Skip to content
2000
image of Rationally Engineered Small Molecules: Pharmacophore Modeling and Molecular  Docking  Studies   Targeting   Toxic  Polyglutamine  (PolyQ) Repeats in Huntington’s Disease

Abstract

Introduction

Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by the accumulation of mutant huntingtin protein (mHTT) with expanded polyglutamine (polyQ) tracts. These aggregates contribute to neuronal toxicity and disease progression. Targeting aggregation, especially at the N-terminal domain (N17), may offer a therapeutic strategy. This study aims to identify potential small-molecule inhibitors that can bind to aggregation-prone regions of mHTT using computational methods.

Methods

We characterized polyQ repeat regions and the N17 domain using CASTp to identify active sites. Pharmacophore models were generated using LigandScout based on the glutamate inhibitor 6-Diazo-5-oxo-L-norleucine (DON). Structurally similar ligands were screened from PubChem. Ten candidates were selected and evaluated through molecular docking. ADME/Toxicity and drug-likeness analyses were performed to assess pharmacokinetic suitability.

Results

Ten DON-like ligands showed favorable pharmacophore features. Docking studies identified five compounds with strong binding affinities and key interactions with the polyQ region. These top candidates also demonstrated acceptable ADMET profiles and drug-likeness.

Discussion

The five lead compounds identified in this study demonstrate potential to interfere with mHTT aggregation, a key pathological feature of HD. Their favorable binding and pharmacokinetic properties support their candidacy for further development. However, predictions require experimental validation. Future and studies are essential to confirm their efficacy and safety.

Conclusion

This study presents five promising small-molecule inhibitors for HD, laying the groundwork for future therapeutic development targeting mHTT aggregation.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501393938251006195954
2025-10-21
2025-12-15
Loading full text...

Full text loading...

References

  1. Neueder A. Landles C. Ghosh R. Howland D. Myers R.H. Faull R.L.M. Tabrizi S.J. Bates G.P. The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington’s disease patients. Sci. Rep. 2017 7 1 1307 10.1038/s41598‑017‑01510‑z 28465506
    [Google Scholar]
  2. Neueder A. Dumas A.A. Benjamin A.C. Bates G.P. Regulatory mechanisms of incomplete huntingtin mRNA splicing. Nat. Commun. 2018 9 1 3955 10.1038/s41467‑018‑06281‑3 30262848
    [Google Scholar]
  3. Morigaki R Goto S Striatal vulnerability in huntington's disease: Neuroprotection versus neurotoxicity. Brain. Sci. 2017 7 6 63 10.3390/brainsci7060063
    [Google Scholar]
  4. Tyebji S. Hannan A.J. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington’s disease. Prog. Neurobiol. 2017 153 18 45 10.1016/j.pneurobio.2017.03.008 28377290
    [Google Scholar]
  5. Liu X. Wang C.E. Hong Y. Zhao T. Wang G. Gaertig M.A. Sun M. Li S. Li X.J. N-terminal huntingtin knock-in mice: Implications of removing the n-terminal region of huntingtin for therapy. PLoS Genet. 2016 12 5 1006083 10.1371/journal.pgen.1006083 27203582
    [Google Scholar]
  6. Jarosińska O.D. Rüdiger S.G.D. Molecular strategies to target protein aggregation in huntington’s disease. Front. Mol. Biosci. 2021 8 769184 10.3389/fmolb.2021.769184 34869596
    [Google Scholar]
  7. Novati A. Nguyen H.P. Schulze-Hentrich J. Environmental stimulation in Huntington disease patients and animal models. Neurobiol. Dis. 2022 171 105725 10.1016/j.nbd.2022.105725 35427742
    [Google Scholar]
  8. Kim A. Lalonde K. Truesdell A. Gomes Welter P. Brocardo P.S. Rosenstock T.R. Gil-Mohapel J. New avenues for the treatment of huntington’s disease. Int. J. Mol. Sci. 2021 22 16 8363 10.3390/ijms22168363 34445070
    [Google Scholar]
  9. MacDonald ME Lee JM Gusella JF Huntington's disease genetics: Implications for pathogenesis. Huntington's Disease United States: Academic Press Yang XW Thompson LM Heiman M United States Academic Press 2024 57 84 10.1016/B978‑0‑323‑95672‑7.00007‑8
    [Google Scholar]
  10. Donaldson J. Powell S. Rickards N. Holmans P. Jones L. What is the pathogenic cag expansion length in huntington’s disease? J. Huntingtons Dis. 2021 10 1 175 202 10.3233/JHD‑200445 33579866
    [Google Scholar]
  11. McColgan P. Tabrizi S.J. Huntington’s disease: A clinical review. Eur. J. Neurol. 2018 25 1 24 34 10.1111/ene.13413 28817209
    [Google Scholar]
  12. Reddy P.H. Shirendeb U.P. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2012 1822 2 101 110 10.1016/j.bbadis.2011.10.016 22080977
    [Google Scholar]
  13. Cheng X.T. Huang N. Sheng Z.H. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 2022 110 12 1899 1923 10.1016/j.neuron.2022.03.015 35429433
    [Google Scholar]
  14. Kaemmerer W.F. Grondin R. The effects of huntingtin-lowering: What do we know so far? Degener. Neurol. Neuromuscul. Dis. 2019 9 3 17 10.2147/DNND.S163808 30881191
    [Google Scholar]
  15. Reddy P.H. Increased mitochondrial fission and neuronal dysfunction in Huntington’s disease: Implications for molecular inhibitors of excessive mitochondrial fission. Drug Discov. Today 2014 19 7 951 955 10.1016/j.drudis.2014.03.020 24681059
    [Google Scholar]
  16. Joshi D.C. Chavan M.B. Gurow K. Gupta M. Dhaliwal J.S. Ming L.C. The role of mitochondrial dysfunction in Huntington’s disease: Implications for therapeutic targeting. Biomed. Pharmacother. 2025 183 117827 10.1016/j.biopha.2025.117827 39854819
    [Google Scholar]
  17. Shirendeb U.P. Calkins M.J. Manczak M. Anekonda V. Dufour B. McBride J.L. Mao P. Reddy P.H. Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum. Mol. Genet. 2012 21 2 406 420 10.1093/hmg/ddr475 21997870
    [Google Scholar]
  18. Prasad A. Bharathi V. Sivalingam V. Girdhar A. Patel B.K. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front. Mol. Neurosci. 2019 12 25 10.3389/fnmol.2019.00025 30837838
    [Google Scholar]
  19. Labbadia J. Morimoto R.I. Huntington’s disease: Underlying molecular mechanisms and emerging concepts. Trends Biochem. Sci. 2013 38 8 378 385 10.1016/j.tibs.2013.05.003 23768628
    [Google Scholar]
  20. Dickson E. Soylu-Kucharz R. Petersén Å. Björkqvist M. Hypothalamic expression of huntingtin causes distinct metabolic changes in Huntington’s disease mice. Mol. Metab. 2022 57 101439 10.1016/j.molmet.2022.101439 35007790
    [Google Scholar]
  21. Shirendeb U. Reddy A.P. Manczak M. Calkins M.J. Mao P. Tagle D.A. Hemachandra Reddy P. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: Implications for selective neuronal damage. Hum. Mol. Genet. 2011 20 7 1438 1455 10.1093/hmg/ddr024 21257639
    [Google Scholar]
  22. Chen L. Winger A.J. Knowlton A.A. Mitochondrial dynamic changes in health and genetic diseases. Mol. Biol. Rep. 2014 41 11 7053 7062 10.1007/s11033‑014‑3663‑y 25103020
    [Google Scholar]
  23. Frank S. Treatment of Huntington’s disease. Neurotherapeutics 2014 11 1 153 160 10.1007/s13311‑013‑0244‑z 24366610
    [Google Scholar]
  24. Maucksch C. Vazey E.M. Gordon R.J. Connor B. Stem cell-based therapy for Huntington’s disease. J. Cell. Biochem. 2013 114 4 754 763 10.1002/jcb.24432 23097329
    [Google Scholar]
  25. Potkin K.T. Potkin S.G. New directions in therapeutics for Huntington disease. Future Neurol. 2018 13 2 101 121 10.2217/fnl‑2017‑0035 30800004
    [Google Scholar]
  26. Kegelmeyer D.A. Kloos A.D. Fritz N.E. Fiumedora M.M. White S.E. Kostyk S.K. Impact of tetrabenazine on gait and functional mobility in individuals with Huntington’s disease. J. Neurol. Sci. 2014 347 1-2 219 223 10.1016/j.jns.2014.09.053 25456459
    [Google Scholar]
  27. Xie X Yu T Li X Zhang N Foster LJ Peng C Recent advances in targeting the "undruggable" proteins: From drug discovery to clinical trials. Signal. Transduct. Target. Ther. 2023 8 1 335 10.1038/s41392‑023‑01589‑z
    [Google Scholar]
  28. Kumar A Kumar V Singh K Kumar S Kim YS Lee YM Therapeutic advances for huntington's disease. Brain. Sci. 2020 10 1 43 10.3390/brainsci10010043
    [Google Scholar]
  29. Ehrnhoefer D.E. Duennwald M. Markovic P. Wacker J.L. Engemann S. Roark M. Legleiter J. Marsh J.L. Thompson L.M. Lindquist S. Muchowski P.J. Wanker E.E. Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum. Mol. Genet. 2006 15 18 2743 2751 10.1093/hmg/ddl210 16893904
    [Google Scholar]
  30. Zhang Q. Chen Z.S. An Y. Liu H. Hou Y. Li W. Lau K.F. Koon A.C. Ngo J.C.K. Chan H.Y.E. A peptidylic inhibitor for neutralizing expanded CAG RNA-induced nucleolar stress in polyglutamine diseases. RNA 2018 24 4 486 498 10.1261/rna.062703.117 29295891
    [Google Scholar]
  31. Tenchov R. Sasso J.M. Zhou Q.A. Polyglutamine (PolyQ) diseases: Navigating the landscape of neurodegeneration. ACS Chem. Neurosci. 2024 15 15 2665 2694 10.1021/acschemneuro.4c00184 38996083
    [Google Scholar]
  32. Cao Y. Docking and pharmacophore methods in drug discovery. ChemistrySelect 2025 10 24 01269 10.1002/slct.202501269
    [Google Scholar]
  33. Giordano D. Biancaniello C. Argenio M.A. Facchiano A. Drug design by pharmacophore and virtual screening approach. Pharmaceuticals 2022 15 5 646 10.3390/ph15050646 35631472
    [Google Scholar]
  34. Sliwoski G. Kothiwale S. Meiler J. Lowe E.W. Jr Computational methods in drug discovery. Pharmacol. Rev. 2014 66 1 334 395 10.1124/pr.112.007336 24381236
    [Google Scholar]
  35. Carracedo-Reboredo P. Liñares-Blanco J. Rodríguez-Fernández N. Cedrón F. Novoa F.J. Carballal A. Maojo V. Pazos A. Fernandez-Lozano C. A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. J. 2021 19 4538 4558 10.1016/j.csbj.2021.08.011 34471498
    [Google Scholar]
  36. Chen Z. Wang X. Chen X. Huang J. Wang C. Wang J. Wang Z. Accelerating therapeutic protein design with computational approaches toward the clinical stage. Comput. Struct. Biotechnol. J. 2023 21 2909 2926 10.1016/j.csbj.2023.04.027 38213894
    [Google Scholar]
  37. Bouback TA Pokhrel S Albeshri A Aljohani AM Samad A Alam R Pharmacophore-based virtual screening, quantum mechanics calculations, and molecular dynamics simulation approaches identified potential natural antiviral drug candidates against MERS-CoV S1-NTD. Molecules. 2021 26 16 4961 10.3390/molecules26164961
    [Google Scholar]
  38. Szwabowski G.L. Cole J.A. Baker D.L. Parrill A.L. Structure-based pharmacophore modeling 1. Automated random pharmacophore model generation. J. Mol. Graph. Model. 2023 121 108429 10.1016/j.jmgm.2023.108429 36804368
    [Google Scholar]
  39. Pandey N.K. Isas J.M. Rawat A. Lee R.V. Langen J. Pandey P. Langen R. The 17-residue-long N terminus in huntingtin controls stepwise aggregation in solution and on membranes via different mechanisms. J. Biol. Chem. 2018 293 7 2597 2605 10.1074/jbc.M117.813667 29282287
    [Google Scholar]
  40. Arribat Y. Bonneaud N. Talmat-Amar Y. Layalle S. Parmentier M.L. Maschat F. A huntingtin peptide inhibits polyQ-huntingtin associated defects. PLoS One 2013 8 7 68775 10.1371/journal.pone.0068775 23861941
    [Google Scholar]
  41. Hautke A. Voronin A. Idiris F. Riel A. Lindner F. Lelièvre-Büttner A. Zhu J. Appel B. Fatti E. Weis K. Müller S. Schug A. Ebbinghaus S. CAG-repeat RNA hairpin folding and recruitment to nuclear speckles with a pivotal role of ATP as a cosolute. J. Am. Chem. Soc. 2023 145 17 9571 9583 10.1021/jacs.2c13653 37062072
    [Google Scholar]
  42. Manne M. Validandi V. Khandare A.L. Reduction of fluoride toxicity by tamarind components: An in silico study. Fluoride 2018 51 122 136
    [Google Scholar]
  43. Pradeepkiran J.A. Munikumar M. Reddy A.P. Reddy P.H. Protective effects of a small molecule inhibitor ligand against hyperphosphorylated tau-induced mitochondrial and synaptic toxicities in Alzheimer disease. Hum. Mol. Genet. 2021 31 2 244 261 10.1093/hmg/ddab244 34432046
    [Google Scholar]
  44. Munikumar M. Krishna V.S. Reddy V.S. Rajeswari B. Sriram D. Rao M.V. in silico design of small peptides antagonist against leptin receptor for the treatment of obesity and its associated immune-mediated diseases. J. Mol. Graph. Model. 2018 82 20 36 10.1016/j.jmgm.2018.04.002 29649778
    [Google Scholar]
  45. Munikumar M. Priyadarshini I.V. Pradhan D. Umamaheswari A. Vengamma B. Computational approaches to identify common subunit vaccine candidates against bacterial meningitis. Interdiscip. Sci. 2013 5 2 155 164 10.1007/s12539‑013‑0161‑1 23740398
    [Google Scholar]
  46. Pradeep N. Munikumar M. Swargam S. Hema K. Sudheer Kumar K. Umamaheswari A. 197 Combination of e-pharmacophore modeling, multiple docking strategies and molecular dynamic simulations to discover of novel antagonists of BACE1. J. Biomol. Struct. Dyn. 2015 33 sup1 129 130 10.1080/07391102.2015.1032834
    [Google Scholar]
  47. Munikumar M. Pradeepkiran J.A. Kumar M.K. Banapuram S. Bhat Edurkala A. Comprehensive structural and functional analysis of hVEGFR1: Insights into phosphorylation, molecular interactions, and potential inhibitors through docking and dynamics simulations. Cancer Treat. Res. Commun. 2024 39 100795 10.1016/j.ctarc.2024.100795 38428067
    [Google Scholar]
  48. Kim M.W. Chelliah Y. Kim S.W. Otwinowski Z. Bezprozvanny I. Secondary structure of Huntingtin amino-terminal region. Structure 2009 17 9 1205 1212 10.1016/j.str.2009.08.002 19748341
    [Google Scholar]
  49. Li H. Chang Y.Y. Lee J.Y. Bahar I. Yang L.W. DynOmics: Dynamics of structural proteome and beyond. Nucleic Acids Res. 2017 45 W1 W374 W380 10.1093/nar/gkx385 28472330
    [Google Scholar]
  50. Tian W. Chen C. Lei X. Zhao J. Liang J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018 46 W1 W363 W367 10.1093/nar/gky473 29860391
    [Google Scholar]
  51. Lemberg K.M. Vornov J.J. Rais R. Slusher B.S. We’re not “don” yet: Optimal dosing and prodrug delivery of 6-diazo-5-oxo-L-norleucine. Mol. Cancer Ther. 2018 17 9 1824 1832 10.1158/1535‑7163.MCT‑17‑1148 30181331
    [Google Scholar]
  52. Wolber G. Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 2005 45 1 160 169 10.1021/ci049885e 15667141
    [Google Scholar]
  53. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and autodocktools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  54. Dallakyan S. Olson A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015 1263 243 250 10.1007/978‑1‑4939‑2269‑7_19 25618350
    [Google Scholar]
  55. Rosas-Arellano A. Estrada-Mondragón A. Piña R. Mantellero C. Castro M. The tiny drosophila melanogaster for the biggest answers in huntington’s disease. Int. J. Mol. Sci. 2018 19 8 2398 10.3390/ijms19082398 30110961
    [Google Scholar]
  56. Everett C.M. Wood N.W. Trinucleotide repeats and neurodegenerative disease. Brain 2004 127 11 2385 2405 10.1093/brain/awh278 15329351
    [Google Scholar]
  57. Goto J.I. Suzuki A.Z. Ozaki S. Matsumoto N. Nakamura T. Ebisui E. Fleig A. Penner R. Mikoshiba K. Two novel 2-aminoethyl diphenylborinate (2-APB) analogues differentially activate and inhibit store-operated Ca2+ entry via STIM proteins. Cell Calcium 2010 47 1 1 10 10.1016/j.ceca.2009.10.004 19945161
    [Google Scholar]
  58. Khan E. Mishra S.K. Mishra R. Mishra A. Kumar A. Discovery of a potent small molecule inhibiting Huntington’s disease (HD) pathogenesis via targeting CAG repeats RNA and Poly Q protein. Sci. Rep. 2019 9 1 16872 10.1038/s41598‑019‑53410‑z 31728006
    [Google Scholar]
  59. Pradeepkiran J.A. Reddy P.H. Structure based design and molecular docking studies for phosphorylated tau inhibitors in alzheimer’s disease. Cells 2019 8 3 260 10.3390/cells8030260 30893872
    [Google Scholar]
  60. Pradeepkiran J.A. Reddy A.P. Reddy P.H. Pharmacophore-based models for therapeutic drugs against phosphorylated tau in Alzheimer’s disease. Drug Discov. Today 2019 24 2 616 623 10.1016/j.drudis.2018.11.005 30453058
    [Google Scholar]
  61. Cheng F. Li W. Zhou Y. Shen J. Wu Z. Liu G. Lee P.W. Tang Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model. 2012 52 11 3099 3105 10.1021/ci300367a 23092397
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501393938251006195954
Loading
/content/journals/cdt/10.2174/0113894501393938251006195954
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test