine Learning Model to Predict Cirrhosis Mortality. JAMA Netw. Open 2020 3 11 2023780 10.1001/jamanetworkopen.2020.23780 33141161
    [Google Scholar]
  186. Sorino P. Caruso M.G. Misciagna G. Bonfiglio C. Campanella A. Mirizzi A. Franco I. Bianco A. Buongiorno C. Liuzzi R. Cisternino A.M. Notarnicola M. Chiloiro M. Pascoschi G. Osella A.R. Group M. Selecting the best machine learning algorithm to support the diagnosis of Non-Alcoholic Fatty Liver Disease: A meta learner study. PLoS One 2020 15 10 0240867 10.1371/journal.pone.0240867 33079971
    [Google Scholar]
  187. Cotterill J. Price N. Rorije E. Peijnenburg A. Development of a QSAR model to predict hepatic steatosis using freely available machine learning tools. Food Chem. Toxicol. 2020 142 111494 10.1016/j.fct.2020.111494 32553933
    [Google Scholar]
  188. Ma H. Xu C. Shen Z. Yu C. Li Y. Application of machine learning techniques for clinical predictive modeling: A cross-sectional study on nonalcoholic fatty liver disease in china. BioMed Res. Int. 2018 2018 1 9 10.1155/2018/4304376 30402478
    [Google Scholar]
  189. Bertsimas D. Kung J. Trichakis N. Wang Y. Hirose R. Vagefi P.A. Development and validation of an optimized prediction of mortality for candidates awaiting liver transplantation. Am. J. Transplant. 2019 19 4 1109 1118 10.1111/ajt.15172 30411495
    [Google Scholar]
  190. Lau L. Kankanige Y. Rubinstein B. Jones R. Christophi C. Muralidharan V. Bailey J. Machine-learning algorithms predict graft failure after liver transplantation. Transplantation 2017 101 4 e125 e132 10.1097/TP.0000000000001600 27941428
    [Google Scholar]
  191. Zhu B. Song N. Shen R. Arora A. Machiela M.J. Song L. Landi M.T. Ghosh D. Chatterjee N. Baladandayuthapani V. Zhao H. Integrating clinical and multiple omics data for prognostic assessment across human cancers. Sci. Rep. 2017 7 1 16954 10.1038/s41598‑017‑17031‑8 29209073
    [Google Scholar]
  192. Hassan T.M. Elmogy M. Sallam E.S. Diagnosis of focal liver diseases based on deep learning technique for ultrasound images. Arab. J. Sci. Eng. 2017 42 8 3127 3140 10.1007/s13369‑016‑2387‑9
    [Google Scholar]
  193. Zhao X. Dou J. Cao J. Wang Y. Gao Q. Zeng Q. Liu W. Liu B. Cui Z. Teng L. Zhang J. Zhao C. Uncovering the potential differentially expressed miRNAs as diagnostic biomarkers for hepatocellular carcinoma based on machine learning in The Cancer Genome Atlas database. Oncol. Rep. 2020 43 6 1771 1784 10.3892/or.2020.7551 32236623
    [Google Scholar]
  194. Shen J. Qi L. Zou Z. Du J. Kong W. Zhao L. Wei J. Lin L. Ren M. Liu B. Identification of a novel gene signature for the prediction of recurrence in HCC patients by machine learning of genome-wide databases. Sci. Rep. 2020 10 1 4435 10.1038/s41598‑020‑61298‑3 32157118
    [Google Scholar]
  195. Tao K. Bian Z. Zhang Q. Guo X. Yin C. Wang Y. Zhou K. Wan S. Shi M. Bao D. Yang C. Xing J. Machine learning-based genome-wide interrogation of somatic copy number aberrations in circulating tumor DNA for early detection of hepatocellular carcinoma. EBioMedicine 2020 56 102811 10.1016/j.ebiom.2020.102811 32512514
    [Google Scholar]
  196. Eaton J.E. Vesterhus M. McCauley B.M. Atkinson E.J. Schlicht E.M. Juran B.D. Gossard A.A. LaRusso N.F. Gores G.J. Karlsen T.H. Lazaridis K.N. Primary sclerosing cholangitis risk estimate tool (presto) predicts outcomes of the disease: A derivation and validation study using machine learning. Hepatology 2020 71 1 214 224 10.1002/hep.30085 29742811
    [Google Scholar]
  197. Mousa O.Y. Juran B.D. McCauley B.M. Vesterhus M.N. Folseraas T. Turgeon C.T. Ali A.H. Schlicht E.M. Atkinson E.J. Hu C. Harnois D. Carey E.J. Gossard A.A. Oglesbee D. Eaton J.E. LaRusso N.F. Gores G.J. Karlsen T.H. Lazaridis K.N. Bile acid profiles in primary sclerosing cholangitis and their ability to predict hepatic decompensation. Hepatology 2021 74 1 281 295 10.1002/hep.31652 33226645
    [Google Scholar]
  198. Zhou L.Q. Wang J.Y. Yu S.Y. Wu G.G. Wei Q. Deng Y.B. Wu X.L. Cui X.W. Dietrich C.F. Artificial intelligence in medical imaging of the liver. World J. Gastroenterol. 2019 25 6 672 682 10.3748/wjg.v25.i6.672 30783371
    [Google Scholar]
  199. LeCun Y. Bengio Y. Hinton G. Deep learning. Nature 2015 521 7553 436 444 10.1038/nature14539 26017442
    [Google Scholar]
  200. Wang L. Tan J. Ge Y. Tao X. Cui Z. Fei Z. Lu J. Zhang H. Pan Z. Assessment of liver metastases radiomic feature reproducibility with deep-learning-based semi-automatic segmentation software. Acta Radiol. 2021 62 3 291 301 10.1177/0284185120922822 32517533
    [Google Scholar]
  201. Xu D. Sheng J.Q. Hu P.J.H. Huang T.S. Lee W.C. Predicting hepatocellular carcinoma recurrences: A data-driven multiclass classification method incorporating latent variables. J. Biomed. Inform. 2019 96 103237 10.1016/j.jbi.2019.103237 31238108
    [Google Scholar]
  202. Yamashita R. Nishio M. Do R.K.G. Togashi K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018 9 4 611 629 10.1007/s13244‑018‑0639‑9 29934920
    [Google Scholar]
  203. Byra M. Styczynski G. Szmigielski C. Kalinowski P. Michałowski Ł. Paluszkiewicz R. Ziarkiewicz-Wróblewska B. Zieniewicz K. Sobieraj P. Nowicki A. Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. Int. J. CARS 2018 13 12 1895 1903 10.1007/s11548‑018‑1843‑2 30094778
    [Google Scholar]
  204. Min S. Lee B. Yoon S. Deep learning in bioinformatics. Brief. Bioinform. 2017 18 5 851 869 27473064
    [Google Scholar]
  205. Park K. Kim J. Lee J. Visual field prediction using recurrent neural network. Sci. Rep. 2019 9 1 8385 10.1038/s41598‑019‑44852‑6 31182763
    [Google Scholar]
  206. Kim S.H. Kamaya A. Willmann J.K. CT perfusion of the liver: Principles and applications in oncology. Radiology 2014 272 2 322 344 10.1148/radiol.14130091 25058132
    [Google Scholar]
  207. Afshar S. Afshar S. Warden E. Manochehri H. Saidijam M. Application of artificial neural network in mirna biomarker selection and precise diagnosis of colorectal cancer. Iran. Biomed. J. 2019 23 3 175 183 10.29252/ibj.23.3.175 30056689
    [Google Scholar]
  208. Gou F. Liu J. Xiao C. Wu J. Research on artificial-intelligence-assisted medicine: A survey on medical artificial intelligence. Diagnostics 2024 14 14 1472 10.3390/diagnostics14141472 39061610
    [Google Scholar]
  209. San José Estépar R. Artificial intelligence in functional imaging of the lung. Br. J. Radiol. 2022 95 1132 20210527 10.1259/bjr.20210527 34890215
    [Google Scholar]
  210. Savadjiev P. Chong J. Dohan A. Vakalopoulou M. Reinhold C. Paragios N. Gallix B. Demystification of AI-driven medical image interpretation: Past, present and future. Eur. Radiol. 2019 29 3 1616 1624 10.1007/s00330‑018‑5674‑x 30105410
    [Google Scholar]
  211. Pinto-Coelho L. How artificial intelligence is shaping medical imaging technology: A survey of innovations and applications. Bioengineering 2023 10 12 1435 10.3390/bioengineering10121435 38136026
    [Google Scholar]
  212. Zhao W. Liu J. Artificial intelligence in lung cancer: Application and future thinking. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2022 47 8 994 1000 36097766
    [Google Scholar]
  213. Cellina M. Cè M. Irmici G. Ascenti V. Khenkina N. Toto-Brocchi M. Martinenghi C. Papa S. Carrafiello G. Artificial intelligence in lung cancer imaging: Unfolding the future. Diagnostics 2022 12 11 2644 10.3390/diagnostics12112644 36359485
    [Google Scholar]
  214. Ohno Y. Seo J.B. Parraga G. Lee K.S. Gefter W.B. Fain S.B. Schiebler M.L. Hatabu H. Pulmonary functional imaging: Part 1—state-of-the-art technical and physiologic underpinnings. Radiology 2021 299 3 508 523 10.1148/radiol.2021203711 33825513
    [Google Scholar]
  215. Ardila D. Kiraly A.P. Bharadwaj S. Choi B. Reicher J.J. Peng L. Tse D. Etemadi M. Ye W. Corrado G. Naidich D.P. Shetty S. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 2019 25 6 954 961 10.1038/s41591‑019‑0447‑x 31110349
    [Google Scholar]
  216. Zhang Y. Jiang B. Zhang L. Greuter M.J.W. de Bock G.H. Zhang H. Xie X. Lung nodule detectability of artificial intelligence-assisted ct image reading in lung cancer screening. Curr. Med. Imaging 2022 18 3 327 334 10.2174/1573405617666210806125953 34365951
    [Google Scholar]
  217. Farhat H. Sakr G.E. Kilany R. Deep learning applications in pulmonary medical imaging: Recent updates and insights on COVID-19. Mach. Vis. Appl. 2020 31 6 53 10.1007/s00138‑020‑01101‑5 32834523
    [Google Scholar]
  218. Schmidhuber J. Deep learning in neural networks: An overview. Neural Netw. 2015 61 85 117 10.1016/j.neunet.2014.09.003 25462637
    [Google Scholar]
  219. Vaswani A. Shazeer N. Parmar N. Uszkoreit J. Jones L. Gomez A.N. Kaiser Ł. Polosukhin I. Attention is all you need. 2017 Available from: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
  220. Chauvie S. De Maggi A. Baralis I. Dalmasso F. Berchialla P. Priotto R. Violino P. Mazza F. Melloni G. Grosso M. Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial. Eur. Radiol. 2020 30 7 4134 4140 10.1007/s00330‑020‑06783‑z 32166491
    [Google Scholar]
  221. Wang J. Dobbins J.T. III Li Q. Automated lung segmentation in digital chest tomosynthesis. Med. Phys. 2012 39 2 732 741 10.1118/1.3671939 22320783
    [Google Scholar]
  222. Isensee F. Jaeger P.F. Kohl S.A.A. Petersen J. Maier-Hein K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021 18 2 203 211 10.1038/s41592‑020‑01008‑z 33288961
    [Google Scholar]
  223. Gerard S.E. Patton T.J. Christensen G.E. Bayouth J.E. Reinhardt J.M. FissureNet: A deep learning approach for pulmonary fissure detection in CT images. IEEE Trans. Med. Imaging 2019 38 1 156 166 10.1109/TMI.2018.2858202 30106711
    [Google Scholar]
  224. Gerard S.E. Herrmann J. Kaczka D.W. Musch G. Fernandez-Bustamante A. Reinhardt J.M. Multi-resolution convolutional neural networks for fully automated segmentation of acutely injured lungs in multiple species. Med. Image Anal. 2020 60 101592 10.1016/j.media.2019.101592 31760194
    [Google Scholar]
  225. Guo F. Capaldi D.P.I. McCormack D.G. Fenster A. Parraga G. Ultra-short echo-time magnetic resonance imaging lung segmentation with under-Annotations and domain shift. Med. Image Anal. 2021 72 102107 10.1016/j.media.2021.102107 34153626
    [Google Scholar]
  226. Abascal J.F.P.J. Ducros N. Pronina V. Rit S. Rodesch P.A. Broussaud T. Bussod S. Douek P.C. Hauptmann A. Arridge S. Peyrin F. Material Decomposition in Spectral CT Using Deep Learning: A Sim2Real Transfer Approach. IEEE Access 2021 9 25632 25647 10.1109/ACCESS.2021.3056150
    [Google Scholar]
  227. Zhang W. Zhang H. Wang L. Wang X. Hu X. Cai A. Li L. Niu T. Yan B. Image domain dual material decomposition for dual-energy CT using butterfly network. Med. Phys. 2019 46 5 2037 2051 10.1002/mp.13489 30883808
    [Google Scholar]
  228. Hata A. Yanagawa M. Yoshida Y. Miyata T. Tsubamoto M. Honda O. Tomiyama N. Combination of deep learning–based denoising and iterative reconstruction for ultra-low-dose CT of the chest: Image quality and lung-rads evaluation. AJR Am. J. Roentgenol. 2020 215 6 1321 1328 10.2214/AJR.19.22680 33052702
    [Google Scholar]
  229. Xu Y. Hosny A. Zeleznik R. Parmar C. Coroller T. Franco I. Mak R.H. Aerts H.J.W.L. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin. Cancer Res. 2019 25 11 3266 3275 10.1158/1078‑0432.CCR‑18‑2495 31010833
    [Google Scholar]
  230. Duan C. Deng H. Xiao S. Xie J. Li H. Sun X. Ma L. Lou X. Ye C. Zhou X. Fast and accurate reconstruction of human lung gas MRI with deep learning. Magn. Reson. Med. 2019 82 6 2273 2285 10.1002/mrm.27889 31322298
    [Google Scholar]
  231. Park C. Choo K.S. Jung Y. Jeong H.S. Hwang J.Y. Yun M.S. CT iterative vs deep learning reconstruction: Comparison of noise and sharpness. Eur. Radiol. 2021 31 5 3156 3164 10.1007/s00330‑020‑07358‑8 33057781
    [Google Scholar]
  232. Brady S.L. Trout A.T. Somasundaram E. Anton C.G. Li Y. Dillman J.R. Improving image quality and reducing radiation dose for pediatric CT by using deep learning reconstruction. Radiology 2021 298 1 180 188 10.1148/radiol.2020202317 33201790
    [Google Scholar]
  233. Kruger S.J. Nagle S.K. Couch M.J. Ohno Y. Albert M. Fain S.B. Functional imaging of the lungs with gas agents. J. Magn. Reson. Imaging 2016 43 2 295 315 10.1002/jmri.25002 26218920
    [Google Scholar]
  234. Sluimer I. Schilham A. Prokop M. van Ginneken B. Computer analysis of computed tomography scans of the lung: A survey. IEEE Trans. Med. Imaging 2006 25 4 385 405 10.1109/TMI.2005.862753 16608056
    [Google Scholar]
  235. Ljimani A. Hojdis M. Stabinska J. Valentin B. Frenken M. Appel E. Antoch G. Wittsack H.J. Analysis of different image-registration algorithms for Fourier decomposition MRI in functional lung imaging. Acta Radiol. 2021 62 7 875 881 10.1177/0284185120944902 32727212
    [Google Scholar]
  236. de Vos B.D. Berendsen F.F. Viergever M.A. Sokooti H. Staring M. Išgum I. A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 2019 52 128 143 10.1016/j.media.2018.11.010 30579222
    [Google Scholar]
  237. Esteva H. Marchevsky A. Núñez T. Luna C. Esteva M. Neural networks as a prognostic tool of surgical risk in lung resections. Ann. Thorac. Surg. 2002 73 5 1576 1581 10.1016/S0003‑4975(02)03418‑5 12022553
    [Google Scholar]
  238. Bendixen M. Jørgensen O.D. Kronborg C. Andersen C. Licht P.B. Postoperative pain and quality of life after lobectomy via video-assisted thoracoscopic surgery or anterolateral thoracotomy for early stage lung cancer: A randomised controlled trial. Lancet Oncol. 2016 17 6 836 844 10.1016/S1470‑2045(16)00173‑X 27160473
    [Google Scholar]
  239. Somashekhar S.P. Sepúlveda M.J. Puglielli S. Norden A.D. Shortliffe E.H. Rohit Kumar C. Rauthan A. Arun Kumar N. Patil P. Rhee K. Ramya Y. Watson for Oncology and breast cancer treatment recommendations: Agreement with an expert multidisciplinary tumor board. Ann. Oncol. 2018 29 2 418 423 10.1093/annonc/mdx781 29324970
    [Google Scholar]
  240. Luo S. Xu J. Jiang Z. Liu L. Wu Q. Leung E.L.H. Leung A.P. Artificial intelligence-based collaborative filtering method with ensemble learning for personalized lung cancer medicine without genetic sequencing. Pharmacol. Res. 2020 160 105037 10.1016/j.phrs.2020.105037 32590103
    [Google Scholar]
  241. Viswanathan V.S. Toro P. Corredor G. Mukhopadhyay S. Madabhushi A. The state of the art for artificial intelligence in lung digital pathology. J. Pathol. 2022 257 4 413 429 10.1002/path.5966 35579955
    [Google Scholar]
  242. Derraz B. Breda G. Kaempf C. Baenke F. Cotte F. Reiche K. Köhl U. Kather J.N. Eskenazy D. Gilbert S. New regulatory thinking is needed for AI-based personalised drug and cell therapies in precision oncology. NPJ Precis. Oncol. 2024 8 1 23 10.1038/s41698‑024‑00517‑w 38291217
    [Google Scholar]
  243. Ghosh S. Zhao X. Alim M. Brudno M. Bhat M. Artificial intelligence applied to ‘omics data in liver disease: Towards a personalised approach for diagnosis, prognosis and treatment. Gut 2025 74 2 295 311 10.1136/gutjnl‑2023‑331740 39174307
    [Google Scholar]
  244. Adamis A.P. Brittain C.J. Dandekar A. Hopkins J.J. Building on the success of anti-vascular endothelial growth factor therapy: A vision for the next decade. Eye (Lond.) 2020 34 11 1966 1972 10.1038/s41433‑020‑0895‑z 32541890
    [Google Scholar]
  245. Ting D.S.W. Peng L. Varadarajan A.V. Keane P.A. Burlina P.M. Chiang M.F. Schmetterer L. Pasquale L.R. Bressler N.M. Webster D.R. Abramoff M. Wong T.Y. Deep learning in ophthalmology: The technical and clinical considerations. Prog. Retin. Eye Res. 2019 72 100759 10.1016/j.preteyeres.2019.04.003 31048019
    [Google Scholar]
  246. De Fauw J. Ledsam J.R. Romera-Paredes B. Nikolov S. Tomasev N. Blackwell S. Askham H. Glorot X. O’Donoghue B. Visentin D. van den Driessche G. Lakshminarayanan B. Meyer C. Mackinder F. Bouton S. Ayoub K. Chopra R. King D. Karthikesalingam A. Hughes C.O. Raine R. Hughes J. Sim D.A. Egan C. Tufail A. Montgomery H. Hassabis D. Rees G. Back T. Khaw P.T. Suleyman M. Cornebise J. Keane P.A. Ronneberger O. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 2018 24 9 1342 1350 10.1038/s41591‑018‑0107‑6 30104768
    [Google Scholar]
  247. Ting D.S.W. Pasquale L.R. Peng L. Campbell J.P. Lee A.Y. Raman R. Tan G.S.W. Schmetterer L. Keane P.A. Wong T.Y. Artificial intelligence and deep learning in ophthalmology. Br. J. Ophthalmol. 2019 103 2 167 175 10.1136/bjophthalmol‑2018‑313173 30361278
    [Google Scholar]
  248. Bellemo V. Lim Z.W. Lim G. Nguyen Q.D. Xie Y. Yip M.Y.T. Hamzah H. Ho J. Lee X.Q. Hsu W. Lee M.L. Musonda L. Chandran M. Chipalo-Mutati G. Muma M. Tan G.S.W. Sivaprasad S. Menon G. Wong T.Y. Ting D.S.W. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: A clinical validation study. Lancet Digit. Health 2019 1 1 e35 e44 10.1016/S2589‑7500(19)30004‑4 33323239
    [Google Scholar]
  249. Kanagasingam Y. Xiao D. Vignarajan J. Preetham A. Tay-Kearney M.L. Mehrotra A. Evaluation of artificial intelligence–based grading of diabetic retinopathy in primary care. JAMA Netw. Open 2018 1 5 182665 10.1001/jamanetworkopen.2018.2665 30646178
    [Google Scholar]
  250. Abràmoff M.D. Lavin P.T. Birch M. Shah N. Folk J.C. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit. Med. 2018 1 1 39 10.1038/s41746‑018‑0040‑6 31304320
    [Google Scholar]
  251. Tufail A. Kapetanakis V.V. Salas-Vega S. Egan C. Rudisill C. Owen C.G. Lee A. Louw V. Anderson J. Liew G. Bolter L. Bailey C. Sadda S. Taylor P. Rudnicka A.R. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness. Health Technol. Assess. 2016 20 92 1 72 10.3310/hta20920 27981917
    [Google Scholar]
  252. Kern C. Fu D.J. Kortuem K. Huemer J. Barker D. Davis A. Balaskas K. Keane P.A. McKinnon T. Sim D.A. Implementation of a cloud-based referral platform in ophthalmology: Making telemedicine services a reality in eye care. Br. J. Ophthalmol. 2020 104 3 312 317 10.1136/bjophthalmol‑2019‑314161 31320383
    [Google Scholar]
  253. Xie Y. Gunasekeran D.V. Balaskas K. Keane P.A. Sim D.A. Bachmann L.M. Macrae C. Ting D.S.W. Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening. Transl. Vis. Sci. Technol. 2020 9 2 22 10.1167/tvst.9.2.22 32818083
    [Google Scholar]
  254. Gong Y. Zhang Y.Z. Fang S. Liu C. Niu J. Li G. Li F. Li X. Cheng T. Lai W.Y. Artificial intelligent optoelectronic skin with anisotropic electrical and optical responses for multi-dimensional sensing. Appl. Phys. Rev. 2022 9 2 021403 10.1063/5.0083278
    [Google Scholar]
  255. Chen Y. Zhang X. Lu C. Flexible piezoelectric materials and strain sensors for wearable electronics and artificial intelligence applications. Chem. Sci. (Camb.) 2024 15 40 16436 16466 10.1039/D4SC05166A 39355228
    [Google Scholar]
  256. Mahato K. Saha T. Ding S. Sandhu S.S. Chang A.Y. Wang J. Hybrid multimodal wearable sensors for comprehensive health monitoring. Nat. Electron. 2024 7 9 735 750 10.1038/s41928‑024‑01247‑4
    [Google Scholar]
  257. Felmingham C.M. Adler N.R. Ge Z. Morton R.L. Janda M. Mar V.J. The Importance of Incorporating Human Factors in the Design and Implementation of Artificial Intelligence for Skin Cancer Diagnosis in the Real World. Am. J. Clin. Dermatol. 2021 22 2 233 242 10.1007/s40257‑020‑00574‑4 33354741
    [Google Scholar]
  258. Gilmore S.J. Automated decision support in melanocytic lesion management. PLoS One 2018 13 9 0203459 10.1371/journal.pone.0203459 30192804
    [Google Scholar]
  259. Mar V.J. Soyer H.P. Artificial intelligence for melanoma diagnosis: How can we deliver on the promise? Ann. Oncol. 2018 29 8 1625 1628 10.1093/annonc/mdy193 29846499
    [Google Scholar]
  260. Challen R. Denny J. Pitt M. Gompels L. Edwards T. Tsaneva-Atanasova K. Artificial intelligence, bias and clinical safety. BMJ Qual. Saf. 2019 28 3 231 237 10.1136/bmjqs‑2018‑008370 30636200
    [Google Scholar]
  261. Janda M. Soyer H.P. Can clinical decision making be enhanced by artificial intelligence? Br. J. Dermatol. 2019 180 2 247 248 10.1111/bjd.17110 30714102
    [Google Scholar]
  262. Tschandl P. Rinner C. Apalla Z. Argenziano G. Codella N. Halpern A. Janda M. Lallas A. Longo C. Malvehy J. Paoli J. Puig S. Rosendahl C. Soyer H.P. Zalaudek I. Kittler H. Human–computer collaboration for skin cancer recognition. Nat. Med. 2020 26 8 1229 1234 10.1038/s41591‑020‑0942‑0 32572267
    [Google Scholar]
  263. Hogarty D.T. Su J.C. Phan K. Attia M. Hossny M. Nahavandi S. Lenane P. Moloney F.J. Yazdabadi A. Artificial intelligence in dermatology—where we are and the way to the future: A review. Am. J. Clin. Dermatol. 2020 21 1 41 47 10.1007/s40257‑019‑00462‑6 31278649
    [Google Scholar]
  264. Esteva A. Robicquet A. Ramsundar B. Kuleshov V. DePristo M. Chou K. Cui C. Corrado G. Thrun S. Dean J. A guide to deep learning in healthcare. Nat. Med. 2019 25 1 24 29 10.1038/s41591‑018‑0316‑z 30617335
    [Google Scholar]
  265. Brinker T.J. Hekler A. Enk A.H. Klode J. Hauschild A. Berking C. Schilling B. Haferkamp S. Schadendorf D. Holland-Letz T. Utikal J.S. von Kalle C. Ludwig-Peitsch W. Sirokay J. Heinzerling L. Albrecht M. Baratella K. Bischof L. Chorti E. Dith A. Drusio C. Giese N. Gratsias E. Griewank K. Hallasch S. Hanhart Z. Herz S. Hohaus K. Jansen P. Jockenhöfer F. Kanaki T. Knispel S. Leonhard K. Martaki A. Matei L. Matull J. Olischewski A. Petri M. Placke J-M. Raub S. Salva K. Schlott S. Sody E. Steingrube N. Stoffels I. Ugurel S. Zaremba A. Gebhardt C. Booken N. Christolouka M. Buder-Bakhaya K. Bokor-Billmann T. Enk A. Gholam P. Hänßle H. Salzmann M. Schäfer S. Schäkel K. Schank T. Bohne A-S. Deffaa S. Drerup K. Egberts F. Erkens A-S. Ewald B. Falkvoll S. Gerdes S. Harde V. Hauschild A. Jost M. Kosova K. Messinger L. Metzner M. Morrison K. Motamedi R. Pinczker A. Rosenthal A. Scheller N. Schwarz T. Stölzl D. Thielking F. Tomaschewski E. Wehkamp U. Weichenthal M. Wiedow O. Bär C.M. Bender-Säbelkampf S. Horbrügger M. Karoglan A. Kraas L. Faulhaber J. Geraud C. Guo Z. Koch P. Linke M. Maurier N. Müller V. Thomas B. Utikal J.S. Alamri A.S.M. Baczako A. Berking C. Betke M. Haas C. Hartmann D. Heppt M.V. Kilian K. Krammer S. Lapczynski N.L. Mastnik S. Nasifoglu S. Ruini C. Sattler E. Schlaak M. Wolff H. Achatz B. Bergbreiter A. Drexler K. Ettinger M. Haferkamp S. Halupczok A. Hegemann M. Dinauer V. Maagk M. Mickler M. Philipp B. Wilm A. Wittmann C. Gesierich A. Glutsch V. Kahlert K. Kerstan A. Schilling B. Schrüfer P. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur. J. Cancer 2019 113 47 54 10.1016/j.ejca.2019.04.001 30981091
    [Google Scholar]
  266. Brinker T.J. Hekler A. Enk A.H. Berking C. Haferkamp S. Hauschild A. Weichenthal M. Klode J. Schadendorf D. Holland-Letz T. von Kalle C. Fröhling S. Schilling B. Utikal J.S. Deep neural networks are superior to dermatologists in melanoma image classification. Eur. J. Cancer 2019 119 11 17 10.1016/j.ejca.2019.05.023 31401469
    [Google Scholar]
  267. Tschandl P. Rosendahl C. Akay B.N. Argenziano G. Blum A. Braun R.P. Cabo H. Gourhant J.Y. Kreusch J. Lallas A. Lapins J. Marghoob A. Menzies S. Neuber N.M. Paoli J. Rabinovitz H.S. Rinner C. Scope A. Soyer H.P. Sinz C. Thomas L. Zalaudek I. Kittler H. Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks. JAMA Dermatol. 2019 155 1 58 65 10.1001/jamadermatol.2018.4378 30484822
    [Google Scholar]
  268. Hekler A. Utikal J.S. Enk A.H. Hauschild A. Weichenthal M. Maron R.C. Berking C. Haferkamp S. Klode J. Schadendorf D. Schilling B. Holland-Letz T. Izar B. von Kalle C. Fröhling S. Brinker T.J. Schmitt L. Peitsch W.K. Hoffmann F. Becker J.C. Drusio C. Jansen P. Klode J. Lodde G. Sammet S. Schadendorf D. Sondermann W. Ugurel S. Zader J. Enk A. Salzmann M. Schäfer S. Schäkel K. Winkler J. Wölbing P. Asper H. Bohne A-S. Brown V. Burba B. Deffaa S. Dietrich C. Dietrich M. Drerup K.A. Egberts F. Erkens A-S. Greven S. Harde V. Jost M. Kaeding M. Kosova K. Lischner S. Maagk M. Messinger A.L. Metzner M. Motamedi R. Rosenthal A-C. Seidl U. Stemmermann J. Torz K. Velez J.G. Haiduk J. Alter M. Bär C. Bergenthal P. Gerlach A. Holtorf C. Karoglan A. Kindermann S. Kraas L. Felcht M. Gaiser M.R. Klemke C-D. Kurzen H. Leibing T. Müller V. Reinhard R.R. Utikal J. Winter F. Berking C. Eicher L. Hartmann D. Heppt M. Kilian K. Krammer S. Lill D. Niesert A-C. Oppel E. Sattler E. Senner S. Wallmichrath J. Wolff H. Gesierich A. Giner T. Glutsch V. Kerstan A. Presser D. Schrüfer P. Schummer P. Stolze I. Weber J. Drexler K. Haferkamp S. Mickler M. Stauner C.T. Thiem A. Superior skin cancer classification by the combination of human and artificial intelligence. Eur. J. Cancer 2019 120 114 121 10.1016/j.ejca.2019.07.019 31518967
    [Google Scholar]
  269. Zakhem G.A. Fakhoury J.W. Motosko C.C. Ho R.S. Characterizing the role of dermatologists in developing artificial intelligence for assessment of skin cancer. J. Am. Acad. Dermatol. 2021 85 6 1544 1556 10.1016/j.jaad.2020.01.028 31972254
    [Google Scholar]
  270. Nelson C.A. Pérez-Chada L.M. Creadore A. Li S.J. Lo K. Manjaly P. Pournamdari A.B. Tkachenko E. Barbieri J.S. Ko J.M. Menon A.V. Hartman R.I. Mostaghimi A. Patient Perspectives on the Use of Artificial Intelligence for Skin Cancer Screening. JAMA Dermatol. 2020 156 5 501 512 10.1001/jamadermatol.2019.5014 32159733
    [Google Scholar]
  271. Kumar Y. Koul A. Singla R. Ijaz M.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. J. Ambient Intell. Humaniz. Comput. 2023 14 7 8459 8486 10.1007/s12652‑021‑03612‑z 35039756
    [Google Scholar]
  272. Paudyal R. Shah A.D. Akin O. Do R.K.G. Konar A.S. Hatzoglou V. Mahmood U. Lee N. Wong R.J. Banerjee S. Shin J. Veeraraghavan H. Shukla-Dave A. Artificial intelligence in ct and mr imaging for oncological applications. Cancers 2023 15 9 2573 10.3390/cancers15092573 37174039
    [Google Scholar]
  273. Wang F. Li Y. Zeng T. Deep Learning of radiology-genomics integration for computational oncology: A mini review. Comput. Struct. Biotechnol. J. 2024 23 2708 2716 10.1016/j.csbj.2024.06.019 39035833
    [Google Scholar]
  274. Monti C.B. Codari M. van Assen M. De Cecco C.N. Vliegenthart R. Machine learning and deep neural networks applications in computed tomography for coronary artery disease and myocardial perfusion. J. Thorac. Imaging 2020 35 Suppl. 1 S58 S65 10.1097/RTI.0000000000000490 32195886
    [Google Scholar]
  275. Yıldırım Ö. Pławiak P. Tan R.S. Acharya U.R. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput. Biol. Med. 2018 102 411 420 10.1016/j.compbiomed.2018.09.009 30245122
    [Google Scholar]
  276. Bhatt V.K. Pal V.K. An intelligent system for diagnosing thyroid disease in pregnant ladies through artificial neural network. International Conference on Advances in Engineering Science Management & Technology (ICAESMT) 2019. 10.2139/ssrn.3382654
    [Google Scholar]
  277. Gouda W. Yasin R. COVID-19 disease: CT pneumonia analysis prototype by using artificial intelligence, predicting the disease severity. Egypt. J. Radiol. Nucl. Med. 2020 51 1 196 10.1186/s43055‑020‑00309‑9
    [Google Scholar]
  278. Khan M.A. An IoT framework for heart disease prediction based on mdcnn classifier. IEEE Access 2020 8 34717 34727 10.1109/ACCESS.2020.2974687
    [Google Scholar]
  279. Kang D. Dey D. Slomka P.J. Arsanjani R. Nakazato R. Ko H. Berman D.S. Li D. Kuo C.C.J. Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography. J. Med. Imaging 2015 2 1 014003 10.1117/1.JMI.2.1.014003 26158081
    [Google Scholar]
  280. Tesche C. Gray H.N. Machine learning and deep neural networks applications in coronary flow assessment. J. Thorac. Imaging 2020 35 Suppl. 1 S66 S71 10.1097/RTI.0000000000000483 32091446
    [Google Scholar]
  281. Dabowsa N.I.A. Amaitik N.M. Maatuk A.M. Aljawarneh S.A. A hybrid intelligent system for skin disease diagnosis. 2017 International Conference on Engineering and Technology (ICET) 2017, pp. 1-6. 10.1109/ICEngTechnol.2017.8308157
    [Google Scholar]
  282. Owais M. Arsalan M. Choi J. Mahmood T. Park K.R. Artificial intelligence-based classification of multiple gastrointestinal diseases using endoscopy videos for clinical diagnosis. J. Clin. Med. 2019 8 7 986 10.3390/jcm8070986 31284687
    [Google Scholar]
  283. Gonsalves A.H. Thabtah F. Mohammad R.M.A. Singh G. Prediction of coronary heart disease using machine learning: An experimental analysis. Proceedings of the 2019 3rd International Conference on Deep Learning Technologies (ICDLT '19) New York, NY, USA Association for Computing Machinery 2019 51 56 10.1145/3342999.3343015
    [Google Scholar]
  284. Skaane P. Bandos A.I. Gullien R. Eben E.B. Ekseth U. Haakenaasen U. Izadi M. Jebsen I.N. Jahr G. Krager M. Niklason L.T. Hofvind S. Gur D. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology 2013 267 1 47 56 10.1148/radiol.12121373 23297332
    [Google Scholar]
  285. Ijaz M. Alfian G. Syafrudin M. Rhee J. Hybrid prediction model for type 2 diabetes and hypertension using DBSCAN-based outlier detection, synthetic minority over sampling technique (SMOTE), and random forest. Appl. Sci. 2018 8 8 1325 10.3390/app8081325
    [Google Scholar]
  286. Srinivasu P.N. SivaSai J.G. Ijaz M.F. Bhoi A.K. Kim W. Kang J.J. Classification of skin disease using deep learning neural networks with mobilenet V2 and LSTM. Sensors 2021 21 8 2852 10.3390/s21082852 33919583
    [Google Scholar]
  287. Naga Srinivasu P. Ahmed S. Alhumam A. Bhoi Kumar A. Fazal Ijaz M. An AW-HARIS based automated segmentation of human liver using CT images. Comput. Mater. Continua 2021 69 3 3303 3319 10.32604/cmc.2021.018472
    [Google Scholar]
  288. Tran B.X. Latkin C.A. Vu G.T. Nguyen H.L.T. Nghiem S. Tan M.X. Lim Z.K. Ho C.S.H. Ho R.C.M. The current research landscape of the application of artificial intelligence in managing cerebrovascular and heart diseases: A bibliometric and content analysis. Int. J. Environ. Res. Public Health 2019 16 15 2699 10.3390/ijerph16152699 31362340
    [Google Scholar]
  289. Shabut A.M. Hoque Tania M. Lwin K.T. Evans B.A. Yusof N.A. Abu-Hassan K.J. Hossain M.A. An intelligent mobile-enabled expert system for tuberculosis disease diagnosis in real time. Expert Syst. Appl. 2018 114 65 77 10.1016/j.eswa.2018.07.014
    [Google Scholar]
  290. Ijaz M.F. Attique M. Son Y. Data-driven cervical cancer prediction model with outlier detection and over-sampling methods. Sensors 2020 20 10 2809 10.3390/s20102809 32429090
    [Google Scholar]
  291. Francolini G. Desideri I. Stocchi G. Salvestrini V. Ciccone L.P. Garlatti P. Loi M. Livi L. Artificial intelligence in radiotherapy: State of the art and future directions. Med. Oncol. 2020 37 6 50 10.1007/s12032‑020‑01374‑w 32323066
    [Google Scholar]
  292. Bai X. Shan G. Chen M. Wang B. Approach and assessment of automated stereotactic radiotherapy planning for early stage non-small-cell lung cancer. Biomed. Eng. Online 2019 18 1 101 10.1186/s12938‑019‑0721‑7 31619263
    [Google Scholar]
  293. Tseng H.H. Luo Y. Cui S. Chien J.T. Ten Haken R.K. Naqa i.e. Deep reinforcement learning for automated radiation adaptation in lung cancer. Med. Phys. 2017 44 12 6690 6705 10.1002/mp.12625 29034482
    [Google Scholar]
  294. Malone C. Fennell L. Folliard T. Kelly C. Using a neural network to predict deviations in mean heart dose during the treatment of left-sided deep inspiration breath hold patients. Phys. Med. 2019 65 137 142 10.1016/j.ejmp.2019.08.014 31465979
    [Google Scholar]
  295. Bibault J.E. Giraud P. Housset M. Durdux C. Taieb J. Berger A. Coriat R. Chaussade S. Dousset B. Nordlinger B. Burgun A. Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci. Rep. 2018 8 1 12611 10.1038/s41598‑018‑30657‑6 30135549
    [Google Scholar]
  296. Li S. Wang K. Hou Z. Yang J. Ren W. Gao S. Meng F. Wu P. Liu B. Liu J. Yan J. Use of radiomics combined with machine learning method in the recurrence patterns after intensity- modulated radiotherapy for nasopharyngeal carcinoma: A preliminary study. Front. Oncol. 2018 8 648 10.3389/fonc.2018.00648 30622931
    [Google Scholar]
  297. Zunair H. Ben Hamza A. Sharp U-Net: Depthwise convolutional network for biomedical image segmentation. Comput. Biol. Med. 2021 136 104699 10.1016/j.compbiomed.2021.104699 34348214
    [Google Scholar]
  298. Verma R. Kumar N. Patil A. Kurian N.C. Rane S. Graham S. Vu Q.D. Zwager M. Raza S.E.A. Rajpoot N. Wu X. Chen H. Huang Y. Wang L. Jung H. Brown G.T. Liu Y. Liu S. Jahromi S.A.F. Khani A.A. Montahaei E. Baghshah M.S. Behroozi H. Semkin P. Rassadin A. Dutande P. Lodaya R. Baid U. Baheti B. Talbar S. Mahbod A. Ecker R. Ellinger I. Luo Z. Dong B. Xu Z. Yao Y. Lv S. Feng M. Xu K. Zunair H. Hamza A.B. Smiley S. Yin T.K. Fang Q.R. Srivastava S. Mahapatra D. Trnavska L. Zhang H. Narayanan P.L. Law J. Yuan Y. Tejomay A. Mitkari A. Koka D. Ramachandra V. Kini L. Sethi A. MoNuSAC2020: A multi-organ nuclei segmentation and classification challenge. IEEE Trans. Med. Imaging 2021 40 12 3413 3423 10.1109/TMI.2021.3085712 34086562
    [Google Scholar]
  299. Salim I. Hamza A.B. Classification of developmental and brain disorders via graph convolutional aggregation. Cognit. Comput. 2024 16 2 701 716 10.1007/s12559‑023‑10224‑6
    [Google Scholar]
  300. Limantė A. Bias in facial recognition technologies used by law enforcement: Understanding the causes and searching for a way out. Nord. J. Hum. Rights 2024 42 2 115 134 10.1080/18918131.2023.2277581
    [Google Scholar]
  301. Wehrli S. Hertweck C. Amirian M. Glüge S. Stadelmann T. Bias, awareness, and ignorance in deep-learning-based face recognition. AI Ethics 2022 2 3 509 522 10.1007/s43681‑021‑00108‑6
    [Google Scholar]
  302. Hong C. Liu M. Wojdyla D.M. Hickey J. Pencina M. Henao R. Trans-balance: Reducing demographic disparity for prediction models in the presence of class imbalance. J. Biomed. Inform. 2024 149 104532 10.1016/j.jbi.2023.104532 38070817
    [Google Scholar]
  303. Tasci E. Zhuge Y. Camphausen K. Krauze A.V. Bias and class imbalance in oncologic data—towards inclusive and transferrable ai in large scale oncology data sets. Cancers 2022 14 12 2897 10.3390/cancers14122897 35740563
    [Google Scholar]
  304. Gichoya J.W. Banerjee I. Bhimireddy A.R. Burns J.L. Celi L.A. Chen L.C. Correa R. Dullerud N. Ghassemi M. Huang S.C. Kuo P.C. Lungren M.P. Palmer L.J. Price B.J. Purkayastha S. Pyrros A.T. Oakden-Rayner L. Okechukwu C. Seyyed-Kalantari L. Trivedi H. Wang R. Zaiman Z. Zhang H. AI recognition of patient race in medical imaging: A modelling study. Lancet Digit. Health 2022 4 6 e406 e414 10.1016/S2589‑7500(22)00063‑2 35568690
    [Google Scholar]
  305. Wang H. Li J. Wu H. Hovy E. Sun Y. Pre-trained language models and their applications. Engineering 2023 25 51 65 10.1016/j.eng.2022.04.024
    [Google Scholar]
  306. Pessach D. Shmueli E. Improving fairness of artificial intelligence algorithms in Privileged-Group Selection Bias data settings. Expert Syst. Appl. 2021 185 115667 10.1016/j.eswa.2021.115667
    [Google Scholar]
  307. Waelen R. Wieczorek M. The struggle for AI’s recognition: Understanding the normative implications of gender bias in AI with Honneth’s theory of recognition. Philos. Technol. 2022 35 2 53 10.1007/s13347‑022‑00548‑w
    [Google Scholar]
  308. Johnson G.M. Algorithmic bias: On the implicit biases of social technology. Synthese 2021 198 10 9941 9961 10.1007/s11229‑020‑02696‑y
    [Google Scholar]
  309. Farhud D.D. Zokaei S. Ethical issues of artificial intelligence in medicine and healthcare. Iran. J. Public Health 2021 50 11 i v 10.18502/ijph.v50i11.7600 35223619
    [Google Scholar]
  310. Jaime F.J. Muñoz A. Rodríguez-Gómez F. Jerez-Calero A. Strengthening Privacy and Data Security in Biomedical Microelectromechanical Systems by IoT Communication Security and Protection in Smart Healthcare. Sensors 2023 23 21 8944 10.3390/s23218944 37960646
    [Google Scholar]
  311. Bertolaccini L. Falcoz P.E. Brunelli A. Batirel H. Furak J. Passani S. Szanto Z. The significance of general data protection regulation in the compliant data contribution to the European Society of Thoracic Surgeons database. Eur. J. Cardiothorac. Surg. 2023 64 3 ezad289 10.1093/ejcts/ezad289 37589648
    [Google Scholar]
  312. Timmons A.C. Duong J.B. Simo Fiallo N. Lee T. Vo H.P.Q. Ahle M.W. Comer J.S. Brewer L.C. Frazier S.L. Chaspari T. A call to action on assessing and mitigating bias in artificial intelligence applications for mental health. Perspect. Psychol. Sci. 2023 18 5 1062 1096 10.1177/17456916221134490 36490369
    [Google Scholar]
  313. Nazer L.H. Zatarah R. Waldrip S. Ke J.X.C. Moukheiber M. Khanna A.K. Hicklen R.S. Moukheiber L. Moukheiber D. Ma H. Mathur P. Bias in artificial intelligence algorithms and recommendations for mitigation. PLOS Digit. Health 2023 2 6 0000278 10.1371/journal.pdig.0000278 37347721
    [Google Scholar]
  314. Ueda D. Kakinuma T. Fujita S. Kamagata K. Fushimi Y. Ito R. Matsui Y. Nozaki T. Nakaura T. Fujima N. Tatsugami F. Yanagawa M. Hirata K. Yamada A. Tsuboyama T. Kawamura M. Fujioka T. Naganawa S. Fairness of artificial intelligence in healthcare: Review and recommendations. Jpn. J. Radiol. 2024 42 1 3 15 10.1007/s11604‑023‑01474‑3 37540463
    [Google Scholar]
  315. Chen Y. Clayton E.W. Novak L.L. Anders S. Malin B. Human-centered design to address biases in artificial intelligence. J. Med. Internet Res. 2023 25 43251 10.2196/43251 36961506
    [Google Scholar]
  316. Kiseleva A. Kotzinos D. De Hert P. Transparency of AI in healthcare as a multilayered system of accountabilities: Between legal requirements and technical limitations. Front. Artif. Intell. 2022 5 879603 10.3389/frai.2022.879603 35707765
    [Google Scholar]
  317. Di Martino F. Delmastro F. Explainable AI for clinical and remote health applications: A survey on tabular and time series data. Artif. Intell. Rev. 2023 56 6 5261 5315 10.1007/s10462‑022‑10304‑3 36320613
    [Google Scholar]
  318. Shick A.A. Webber C.M. Kiarashi N. Weinberg J.P. Deoras A. Petrick N. Saha A. Diamond M.C. Transparency of artificial intelligence/machine learning-enabled medical devices. NPJ Digit. Med. 2024 7 1 21 10.1038/s41746‑023‑00992‑8 38273098
    [Google Scholar]
  319. Miller M.I. Shih L.C. Kolachalama V.B. Machine learning in clinical trials: A primer with applications to neurology. Neurotherapeutics 2023 20 4 1066 1080 10.1007/s13311‑023‑01384‑2 37249836
    [Google Scholar]
  320. van Royen F.S. Asselbergs F.W. Alfonso F. Vardas P. van Smeden M. Five critical quality criteria for artificial intelligence-based prediction models. Eur. Heart J. 2023 44 46 4831 4834 10.1093/eurheartj/ehad727 37897346
    [Google Scholar]
  321. Morley J. Murphy L. Mishra A. Joshi I. Karpathakis K. Governing data and artificial intelligence for health care: Developing an international understanding. JMIR Form. Res. 2022 6 1 31623 10.2196/31623 35099403
    [Google Scholar]
  322. Mennella C. Maniscalco U. De Pietro G. Esposito M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon 2024 10 4 26297 10.1016/j.heliyon.2024.e26297 38384518
    [Google Scholar]
  323. Ahmed Z. Mohamed K. Zeeshan S. Dong X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database 2020 2020 baaa010 10.1093/database/baaa010 32185396
    [Google Scholar]
  324. Habli I. Lawton T. Porter Z. Artificial intelligence in health care: Accountability and safety. Bull. World Health Organ. 2020 98 4 251 256 10.2471/BLT.19.237487 32284648
    [Google Scholar]
  325. Bajwa J. Munir U. Nori A. Williams B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc. J. 2021 8 2 e188 e194 10.7861/fhj.2021‑0095 34286183
    [Google Scholar]
  326. Elendu C. Amaechi D.C. Elendu T.C. Jingwa K.A. Okoye O.K. John Okah M. Ladele J.A. Farah A.H. Alimi H.A. Ethical implications of AI and robotics in healthcare: A review. Medicine 2023 102 50 36671 10.1097/MD.0000000000036671 38115340
    [Google Scholar]
  327. Harishbhai Tilala M. Kumar Chenchala P. Choppadandi A. Kaur J. Naguri S. Saoji R. Devaguptapu B. Ethical Considerations in the use of artificial intelligence and machine learning in health care: A comprehensive review. Cureus 2024 16 6 62443 10.7759/cureus.62443 39011215
    [Google Scholar]
  328. Tellez D. Litjens G. Bándi P. Bulten W. Bokhorst J.M. Ciompi F. van der Laak J. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 2019 58 101544 10.1016/j.media.2019.101544 31466046
    [Google Scholar]
  329. Wang D. Khosla A. Gargeya R. Irshad H. Beck A.H. Deep learning for identifying metastatic breast cancer. arXiv:1606.05718 2016 1 5 10.48550/arXiv.1606.05718
    [Google Scholar]
  330. Ho S.Y. Phua K. Wong L. Bin Goh W.W. Extensions of the external validation for checking learned model interpretability and generalizability. Patterns 2020 1 8 100129 10.1016/j.patter.2020.100129 33294870
    [Google Scholar]
  331. Distante A. Marandino L. Bertolo R. Ingels A. Pavan N. Pecoraro A. Marchioni M. Carbonara U. Erdem S. Amparore D. Campi R. Roussel E. Caliò A. Wu Z. Palumbo C. Borregales L.D. Mulders P. Muselaers C.H.J. Group E.A.U.Y.A.U.R.C.W. Artificial intelligence in renal cell carcinoma histopathology: Current applications and future perspectives. Diagnostics 2023 13 13 2294 10.3390/diagnostics13132294 37443687
    [Google Scholar]
  332. Kelly C.J. Karthikesalingam A. Suleyman M. Corrado G. King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019 17 1 195 10.1186/s12916‑019‑1426‑2 31665002
    [Google Scholar]
  333. Alafeef M. Srivastava I. Pan D. Machine learning for precision breast cancer diagnosis and prediction of the nanoparticle cellular internalization. ACS Sens. 2020 5 6 1689 1698 10.1021/acssensors.0c00329 32466640
    [Google Scholar]
  334. Liyanage H. Liaw S.T. Jonnagaddala J. Schreiber R. Kuziemsky C. Terry A.L. de Lusignan S. Artificial intelligence in primary health care: Perceptions, issues, and challenges. Yearb. Med. Inform. 2019 28 1 041 046 10.1055/s‑0039‑1677901 31022751
    [Google Scholar]
  335. Yu K.H. Beam A.L. Kohane I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2018 2 10 719 731 10.1038/s41551‑018‑0305‑z 31015651
    [Google Scholar]
  336. Pagès F. Mlecnik B. Marliot F. Bindea G. Ou F.S. Bifulco C. Lugli A. Zlobec I. Rau T.T. Berger M.D. Nagtegaal I.D. Vink-Börger E. Hartmann A. Geppert C. Kolwelter J. Merkel S. Grützmann R. Van den Eynde M. Jouret-Mourin A. Kartheuser A. Léonard D. Remue C. Wang J.Y. Bavi P. Roehrl M.H.A. Ohashi P.S. Nguyen L.T. Han S. MacGregor H.L. Hafezi-Bakhtiari S. Wouters B.G. Masucci G.V. Andersson E.K. Zavadova E. Vocka M. Spacek J. Petruzelka L. Konopasek B. Dundr P. Skalova H. Nemejcova K. Botti G. Tatangelo F. Delrio P. Ciliberto G. Maio M. Laghi L. Grizzi F. Fredriksen T. Buttard B. Angelova M. Vasaturo A. Maby P. Church S.E. Angell H.K. Lafontaine L. Bruni D. El Sissy C. Haicheur N. Kirilovsky A. Berger A. Lagorce C. Meyers J.P. Paustian C. Feng Z. Ballesteros-Merino C. Dijkstra J. van de Water C. van Lent-van Vliet S. Knijn N. Mușină A.M. Scripcariu D.V. Popivanova B. Xu M. Fujita T. Hazama S. Suzuki N. Nagano H. Okuno K. Torigoe T. Sato N. Furuhata T. Takemasa I. Itoh K. Patel P.S. Vora H.H. Shah B. Patel J.B. Rajvik K.N. Pandya S.J. Shukla S.N. Wang Y. Zhang G. Kawakami Y. Marincola F.M. Ascierto P.A. Sargent D.J. Fox B.A. Galon J. International validation of the consensus Immunoscore for the classification of colon cancer: A prognostic and accuracy study. Lancet 2018 391 10135 2128 2139 10.1016/S0140‑6736(18)30789‑X 29754777
    [Google Scholar]
  337. Davenport T. Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019 6 2 94 98 10.7861/futurehosp.6‑2‑94 31363513
    [Google Scholar]
  338. Rony M.K.K. Akter K. Debnath M. Rahman M.M. Johra F. Akter F. Chandra Das D. Mondal S. Mousumi Das Uddin M.J. Rina Parvin M. Strengths, weaknesses, opportunities and threats (SWOT) analysis of artificial intelligence adoption in nursing care. Journal of Medicine, Surgery, and Public Health 2024 3 100113 10.1016/j.glmedi.2024.100113
    [Google Scholar]
  339. Bandyopadhyay A. Oks M. Sun H. Prasad B. Rusk S. Jefferson F. Malkani R.G. Haghayegh S. Sachdeva R. Hwang D. Agustsson J. Mignot E. Summers M. Fabbri D. Deak M. Anastasi M. Sampson A. Van Hout S. Seixas A. Strengths, weaknesses, opportunities, and threats of using AI-enabled technology in sleep medicine: A commentary. J. Clin. Sleep Med. 2024 20 7 1183 1191 10.5664/jcsm.11132 38533757
    [Google Scholar]
  340. Zhao T. Zheng Y. Wu Z. Improving computational efficiency of machine learning modeling of nonlinear processes using sensitivity analysis and active learning. Digit. Chem. Eng. 2022 3 100027 10.1016/j.dche.2022.100027
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501394785250715165404
Loading
/content/journals/cdt/10.2174/0113894501394785250715165404
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test