Skip to content
2000
image of Nanoparticle-Based Drug Delivery Systems: Current Advances and Future Directions

Abstract

Nanotechnology in drug delivery has revolutionized modern therapeutics by addressing the limitations of conventional drug delivery methods. This review article explores the significant advancements in nanoparticle-based drug delivery systems, highlighting their role in enhancing therapeutic efficacy and overcoming drug resistance. Nanoparticles, including lipid-based, polymer-based, inorganic, and biological types, offer improved solubility, stability, targeted delivery, and controlled release of therapeutic agents. By enabling precise delivery to specific tissues or cells, these advancements minimize off-target effects and toxicity, particularly in cancer therapy. Additionally, nanomedicine facilitates the delivery of drugs across biological barriers such as the blood-brain barrier, which opens new avenues for treating neurological disorders. The ability to co-encapsulate multiple therapeutic agents in nanoparticles also supports combination therapies that target multiple pathways simultaneously, thereby reducing the development of resistance. As research progresses, the integration of nanotechnology in drug delivery promises to transform healthcare by providing more effective, safer, and personalized treatments. This article supports continued exploration and innovation in the field by emphasizing the need for interdisciplinary collaboration to fully realize the potential of nanomedicine in improving patient outcomes and addressing unmet clinical needs.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501393535250903071153
2025-09-10
2025-12-15
Loading full text...

Full text loading...

References

  1. Bayda S. Adeel M. Tuccinardi T. Cordani M. Rizzolio F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 2019 25 1 112 10.3390/molecules25010112 31892180
    [Google Scholar]
  2. Alzate-Correa D. Lawrence W.R. Salazar-Puerta A. Higuita-Castro N. Gallego-Perez D. Nanotechnology-Driven cell-based therapies in regenerative medicine. AAPS J. 2022 24 2 43 10.1208/s12248‑022‑00692‑3 35292878
    [Google Scholar]
  3. Boulware D.R. Atukunda M. Kagimu E. Musubire A.K. Akampurira A. Tugume L. Ssebambulidde K. Kasibante J. Nsangi L. Mugabi T. Gakuru J. Kimuda S. Kasozi D. Namombwe S. Turyasingura I. Rutakingirwa M.K. Mpoza E. Kigozi E. Muzoora C. Ellis J. Skipper C.P. Matkovits T. Williamson P.R. Williams D.A. Fieberg A. Hullsiek K.H. Abassi M. Dai B. Meya D.B. Oral lipid nanocrystal amphotericin b for cryptococcal meningitis: A randomized clinical trial. Clin. Infect. Dis. 2023 77 12 1659 1667 10.1093/cid/ciad440 37606364
    [Google Scholar]
  4. Baraf H.S.B. Khanna P.P. Kivitz A.J. Strand V. Choi H.K. Terkeltaub R. Dalbeth N. DeHaan W. Azeem R. Traber P.G. Keenan R.T. The COMPARE head- to-head, randomized controlled trial of SEL-212 (pegadricase plus rapamycin-containing nanoparticle, ImmTOR™) versus pegloticase for refractory gout. Rheumatology 2024 63 4 1058 1067 10.1093/rheumatology/kead333 37449908
    [Google Scholar]
  5. Andrews J.P.M. Joshi S.S. Tzolos E. Syed M.B. Cuthbert H. Crica L.E. Lozano N. Okwelogu E. Raftis J.B. Bruce L. Poland C.A. Duffin R. Fokkens P.H.B. Boere A.J.F. Leseman D.L.A.C. Megson I.L. Whitfield P.D. Ziegler K. Tammireddy S. Hadjidemetriou M. Bussy C. Cassee F.R. Newby D.E. Kostarelos K. Miller M.R. First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses. Nat. Nanotechnol. 2024 19 5 705 714 10.1038/s41565‑023‑01572‑3 38366225
    [Google Scholar]
  6. Alonso J.C.C. de Souza B.R. Reis I.B. de Arruda Camargo G.C. de Oliveira G. de Barros Frazão Salmazo M.I. Gonçalves J.M. de Castro Roston J.R. Caria P.H.F. da Silva Santos A. de Freitas L.L.L. Billis A. Durán N. Fávaro W.J. OncoTherad® (MRB-CFI-1) nanoimmunotherapy: A promising strategy to treat bacillus calmette–guérin-unresponsive non-muscle-invasive bladder cancer: Crosstalk among t-cell cx3cr1, immune checkpoints, and the toll-like receptor 4 signaling pathway. Int. J. Mol. Sci. 2023 24 24 17535 10.3390/ijms242417535 38139364
    [Google Scholar]
  7. Soltani M. Hosseinzadeh-Attar M.J. Rezaei M. Alipoor E. Vasheghani-Farahani A. Yaseri M. Rezayat S.M. Effect of nano-curcumin supplementation on cardiometabolic risk factors, physical and psychological quality of life, and depression in patients with coronary slow flow phenomenon: A randomized double-blind clinical trial. Trials 2024 25 1 515 10.1186/s13063‑024‑08354‑9 39085864
    [Google Scholar]
  8. Yusuf A. Almotairy A.R.Z. Henidi H. Alshehri O.Y. Aldughaim M.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023 15 7 1596 10.3390/polym15071596 37050210
    [Google Scholar]
  9. Moazzam M. Zhang M. Hussain A. Yu X. Huang J. Huang Y. The landscape of nanoparticle-based siRNA delivery and therapeutic development. Mol. Ther. 2024 32 2 284 312 10.1016/j.ymthe.2024.01.005 38204162
    [Google Scholar]
  10. Yetisgin A.A. Cetinel S. Zuvin M. Kosar A. Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020 25 9 2193 10.3390/molecules25092193 32397080
    [Google Scholar]
  11. Du S. Wen Z. Yu J. Meng Y. Liu Y. Xia X. Breath and beyond: Advances in nanomedicine for oral and intranasal aerosol drug delivery. Pharmaceuticals 2024 17 12 1742 10.3390/ph17121742 39770584
    [Google Scholar]
  12. Sahin H. Yucel O. Holloway P. Yildirim E. Emik S. Gurdag G. Tanriverdi G. Erkanli Senturk G. Comparison of drug delivery systems with different types of nanoparticles in terms of cellular uptake and responses in human endothelial cells, pericytes, and astrocytes. Pharmaceuticals 2024 17 12 1567 10.3390/ph17121567 39770409
    [Google Scholar]
  13. Karnwal A. Jassim A.Y. Mohammed A.A. Sharma V. Al-Tawaha A.R.M.S. Sivanesan I. Nanotechnology for healthcare: Plant-derived nanoparticles in disease treatment and regenerative medicine. Pharmaceuticals 2024 17 12 1711 10.3390/ph17121711 39770553
    [Google Scholar]
  14. Sadaquat H. Akhtar M. Nazir M. Ahmad R. Alvi Z. Akhtar N. Biodegradable and biocompatible polymeric nanoparticles for enhanced solubility and safe oral delivery of docetaxel: in vivo toxicity evaluation. Int. J. Pharm. 2021 598 120363 10.1016/j.ijpharm.2021.120363 33556487
    [Google Scholar]
  15. Romero-Carmona C.E. Chávez-Corona J.I. Lima E. Cortés H. Quintanar-Guerrero D. Bernad-Bernad M.J. Ramos-Martínez I. Peña-Corona S.I. Sharifi-Rad J. Leyva-Gómez G. Nanoparticle and microparticle-based systems for enhanced oral insulin delivery: A systematic review and meta-analysis. J. Nanobiotechnology 2024 22 1 802 10.1186/s12951‑024‑03045‑8 39734205
    [Google Scholar]
  16. Dejeu I.L. Vicaș L.G. Marian E. Ganea M. Frenț O.D. Maghiar P.B. Bodea F.I. Dejeu G.E. Innovative approaches to enhancing the biomedical properties of liposomes. Pharmaceutics 2024 16 12 1525 10.3390/pharmaceutics16121525 39771504
    [Google Scholar]
  17. Zhang N. Song J. Han Y. Research progress of phospholipid vesicles in biological field. Biomolecules 2024 14 12 1628 10.3390/biom14121628 39766335
    [Google Scholar]
  18. Tomalia D.A. Dendrimers, Dendrons, and the Dendritic State: Reflection on the last decade with expected new roles in pharma, medicine, and the life sciences. Pharmaceutics 2024 16 12 1530 10.3390/pharmaceutics16121530 39771509
    [Google Scholar]
  19. Mina N. Guido V.S. Prezoto B.C. Oliva M.L.V. Sousa A.A. How dendrimers impact fibrin clot formation, structure, and properties. ACS Omega 2024 9 52 51306 51319 10.1021/acsomega.4c08120 39758662
    [Google Scholar]
  20. Ghosh S. Dave V. Wal P. Therapeutic approach of carbon nanotube: Revolutionize nanomaterial in biomedical and pharmaceutical sector. Yao Wu Shi Pin Fen Xi 2024 32 4 412 427 10.38212/2224‑6614.3531 39752868
    [Google Scholar]
  21. Kim D.S. Sobhan A. Oh J.H. Lee J. Park C. Lee J. Development of single-walled carbon nanotube-based electrodes with enhanced dispersion and electrochemical properties for blood glucose monitoring. Biosensors 2024 14 12 630 10.3390/bios14120630 39727895
    [Google Scholar]
  22. Jelonek K. Musiał-Kulik M. Pastusiak M. Foryś A. Zięba A. Kasperczyk J. Exploring micelles and nanospheres as delivery systems for phenothiazine derivatives in cancer therapy. Pharmaceutics 2024 16 12 1597 10.3390/pharmaceutics16121597 39771575
    [Google Scholar]
  23. Zhang M. Cai H. Zhang H. Protein nanospheres and nanofibers prepared by ice-templating for the controlled release of hydrophobic drugs. ACS Appl. Nano Mater. 2024 7 18 21692 21704 10.1021/acsanm.4c03657 39360165
    [Google Scholar]
  24. Wang Z. Yin X. Zhuang C. Wu K. Wang H. Shao Z. Tian B. Lin H. Injectable regenerated silk fibroin micro/nanosphere with enhanced permeability and stability for osteoarthritis therapy. Small 2024 20 46 2405049 10.1002/smll.202405049 39101301
    [Google Scholar]
  25. Sarkhel S. Shuvo S.M. Ansari M.A. Mondal S. Kapat P. Ghosh A. Sarkar T. Biswas R. Atanase L.I. Carauleanu A. Nanotechnology-Based approaches for the management of diabetes mellitus: An innovative solution to long-lasting challenges in antidiabetic drug delivery. Pharmaceutics 2024 16 12 1572 10.3390/pharmaceutics16121572 39771551
    [Google Scholar]
  26. Zhu R Kim G Rajewski BH Angera IJ Del Valle JR Wang Y N-Amino peptide-graphene quantum dot loaded small extracellular vesicles for targeted therapy of tauopathies. bioRxiv 2024 10.1101/2024.12.23.630154 39763783 PMC11703199
    [Google Scholar]
  27. Vivancos A.G. Zhou Y. Lappan U. Boye S. Muñoz-Moreno L. Appelhans D. Moreno S. Biological activation of Fenton reaction in polymeric nanoreactors driven by ferrocene-containing membranes: A microenvironment dependent study. J. Mater. Chem. B Mater. Biol. Med. 2025 13 6 1980 1990 10.1039/D4TB01776E 39760488
    [Google Scholar]
  28. Wang Q.X. Li Z.L. Gong Y.C. Xiong X.Y. The effects of ligand distribution and density on the targeting properties of dual-targeting folate/biotin Pluronic F127/Poly (lactic acid) polymersomes. Eur. J. Pharm. Biopharm. 2025 206 114598 10.1016/j.ejpb.2024.114598 39617357
    [Google Scholar]
  29. Fatima H. Naz M.Y. Shukrullah S. Aslam H. Ullah S. Assiri M.A. A review of multifunction smart nanoparticle based drug delivery systems. Curr. Pharm. Des. 2022 28 36 2965 2983 10.2174/1381612828666220422085702 35466867
    [Google Scholar]
  30. Gao W. Chen Y. Zhang Y. Zhang Q. Zhang L. Nanoparticle-based local antimicrobial drug delivery. Adv. Drug Deliv. Rev. 2018 127 46 57 10.1016/j.addr.2017.09.015 28939377
    [Google Scholar]
  31. Mohamed H.A. Mohamed N.A. Macasa S.S. Basha H.K. Adan A.M. Crovella S. Ding H. Triggle C.R. Marei I. Abou-Saleh H. Metformin-loaded nanoparticles reduce hyperglycemia-associated oxidative stress and induce eNOS phosphorylation in vascular endothelial cells. Sci. Rep. 2024 14 1 30870 10.1038/s41598‑024‑81427‑6 39730492
    [Google Scholar]
  32. Homayun B. Lin X. Choi H.J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019 11 3 129 10.3390/pharmaceutics11030129 30893852
    [Google Scholar]
  33. Ezike T.C. Okpala U.S. Onoja U.L. Nwike C.P. Ezeako E.C. Okpara O.J. Okoroafor C.C. Eze S.C. Kalu O.L. Odoh E.C. Nwadike U.G. Ogbodo J.O. Umeh B.U. Ossai E.C. Nwanguma B.C. Advances in drug delivery systems, challenges and future directions. Heliyon 2023 9 6 e17488 10.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  34. Seidu T.A. Kutoka P.T. Asante D.O. Farooq M.A. Alolga R.N. Bo W. Functionalization of nanoparticulate drug delivery systems and its influence in cancer therapy. Pharmaceutics 2022 14 5 1113 10.3390/pharmaceutics14051113 35631699
    [Google Scholar]
  35. Gabizon A.A. Gabizon-Peretz S. Modaresahmadi S. La-Beck N.M. Thirty years from FDA approval of pegylated liposomal doxorubicin (Doxil/Caelyx): An updated analysis and future perspective. BMJ Oncology 2025 4 1 e000573 10.1136/bmjonc‑2024‑000573 39885941
    [Google Scholar]
  36. Makadia H.K. Siegel S.J. Poly lactic-co-glycolic acid (plga) as biodegradable controlled drug delivery carrier. Polymers 2011 3 3 1377 1397 10.3390/polym3031377 22577513
    [Google Scholar]
  37. Lu Y. Cheng D. Niu B. Wang X. Wu X. Wang A. Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals 2023 16 3 454 10.3390/ph16030454 36986553
    [Google Scholar]
  38. Chauhan A.S. Dendrimers for drug delivery. Molecules 2018 23 4 938 10.3390/molecules23040938 29670005
    [Google Scholar]
  39. Abedi Gaballu F. Cho W.C.S. Dehghan G. Zarebkohan A. Baradaran B. Mansoori B. Abbaspour-Ravasjani S. Mohammadi A. Sheibani N. Aghanejad A. Ezzati Nazhad Dolatabadi J. Silencing of HMGA2 by siRNA loaded methotrexate functionalized polyamidoamine dendrimer for human breast cancer cell therapy. Genes 2021 12 7 1102 10.3390/genes12071102 34356120
    [Google Scholar]
  40. Crintea A. Motofelea A.C. Șovrea A.S. Constantin A.M. Crivii C.B. Carpa R. Duțu A.G. Dendrimers: Advancements and potential applications in cancer diagnosis and treatment—an overview. Pharmaceutics 2023 15 5 1406 10.3390/pharmaceutics15051406 37242648
    [Google Scholar]
  41. Zhang N. Xiong G. Liu Z. Toxicity of metal-based nanoparticles: Challenges in the nano era. Front. Bioeng. Biotechnol. 2022 10 1001572 10.3389/fbioe.2022.1001572 36619393
    [Google Scholar]
  42. Das S.S. Bharadwaj P. Bilal M. Barani M. Rahdar A. Taboada P. Bungau S. Kyzas G.Z. Stimuli-Responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers 2020 12 6 1397 10.3390/polym12061397 32580366
    [Google Scholar]
  43. Chang D. Ma Y. Xu X. Xie J. Ju S. Stimuli-Responsive polymeric nanoplatforms for cancer therapy. Front. Bioeng. Biotechnol. 2021 9 707319 10.3389/fbioe.2021.707319 34249894
    [Google Scholar]
  44. Gao W. Chan J.M. Farokhzad O.C. pH-Responsive nanoparticles for drug delivery. Mol. Pharm. 2010 7 6 1913 1920 10.1021/mp100253e 20836539
    [Google Scholar]
  45. Wang Q. Atluri K. Tiwari A.K. Babu R.J. Exploring the application of micellar drug delivery systems in cancer nanomedicine. Pharmaceuticals 2023 16 3 433 10.3390/ph16030433 36986532
    [Google Scholar]
  46. Sushnitha M. Evangelopoulos M. Tasciotti E. Taraballi F. Cell membrane-based biomimetic nanoparticles and the immune system: Immunomodulatory interactions to therapeutic applications. Front. Bioeng. Biotechnol. 2020 8 627 10.3389/fbioe.2020.00627 32626700
    [Google Scholar]
  47. Mohammad-Rafiei F. Khojini J.Y. Ghazvinian F. Alimardan S. Norioun H. Tahershamsi Z. Tajbakhsh A. Gheibihayat S.M. Cell membrane biomimetic nanoparticles in drug delivery. Biotechnol. Appl. Biochem. 2023 70 6 1843 1859 10.1002/bab.2487 37387120
    [Google Scholar]
  48. Soprano E. Polo E. Pelaz B. del Pino P. Biomimetic cell-derived nanocarriers in cancer research. J. Nanobiotechnology 2022 20 1 538 10.1186/s12951‑022‑01748‑4 36544135
    [Google Scholar]
  49. Kazemian P. Yu S.Y. Thomson S.B. Birkenshaw A. Leavitt B.R. Ross C.J.D. Lipid-Nanoparticle-Based delivery of crispr/cas9 genome-editing components. Mol. Pharm. 2022 19 6 1669 1686 10.1021/acs.molpharmaceut.1c00916 35594500
    [Google Scholar]
  50. Finn J.D. Smith A.R. Patel M.C. Shaw L. Youniss M.R. van Heteren J. Dirstine T. Ciullo C. Lescarbeau R. Seitzer J. Shah R.R. Shah A. Ling D. Growe J. Pink M. Rohde E. Wood K.M. Salomon W.E. Harrington W.F. Dombrowski C. Strapps W.R. Chang Y. Morrissey D.V. A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent in vivo Genome Editing. Cell Rep. 2018 22 9 2227 2235 10.1016/j.celrep.2018.02.014 29490262
    [Google Scholar]
  51. Walther J. Porenta D. Wilbie D. Seinen C. Benne N. Yang Q. de Jong O.G. Lei Z. Mastrobattista E. Comparative analysis of lipid Nanoparticle-Mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo. Eur. J. Pharm. Biopharm. 2024 196 114207 10.1016/j.ejpb.2024.114207 38325664
    [Google Scholar]
  52. Shahzadi I. Islam M. Saeed H. Haider A. Shahzadi A. Haider J. Ahmed N. Ul-Hamid A. Nabgan W. Ikram M. Rathore H.A. Formation of biocompatible MgO/cellulose grafted hydrogel for efficient bactericidal and controlled release of doxorubicin. Int. J. Biol. Macromol. 2022 220 1277 1286 10.1016/j.ijbiomac.2022.08.142 36030978
    [Google Scholar]
  53. Shahzadi I. Islam M. Saeed H. Haider A. Shahzadi A. Rathore H.A. Ul-Hamid A. Abd-Rabboh H.S.M. Ikram M. Synthesis of curcuma longa doped cellulose grafted hydrogel for catalysis, bactericidial and insilico molecular docking analysis. Int. J. Biol. Macromol. 2023 253 Pt 4 126827 10.1016/j.ijbiomac.2023.126827 37696378
    [Google Scholar]
  54. Shahzadi I. Aqeel M. Haider A. Naz S. Imran M. Nabgan W. Al-Shanini A. Shahzadi A. Alshahrani T. Ikram M. Hydrothermal Synthesis of Fe-Doped Cadmium Oxide Showed Bactericidal Behavior and Highly Efficient Visible Light Photocatalysis. ACS Omega 2023 8 33 30681 30693 10.1021/acsomega.3c04543 37636921
    [Google Scholar]
  55. Shahzadi I. Islam M. Saeed H. Shahzadi A. Haider J. Haider A. Imran M. Rathore H.A. Ul-Hamid A. Nabgan W. Ikram M. Facile synthesis of copolymerized cellulose grafted hydrogel doped calcium oxide nanocomposites with improved antioxidant activity for anti-arthritic and controlled release of doxorubicin for anti-cancer evaluation. Int. J. Biol. Macromol. 2023 235 123874 10.1016/j.ijbiomac.2023.123874 36870651
    [Google Scholar]
  56. Zhang J. Li Z. Xie Z. You S. Chen Y. Zhang Y. Zhang J. Zhao N. Deng X. Sun S. Building of CuO2@Cu-TA@DSF/DHA Nanoparticle Targets MAPK Pathway to Achieve Synergetic Chemotherapy and Chemodynamic for Pancreatic Cancer Cells. Pharmaceutics 2024 16 12 1614 10.3390/pharmaceutics16121614 39771592
    [Google Scholar]
  57. Aslan T.N. Cationic micelle-like nanoparticles as the carrier of methotrexate for glioblastoma treatment. Molecules 2024 29 24 5977 10.3390/molecules29245977 39770065
    [Google Scholar]
  58. Hong S. Park J. Oh Y. Cho H. Kim K. Nanotechnology-Based Strategies for Safe and Effective Immunotherapy. Molecules 2024 29 24 5855 10.3390/molecules29245855 39769944
    [Google Scholar]
  59. Morrone E. Sancey L. Dalonneau F. Ricciardi L. La Deda M. Conjugated Human Serum Albumin/Gold-Silica Nanoparticles as Multifunctional Carrier of a Chemotherapeutic Drug. Int. J. Mol. Sci. 2024 25 24 13701 10.3390/ijms252413701 39769463
    [Google Scholar]
  60. Jiao Y. Yang L. Wang R. Song G. Fu J. Wang J. Gao N. Wang H. Drug Delivery Across the Blood–Brain Barrier: A New Strategy for the Treatment of Neurological Diseases. Pharmaceutics 2024 16 12 1611 10.3390/pharmaceutics16121611 39771589
    [Google Scholar]
  61. Toader C. Dumitru A.V. Eva L. Serban M. Covache-Busuioc R.A. Ciurea A.V. Nanoparticle strategies for treating cns disorders: A comprehensive review of drug delivery and theranostic applications. Int. J. Mol. Sci. 2024 25 24 13302 10.3390/ijms252413302 39769066
    [Google Scholar]
  62. Agnihotri T.G. Dahifale A. Gomte S.S. Rout B. Peddinti V. Jain A. Nanosystems at nexus: Navigating nose-to-brain delivery for glioblastoma treatment. Mol. Pharm. 2025 22 2 599 619 10.1021/acs.molpharmaceut.4c00703 39746097
    [Google Scholar]
  63. Lu Y Zhu F Zhou X Li Y Rong G Liu N Hong J Cheng Y A supramolecular deferoxamine-crisaborole nanoparticle targets ferroptosis, inflammation, and oxidative stress in the treatment of retinal ischemia/reperfusion injury. Nano Letters 2025 Jan 22 25 3 1058 1066 10.1021/acs.nanolett.4c05012 39670541
    [Google Scholar]
  64. Zhang C. Teng Y. Bai X. Tang M. Stewart W. Chen J.J. Xu X. Zhang X.Q. Prevent and reverse metabolic dysfunction-associated steatohepatitis and hepatic fibrosis via mrna-mediated liver-specific antibody therapy. ACS Nano 2024 18 50 34375 34390 10.1021/acsnano.4c13404 39639502
    [Google Scholar]
  65. Kantak M. Batra P. Shende P. Integration of DNA barcoding and nanotechnology in drug delivery. Int. J. Biol. Macromol. 2023 230 123262 10.1016/j.ijbiomac.2023.123262 36646350
    [Google Scholar]
  66. de Almeida T.S. Júlio A. Mota J.P. Rijo P. Reis C.P. An emerging integration between ionic liquids and nanotechnology: General uses and future prospects in drug delivery. Ther. Deliv. 2017 8 6 461 473 10.4155/tde‑2017‑0002 28530146
    [Google Scholar]
  67. Nagella P. Balasubramanian B. Park S. Singh U. Jayan A. Mukherjee S. Nizam A. Meyyazhagan A. Pappuswamy M. Sebastian J.K. Lakshmaiah V.V. Mousavi Khaneghah A. Production, Delivery, and regulatory aspects for application of plant-based anti-microbial peptides: A comprehensive review. Probiotics Antimicrob. Proteins 2025 10.1007/s12602‑024‑10421‑1 39753941
    [Google Scholar]
  68. Alharbi H. Exploring the frontier of biopolymer-assisted drug delivery: Advancements, clinical applications, and future perspectives in cancer nanomedicine. Drug Des. Devel. Ther. 2024 18 2063 2087 10.2147/DDDT.S441325 38882042
    [Google Scholar]
  69. Matalqah S.M. Aiedeh K. Mhaidat N.M. Alzoubi K.H. Bustanji Y. Hamad I. Chitosan nanoparticles as a novel drug delivery system: A review article. Curr. Drug Targets 2020 21 15 1613 1624 10.2174/1389450121666200711172536 32651965
    [Google Scholar]
  70. Anandhakumar S. Krishnamoorthy G. Ramkumar K.M. Raichur A.M. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: An effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery. Mater. Sci. Eng. C 2017 70 Pt 1 378 385 10.1016/j.msec.2016.09.003 27770906
    [Google Scholar]
  71. Severino P. da Silva C.F. Andrade L.N. de Lima Oliveira D. Campos J. Souto E.B. Alginate nanoparticles for drug delivery and targeting. Curr. Pharm. Des. 2019 25 11 1312 1334 10.2174/1381612825666190425163424 31465282
    [Google Scholar]
  72. Feng Z.Y. Liu T.T. Sang Z.T. Lin Z.S. Su X. Sun X.T. Yang H.Z. Wang T. Guo S. Microfluidic Preparation of Janus Microparticles With Temperature and pH Triggered Degradation Properties. Front. Bioeng. Biotechnol. 2021 9 756758 10.3389/fbioe.2021.756758 34568306
    [Google Scholar]
  73. Fleten K.G. Hyldbakk A. Einen C. Benjakul S. Strand B.L. Davies C.L. Mørch Ý. Flatmark K. Alginate microsphere encapsulation of drug-loaded nanoparticles: A novel strategy for intraperitoneal drug delivery. Mar. Drugs 2022 20 12 744 10.3390/md20120744 36547891
    [Google Scholar]
  74. Madkhali O.A. Drug delivery of gelatin nanoparticles as a biodegradable polymer for the treatment of infectious diseases: Perspectives and challenges. Polymers 2023 15 21 4327 10.3390/polym15214327 37960007
    [Google Scholar]
  75. Foox M. Zilberman M. Drug delivery from gelatin-based systems. Expert Opin. Drug Deliv. 2015 12 9 1547 1563 10.1517/17425247.2015.1037272 25943722
    [Google Scholar]
  76. Li L. Liu C. Fu J. Wang Y. Yang D. Peng B. Liu X. Han X. Meng Y. Feng F. Hu X. Qi C. Wang Y. Zheng Y. Li P. CD44 targeted indirubin nanocrystal-loaded hyaluronic acid hydrogel for the treatment of psoriasis. Int. J. Biol. Macromol. 2023 243 125239 10.1016/j.ijbiomac.2023.125239 37295696
    [Google Scholar]
  77. Dai L. Si C. Recent advances on cellulose-based nano-drug delivery systems: Design of prodrugs and nanoparticles. Curr. Med. Chem. 2019 26 14 2410 2429 10.2174/0929867324666170711131353 28699504
    [Google Scholar]
  78. Sun B. Zhang M. Shen J. He Z. Fatehi P. Ni Y. Applications of cellulose-based materials in sustained drug delivery systems. Curr. Med. Chem. 2019 26 14 2485 2501 10.2174/0929867324666170705143308 28685683
    [Google Scholar]
  79. Moghaddam S.V. Abedi F. Alizadeh E. Baradaran B. Annabi N. Akbarzadeh A. Davaran S. Lysine-embedded cellulose-based nanosystem for efficient dual-delivery of chemotherapeutics in combination cancer therapy. Carbohydr. Polym. 2020 250 116861 10.1016/j.carbpol.2020.116861 33049815
    [Google Scholar]
  80. Cui Z. Ruan Z. Zeng J. Sun J. Ye W. Xu W. Guo X. Zhang L. Song L. Lung-specific exosomes for co-delivery of CD47 blockade and cisplatin for the treatment of non–small cell lung cancer. Thorac. Cancer 2022 13 19 2723 2731 10.1111/1759‑7714.14606 36054073
    [Google Scholar]
  81. Huang C.Y. Lin S.Y. Hsu T.A. Hsieh H.P. Huang M.H. Colloidal assemblies composed of polymeric micellar/emulsified systems integrate cancer therapy combining a tumor-associated antigen vaccine and chemotherapeutic regimens. Nanomaterials 2021 11 7 1844 10.3390/nano11071844 34361230
    [Google Scholar]
  82. Wang L. Liu X. Zhou Q. Sui M. Lu Z. Zhou Z. Tang J. Miao Y. Zheng M. Wang W. Shen Y. Terminating the criminal collaboration in pancreatic cancer: Nanoparticle-based synergistic therapy for overcoming fibroblast-induced drug resistance. Biomaterials 2017 144 105 118 10.1016/j.biomaterials.2017.08.002 28837958
    [Google Scholar]
  83. Zhang M. Liu E. Cui Y. Huang Y. Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol. Med. 2017 14 3 212 227 10.20892/j.issn.2095‑3941.2017.0054 28884039
    [Google Scholar]
  84. Khdair A. Handa H. Mao G. Panyam J. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro . Eur. J. Pharm. Biopharm. 2009 71 2 214 222 10.1016/j.ejpb.2008.08.017 18796331
    [Google Scholar]
  85. Emilienne Soma C. Dubernet C. Bentolila D. Benita S. Couvreur P. Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials 2000 21 1 1 7 10.1016/S0142‑9612(99)00125‑8 10619673
    [Google Scholar]
  86. Nanayakkara A.K. Follit C.A. Chen G. Williams N.S. Vogel P.D. Wise J.G. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci. Rep. 2018 8 1 967 10.1038/s41598‑018‑19325‑x 29343829
    [Google Scholar]
  87. Jiang F. Yu M. Wang Y. Design, synthesis and biological evaluation of novel diaryl-substituted fused nitrogen heterocycles as tubulin polymerization inhibitors to overcome multidrug resistance in vitro and in vivo . Eur. J. Med. Chem. 2025 283 117130 10.1016/j.ejmech.2024.117130 39662283
    [Google Scholar]
  88. Liu J. Zhao L. Shi L. Yuan Y. Fu D. Ye Z. Li Q. Deng Y. Liu X. Lv Q. Cheng Y. Xu Y. Jiang X. Wang G. Wang L. Wang Z. A sequentially responsive nanosystem breaches cascaded bio-barriers and suppresses p-glycoprotein function for reversing cancer drug resistance. ACS Appl. Mater. Interfaces 2020 12 49 54343 54355 10.1021/acsami.0c13852 32959645
    [Google Scholar]
  89. Cao Z. Zhu J. Chen X. Chen Z. Wang W. Zhou Y. Hua Y. Shi J. Chen J. Resistance mechanisms of non-small cell lung cancer and improvement of treatment effects through nanotechnology: A narrative review. J. Thorac. Dis. 2024 16 11 8039 8052 10.21037/jtd‑24‑1078 39678887
    [Google Scholar]
  90. Fahmy N.F. Abdel-Kareem M.M. Ahmed H.A. Helmy M.Z. Mahmoud E.A.R. Evaluation of the antibacterial and antibiofilm effect of mycosynthesized silver and selenium nanoparticles and their synergistic effect with antibiotics on nosocomial bacteria. Microb. Cell Fact. 2025 24 1 6 10.1186/s12934‑024‑02604‑w 39755661
    [Google Scholar]
  91. Jiang Z. Xu Y. Yang L. Huang X. Bao J. Bile acid conjugated chitosan nanoparticles promote the proliferation and epithelial-mesenchymal transition of hepatocellular carcinoma by regulating the PI3K/Akt/mTOR pathway. Carbohydr. Res. 2024 545 109296 10.1016/j.carres.2024.109296 39471534
    [Google Scholar]
  92. Ciceu A. Fenyvesi F. Hermenean A. Ardelean S. Dumitra S. Puticiu M. Advancements in plant-based therapeutics for hepatic fibrosis: Molecular mechanisms and nanoparticulate drug delivery systems. Int. J. Mol. Sci. 2024 25 17 9346 10.3390/ijms25179346 39273295
    [Google Scholar]
  93. Fan Z. Shao Y. Jiang X. Zhou J. Yang L. Chen H. Liu W. Cytotoxic effects of NIR responsive chitosan-polymersome layer coated melatonin-upconversion nanoparticles on HGC27 and AGS gastric cancer cells: Role of the ROS/PI3K/Akt/mTOR signaling pathway. Int. J. Biol. Macromol. 2024 278 Pt 1 134187 10.1016/j.ijbiomac.2024.134187 39098665
    [Google Scholar]
  94. Liu X. Guo Z. Li J. Wu D. Liu Z. Guan C. Guan Y. Lu X. Effect of gold-conjugated resveratrol nanoparticles on glioma cells and its underlying mechanism. Biomed. Mater. Eng. 2024 35 3 279 292 10.3233/BME‑230171 38461500
    [Google Scholar]
  95. Chen L. Liu M. Wang Y. Wei W. Li Y. Bai Y. Yu X. Jiao L. Wang M. TME-Activated MnO2/Pt Nanoplatform of hydroxyl radical and oxygen generation to synergistically promote radiotherapy and mr imaging of glioblastoma. Int. J. Nanomedicine 2024 19 11055 11070 10.2147/IJN.S474098 39502635
    [Google Scholar]
  96. Meng W. Huang L. Guo J. Xin Q. Liu J. Hu Y. Innovative nanomedicine delivery: Targeting tumor microenvironment to defeat drug resistance. Pharmaceutics 2024 16 12 1549 10.3390/pharmaceutics16121549 39771528
    [Google Scholar]
  97. Zhang X.H. Song B.L. Yi N.B. Zhang G.X. Zheng W.F. Cheng D.B. Qiao Z.Y. Wang H. Programmable morphology-adaptive peptide nanoassembly for enhanced catalytic therapy. Adv. Mater. 2025 37 6 2417089 10.1002/adma.202417089 39686823
    [Google Scholar]
  98. Zhang W. Wang Y. Gu M. Mao Z. Guan Y. Wang J. Mao W. Yuan W.E. Manganese nanosheets loaded with selenium and gemcitabine activate the tumor microenvironment to enhance anti-tumor immunity. J. Colloid Interface Sci. 2025 682 556 567 10.1016/j.jcis.2024.11.224 39637652
    [Google Scholar]
  99. Zhang H. Guo L. Li X. Liu H. Zhao Z. Ji G. Huang Y. Wang X. A modular approach to obtain her2-targeting dm1-loaded nanoparticles for gastric cancer therapy. ACS Omega 2024 9 49 48598 48606 10.1021/acsomega.4c07442 39676924
    [Google Scholar]
  100. Caputo T.M. Barisciano G. Mulè C. Cusano A.M. Aliberti A. Muccillo L. Colantuoni V. Sabatino L. Cusano A. Development of high-loading trastuzumab plga nanoparticles: A powerful tool against her2 positive breast cancer cells. Int. J. Nanomedicine 2023 18 6999 7020 10.2147/IJN.S429898 38034948
    [Google Scholar]
  101. Eljack S. Allard-Vannier E. Misericordia Y. Hervé-Aubert K. Aubrey N. Chourpa I. Faggad A. David S. Combination of nanovectorized sirna directed against survivin with doxorubicin for efficient anti-cancer activity in her2+ breast cancer cells. Pharmaceutics 2022 14 11 2537 10.3390/pharmaceutics14112537 36432729
    [Google Scholar]
  102. Fatih H.J. Ashengroph M. Sharifi A. Zorab M.M. Green-synthesized α-Fe2O3-nanoparticles as potent antibacterial, anti-biofilm and anti-virulence agent against pathogenic bacteria. BMC Microbiol. 2024 24 1 535 10.1186/s12866‑024‑03699‑2 39716060
    [Google Scholar]
  103. Singh S. Singh S. Lillard J.W. Jr Singh R. Drug delivery approaches for breast cancer. Int. J. Nanomedicine 2017 12 6205 6218 10.2147/IJN.S140325 28883730
    [Google Scholar]
  104. Solanki R. Makwana N. Kumar R. Joshi M. Patel A. Bhatia D. Sahoo D.K. Nanomedicines as a cutting-edge solution to combat antimicrobial resistance. RSC Advances 2024 14 45 33568 33586 10.1039/D4RA06117A 39439838
    [Google Scholar]
  105. Lai X. Yu L. Huang X. Gardner W. Bamford S.E. Pigram P.J. Wang S. Brun A.P.L. Muir B.W. Song J. Wang Y. Hsu H.Y. Chan P.W.H. Shen H.H. Enhanced Nitric Oxide Delivery Through Self-Assembling Nanoparticles for Eradicating Gram-Negative Bacteria. Adv. Healthc. Mater. 2024 13 32 2403046 10.1002/adhm.202403046 39263842
    [Google Scholar]
  106. Kungwani N.A. Panda J. Mishra A.K. Chavda N. Shukla S. Vikhe K. Sharma G. Mohanta Y.K. Sharifi-Rad M. Combating bacterial biofilms and related drug resistance: Role of phyto-derived adjuvant and nanomaterials. Microb. Pathog. 2024 195 106874 10.1016/j.micpath.2024.106874 39181190
    [Google Scholar]
  107. Khan M.H. Unnikrishnan S. Ramalingam K. Antipathogenic efficacy of biogenic silver nanoparticles and antibiofilm activities against multi-drug-resistant ESKAPE Pathogens. Appl. Biochem. Biotechnol. 2024 196 4 2031 2052 10.1007/s12010‑023‑04630‑7 37462813
    [Google Scholar]
  108. Mohamed D.S. Abd El-Baky R.M. Sandle T. Mandour S.A. Ahmed E.F. Antimicrobial activity of silver-treated bacteria against other multi-drug resistant pathogens in their environment. Antibiotics 2020 9 4 181 10.3390/antibiotics9040181 32326384
    [Google Scholar]
  109. Kirui D.K. Weber G. Talackine J. Millenbaugh N.J. Targeted laser therapy synergistically enhances efficacy of antibiotics against multi-drug resistant Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Nanomedicine 2019 20 102018 10.1016/j.nano.2019.102018 31125677
    [Google Scholar]
  110. Arul D. Balasubramani G. Balasubramanian V. Natarajan T. Perumal P. Antibacterial efficacy of silver nanoparticles and ethyl acetate’s metabolites of the potent halophilic (marine) bacterium, Bacillus cereus A30 on multidrug resistant bacteria. Pathog. Glob. Health 2017 111 7 367 382 10.1080/20477724.2017.1390829 29072532
    [Google Scholar]
  111. Ali K. Dwivedi S. Azam A. Saquib Q. Al-Said M.S. Alkhedhairy A.A. Musarrat J. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J. Colloid Interface Sci. 2016 472 145 156 10.1016/j.jcis.2016.03.021 27031596
    [Google Scholar]
  112. Lee N.Y. Ko W.C. Hsueh P.R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. 2019 10 1153 10.3389/fphar.2019.01153 31636564
    [Google Scholar]
  113. Yu S. Pu X. Ahmed M.U. Yu H.H. Mutukuri T.T. Li J. Zhou Q.T. Spray-freeze-dried inhalable composite microparticles containing nanoparticles of combinational drugs for potential treatment of lung infections caused by Pseudomonas aeruginosa. Int. J. Pharm. 2021 610 121160 10.1016/j.ijpharm.2021.121160 34624446
    [Google Scholar]
  114. Shahroudi S Parvinnasab A Salahinejad E Abdi S Rajabi S Tayebi L Efficacy of 3D-printed chitosan-cerium oxide dressings coated with vancomycin-loaded alginate for chronic wounds management. Carbohydrate Polymers 2025 349 123036 10.1016/j.carbpol.2024.123036 39638529
    [Google Scholar]
  115. Mohammadi M. Rahmani S. Ebrahimi Z. Nowroozi G. Mahmoudi F. Shahlaei M. Moradi S. In Situ forming hydrogel reinforced with antibiotic-loaded mesoporous silica nanoparticles for the treatment of bacterial keratitis. AAPS PharmSciTech 2024 25 8 254 10.1208/s12249‑024‑02969‑6 39443345
    [Google Scholar]
  116. Cui J. Shu H. Gu X. Wu S. Liu X. Cao P. Enhancing antibacterial performance and stability of implant materials through surface modification with polydopamine/silver nanoparticles. Colloids Surf. B Biointerfaces 2025 245 114327 10.1016/j.colsurfb.2024.114327 39427395
    [Google Scholar]
  117. Naguib G. Abd El-Aziz G. Mira A. Kayal R. Al-Turki L. Mously H. Alnowaiser A. Mazhar J. Hamed M. Enhanced antimicrobial properties of polymeric denture materials modified with zein-coated inorganic nanoparticles. Int. J. Nanomedicine 2024 19 9255 9271 10.2147/IJN.S476261 39282577
    [Google Scholar]
  118. Bodylska W. Junka A. Brożyna M. Bartmański M. Gadzała-Kopciuch R. Jaromin A. Navarro J.A.R. Lukowiak A. Fandzloch M. New biocompatible ti-mof@hydroxyapatite composite boosted with gentamicin for postoperative infection control. ACS Biomater. Sci. Eng. 2024 10 12 7555 7565 10.1021/acsbiomaterials.4c01230 39592942
    [Google Scholar]
  119. Wang L. Tkhilaishvili T. Jiang Z. Pirlar R.F. Ning Y. Millán Laleona A. Wang J. Tang J. Wang Q. Trampuz A. Gonzalez Moreno M. Zhang X. Phage-liposome nanoconjugates for orthopedic biofilm eradication. J. Control. Release 2024 376 949 960 10.1016/j.jconrel.2024.09.049 39384150
    [Google Scholar]
  120. Kaiser L. Weisser J. Kohl M. Deigner H.P. Small molecule detection with aptamer based lateral flow assays: Applying aptamer-C-reactive protein cross-recognition for ampicillin detection. Sci. Rep. 2018 8 1 5628 10.1038/s41598‑018‑23963‑6 29618771
    [Google Scholar]
  121. Guan J. He K. Gunasekaran S. Self-assembled tetrahedral DNA nanostructures-based ultrasensitive label-free detection of ampicillin. Talanta 2022 243 123292 10.1016/j.talanta.2022.123292 35202837
    [Google Scholar]
  122. Blidar A. Hosu O. Feier B. Ştefan G. Bogdan D. Cristea C. Gold-based nanostructured platforms for oxytetracycline detection from milk by a “signal-on” aptasensing approach. Food Chem. 2022 371 131127 10.1016/j.foodchem.2021.131127 34649198
    [Google Scholar]
  123. Chen Y. Tian F. Hu S. Liu X. Development and evaluation of a newcastle disease virus-like particle vaccine expressing sars-cov-2 spike protein with protease-resistant and stability-enhanced modifications. Viruses 2024 16 12 1932 10.3390/v16121932 39772238
    [Google Scholar]
  124. Zidan Y.S. Abdel-Hamid R.H. Elshiekh R.M. El Gohary S.M. Effect of nanogold incorporation into polymethyl methacrylate denture bases on microbial activity in implant-retained mandibular overdentures. Int. J. Implant Dent. 2025 11 1 2 10.1186/s40729‑024‑00579‑2 39760976
    [Google Scholar]
  125. Wang J. Liu W. Liu Z. Yu X. Zhang H. Du S. Multimodal nanoenzyme-linked aptamer assay for Salmonella typhimurium based on catalysis and photothermal effect of PB@Au. Mikrochim. Acta 2025 192 1 52 10.1007/s00604‑024‑06917‑w 39751952
    [Google Scholar]
  126. Vishnevetskii D.V. Polyakova E.E. Andrianova Y.V. Mekhtiev A.R. Ivanova A.I. Averkin D.V. Alekseev V.G. Bykov A.V. Sulman M.G. L-Cysteine/Silver Nitrate/Iodate anions system: Peculiarities of supramolecular gel formation with and without visible-light exposure. Gels 2024 10 12 809 10.3390/gels10120809 39727567
    [Google Scholar]
  127. Li X. Hou X. Zhang S. Xiong J. Li Y. Miao W. Long-Circulating nanoemulsion with oxygen and drug co-delivery for potent photodynamic/antibiotic therapy against multidrug-resistant gram-negative bacterial infection. Int. J. Nanomedicine 2024 19 12205 12219 10.2147/IJN.S477278 39588256
    [Google Scholar]
  128. Korcoban D Huang LZY Elbourne A Li Q Wen X Chen D Caruso RA Electroless Ag nanoparticle deposition on TiO2 nanorod arrays, enhancing photocatalytic and antibacterial properties. J. Colloid Interface Sci. 2025 680 Pt B 146 156 10.1016/j.jcis.2024.11.079 39561642
    [Google Scholar]
  129. Ma S. Yao H. Si X. Huang Z. Wang R. Wan R. Tang Z. Wang G. Song W. Orally available dextran-aspirin nanomedicine modulates gut inflammation and microbiota homeostasis for primary colorectal cancer therapy. J. Control. Release 2024 370 528 542 10.1016/j.jconrel.2024.05.002 38705520
    [Google Scholar]
  130. Scanu M. Toto F. Petito V. Masi L. Fidaleo M. Puca P. Baldelli V. Reddel S. Vernocchi P. Pani G. Putignani L. Scaldaferri F. Del Chierico F. An integrative multi-omic analysis defines gut microbiota, mycobiota, and metabolic fingerprints in ulcerative colitis patients. Front. Cell. Infect. Microbiol. 2024 14 1366192 10.3389/fcimb.2024.1366192 38779566
    [Google Scholar]
  131. Karn R Biswas S Srimayee S Patel A Chauhan S Manna D Metal-Responsive fluorophore and amikacin-conjugated heparin for bacterial cell imaging and antibacterial applications. ACS Infectious Diseases 2025 May 9 11 5 1078 1091 10.1021/acsinfecdis.4c00740 39526654
    [Google Scholar]
  132. Şevik Eliçora S. Erdem D. Dinç A.E. Altunordu Kalaycı Ö. Hazer B. Yurdakan G. Külah C. Effects of polymer-based, silver nanoparticle-coated silicone splints on the nasal mucosa of rats. Eur. Arch. Otorhinolaryngol. 2017 274 3 1535 1541 10.1007/s00405‑016‑4394‑6 27864671
    [Google Scholar]
  133. Łuczak J.W. Palusińska M. Matak D. Pietrzak D. Nakielski P. Lewicki S. Grodzik M. Szymański Ł. The future of bone repair: Emerging technologies and biomaterials in bone regeneration. Int. J. Mol. Sci. 2024 25 23 12766 10.3390/ijms252312766 39684476
    [Google Scholar]
  134. Khalifa A.M. Elsheikh M.A. Khalifa A.M. Elnaggar Y.S.R. Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: A review article. J. Control. Release 2019 311-312 125 137 10.1016/j.jconrel.2019.08.034 31476342
    [Google Scholar]
  135. Puri A. Mohite P. Maitra S. Subramaniyan V. Kumarasamy V. Uti D.E. Sayed A.A. El-Demerdash F.M. Algahtani M. El-kott A.F. Shati A.A. Albaik M. Abdel-Daim M.M. Atangwho I.J. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed. Pharmacother. 2024 170 116083 10.1016/j.biopha.2023.116083 38163395
    [Google Scholar]
  136. Martínez A.A.E. Bergmann A.K. Tellkamp F. Schott-Verdugo S. Bouvain P. Steinhausen J. Bahr J. Kmietczyk V. Bencun M. Flögel U. Distler J.H.W. Krueger M. Völkers M. Czekelius C. Gohlke H. Temme S. Hesse J. Schrader J. CD63 as novel target for nanoemulsion-based 19 F MRI imaging and drug delivery to activated cardiac fibroblasts. Theranostics 2025 15 1 1 18 10.7150/thno.96990 39744226
    [Google Scholar]
  137. Wang K. Geng S. Wang F. Fang B. Qian H. Li Y. Zhou Y. Chen Y. Yu Z. Natural epigallocatechin-3-gallocarboxylate nanoformulation loaded doxorubicin to construct a novel and low cardiotoxicity chemotherapeutic drug for high-efficiency breast cancer therapy. J. Nanobiotechnology 2024 22 1 793 10.1186/s12951‑024‑03069‑0 39719646
    [Google Scholar]
  138. Jian C. Hong Y. Liu H. Yang Q. Zhao S. ROS-responsive quercetin-based polydopamine nanoparticles for targeting ischemic stroke by attenuating oxidative stress and neuroinflammation. Int. J. Pharm. 2025 669 125087 10.1016/j.ijpharm.2024.125087 39675536
    [Google Scholar]
  139. Shao L. Wang C. Xu G. Tu Z. Yu X. Weng C. Liu J. Jian Z. Utilizing reactive oxygen species-scavenging nanoparticles for targeting oxidative stress in the treatment of ischemic stroke: A review. Open Med. (Wars.) 2024 19 1 20241041 10.1515/med‑2024‑1041 39588390
    [Google Scholar]
  140. Yang Q. Li R. Hong Y. Liu H. Jian C. Zhao S. Curcumin-Loaded gelatin nanoparticles cross the blood-brain barrier to treat ischemic stroke by attenuating oxidative stress and neuroinflammation. Int. J. Nanomedicine 2024 19 11633 11649 10.2147/IJN.S487628 39553455
    [Google Scholar]
  141. Yang H. Tan H. Wen H. Xin P. Liu Y. Deng Z. Xu Y. Gao F. Zhang L. Ye Z. Zhang Z. Chen Y. Wang Y. Sun J. Lam J.W.Y. Zhao Z. Kwok R.T.K. Qiu Z. Tang B.Z. Recent progress in nanomedicine for the diagnosis and treatment of alzheimer’s diseases. ACS Nano 2024 18 50 33792 33826 10.1021/acsnano.4c11966 39625718
    [Google Scholar]
  142. Li N. Zhu A. Chen W. Li J. Pan L. Jiang Y. Wang X. Di L. Wang R. Nasal administration of Xingnaojing biomimetic nanoparticles for the treatment of ischemic stroke. Int. J. Pharm. 2024 666 124830 10.1016/j.ijpharm.2024.124830 39401581
    [Google Scholar]
  143. Lim S.H. Yee G.T. Khang D. Nanoparticle-Based combinational strategies for overcoming the blood-brain barrier and blood-tumor barrier. Int. J. Nanomedicine 2024 19 2529 2552 10.2147/IJN.S450853 38505170
    [Google Scholar]
  144. Sheikh K. Arasteh J. Tajabadi Ebrahimi M. Hesampour A. Membrane vesicles from lactobacillus acidophilus reduce intestinal inflammation and increase 5-HT in the substantia nigra of rats with parkinson’s disease. Arch. Med. Res. 2025 56 3 103143 10.1016/j.arcmed.2024.103143 39705862
    [Google Scholar]
  145. Zhang R. Yao X. Li Q. Li X. Ma Q. Huang W. Hu Y. Shi X. Yang Y. Liu H. Self-assembled nanoparticles of rapamycin prodrugs for the treatment of multiple sclerosis. J. Colloid Interface Sci. 2025 683 Pt 2 448 459 10.1016/j.jcis.2024.12.195 39740562
    [Google Scholar]
  146. Ibrahim Fouad G Mabrouk M El-Sayed SAM Abdelhameed MF Rizk MZ Beherei HH Berberine-loaded iron oxide nanoparticles alleviate cuprizone-induced astrocytic reactivity in a rat model of multiple sclerosis. Biometals 2025 Feb 38 1 203 229 10.1007/s10534‑024‑00648‑4 39543075 PMC11754386
    [Google Scholar]
  147. Sharmah B Afzal NU Loying R Roy A Kalita J Das J Manna P Glucose-Responsive insulin delivery via surface-functionalized titanium dioxide nanoparticles: A promising theragnostic against diabetes mellitus. ACS Applied Bio Materials 2025 8 1 475 487 10.1021/acsabm.4c01426 39718458
    [Google Scholar]
  148. Liu J. Zhang F. Shi X. The role of metal nanocarriers, liposomes and chitosan-based nanoparticles in diabetic retinopathy treatment: A review study. Int. J. Biol. Macromol. 2025 291 139017 10.1016/j.ijbiomac.2024.139017 39708854
    [Google Scholar]
  149. Abbasi M. Boka D.A. DeLoit H. Nanomaterial-enhanced microneedles: Emerging therapies for diabetes and obesity. Pharmaceutics 2024 16 10 1344 10.3390/pharmaceutics16101344 39458672
    [Google Scholar]
  150. Moskovitch O. Anaki A. Caller T. Gilburd B. Segal O. Gendelman O. Watad A. Mehrian-Shai R. Mintz Y. Segev S. Shoenfeld Y. Popovtzer R. Amital H. Halpert G. The potential of autologous patient-derived circulating extracellular vesicles to improve drug delivery in rheumatoid arthritis. Clin. Exp. Immunol. 2025 219 1 uxae101 10.1093/cei/uxae101 39756417
    [Google Scholar]
  151. Ji P. Qiu S. Huang J. Wang L. Wang Y. Wu P. Huo M. Shi J. Hydrolysis of 2D nanosheets reverses rheumatoid arthritis through anti-inflammation and osteogenesis. Adv. Mater. 2025 37 7 2415543 10.1002/adma.202415543 39726077
    [Google Scholar]
  152. Rathi G Shamkuwar PB Rathi K Ranazunjare R Kulkarni S Contemporary and prospective use of azathioprine (AZA) in viral, rheumatic, and dermatological disorders: A review of pharmacogenomic and nanotechnology applications. Naunyn Schmiedebergs Archives of Pharmacology 2025 Apr 398 4 3183 3197 10.1007/s00210‑024‑03569‑8 39495265
    [Google Scholar]
  153. Neun B.W. Potter T.M. Robinson C. Difilippantonio S. Edmondson E. Dobrovolskaia M.A. Analysis of nanoparticles’ potential to induce autoimmunity. Methods Mol. Biol. 2024 2789 121 127 10.1007/978‑1‑0716‑3786‑9_12 38506997
    [Google Scholar]
  154. Hamouda A.E.I. Filtjens J. Brabants E. Kancheva D. Debraekeleer A. Brughmans J. Jacobs L. Bardet P.M.R. Knetemann E. Lefesvre P. Allonsius L. Gontsarik M. Varela I. Crabbé M. Clappaert E.J. Cappellesso F. Caro A.A. Gordún Peiró A. Fredericq L. Hadadi E. Estapé Senti M. Schiffelers R. van Grunsven L.A. Aboubakar Nana F. De Geest B.G. Deschoemaeker S. De Koker S. Lambolez F. Laoui D. Intratumoral delivery of lipid nanoparticle-formulated mRNA encoding IL-21, IL-7, and 4-1BBL induces systemic anti-tumor immunity. Nat. Commun. 2024 15 1 10635 10.1038/s41467‑024‑54877‑9 39639025
    [Google Scholar]
  155. Saber S. Abdelhady R. Elhemely M. Elmorsy E. Hamad R. Abdel-Reheim M. El-kott A. AlShehri M. Morsy K. Negm S. Kira A. Nanoscale Systems for Local Activation of Hypoxia-Inducible Factor-1 Alpha: A New Approach in Diabetic Wound Management. Int. J. Nanomedicine 2024 19 13735 13762 10.2147/IJN.S497041 39723173
    [Google Scholar]
  156. Hsu Y.W. Ma L. Tang Y. Li M. Zhou C. Geng Y. Zhang C. Wang T. Guo W. Li M. Wang Y. The application of aptamers in the repair of bone, nerve, and vascular tissues. J. Mater. Chem. B Mater. Biol. Med. 2025 13 6 1872 1889 10.1039/D4TB02180K 39760465
    [Google Scholar]
  157. Jeong H. Subramanian K. Lee J.B. Byun H. Shin H. Yun J.H. Anti-inflammatory and osteoconductive multi-functional nanoparticles for the regeneration of an inflamed alveolar bone defect. Biomater. Sci. 2025 13 3 810 825 10.1039/D4BM01280A 39749408
    [Google Scholar]
  158. Durak S. Sutova H.E. Ceylan R. Aciksari A. Yetisgin A.A. Onder Tokuc E. Kutlu O. Karabas V.L. Cetinel S. A nanogel formulation of anti-vegf peptide for ocular neovascularization treatment. ACS Appl. Bio Mater. 2024 7 9 6001 6013 10.1021/acsabm.4c00585 39167547
    [Google Scholar]
  159. Gonzalez-Perez J. Lopera-Echavarría A.M. Arevalo-Alquichire S. Araque-Marín P. Londoño M.E. Development of a resveratrol nanoformulation for the treatment of diabetic retinopathy. Materials 2024 17 6 1420 10.3390/ma17061420 38541574
    [Google Scholar]
  160. Seah I. Zhao X. Lin Q. Liu Z. Su S.Z.Z. Yuen Y.S. Hunziker W. Lingam G. Loh X.J. Su X. Use of biomaterials for sustained delivery of anti-VEGF to treat retinal diseases. Eye (Lond.) 2020 34 8 1341 1356 10.1038/s41433‑020‑0770‑y 32001821
    [Google Scholar]
  161. Karati D. Mukherjee S. Dutta A. Ash D. Ganguly S.C. Acharya A. Basu B. Smart multifunctional nanoparticles in cancer theranostics: Progress and prospect. Pharm. Nanotechnol. 2024 38756071
    [Google Scholar]
  162. Zhang L. Fan Y. Yang Z. Wong C.Y. Yang M. A novel reactive oxygen species nano-amplifier for tumor-targeted photoacoustic imaging and synergistic therapy. J. Colloid Interface Sci. 2025 681 331 343 10.1016/j.jcis.2024.11.183 39612665
    [Google Scholar]
  163. Barenholz Y.C. Doxil® — The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012 160 2 117 134 10.1016/j.jconrel.2012.03.020 22484195
    [Google Scholar]
  164. Meyerhoff A. U.S. Food and Drug Administration approval of AmBisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin. Infect. Dis. 1999 28 1 42 48 10.1086/515085 10028069
    [Google Scholar]
  165. Rytting M. Peg-asparaginase for acute lymphoblastic leukemia. Expert Opin. Biol. Ther. 2010 10 5 833 839 10.1517/14712591003769808 20345338
    [Google Scholar]
  166. Müller H.J. Beier R. da Palma J. Lanvers C. Ahlke E. von Schütz V. Gunkel M. Horn A. Schrappe M. Henze G. Kranz K. Boos J. PEG-asparaginase (Oncaspar) 2500 U/m2 BSA in reinduction and relapse treatment in the ALL/NHL-BFM protocols. Cancer Chemother. Pharmacol. 2002 49 2 149 154 10.1007/s00280‑001‑0391‑5 11862429
    [Google Scholar]
  167. Dhib-Jalbut S. Glatiramer acetate (Copaxone®) therapy for multiple sclerosis. Pharmacol. Ther. 2003 98 2 245 255 10.1016/S0163‑7258(03)00036‑6 12725872
    [Google Scholar]
  168. Babaesfahani A Patel P Bajaj T Glatiramer. StatPearls [Internet] 2024 StatPearls Publishing Treasure Island (FL) 31082051
    [Google Scholar]
  169. Skuljec J. Sardari M. Su C. Müller-Dahlke J. Singh V. Janjic M.M. Kleinschnitz C. Pul R. Glatiramer Acetate Modifies the Immune Profiles of Monocyte-Derived Dendritic Cells in vitro Without Affecting Their Generation. Int. J. Mol. Sci. 2025 26 7 3013 10.3390/ijms26073013 40243628
    [Google Scholar]
  170. Kundranda M. Niu J. Albumin-bound paclitaxel in solid tumors: Clinical development and future directions. Drug Des. Devel. Ther. 2015 9 3767 3777 10.2147/DDDT.S88023 26244011
    [Google Scholar]
  171. Blair H.A. Deeks E.D. Albumin-Bound Paclitaxel: A Review in Non-Small Cell Lung Cancer. Drugs 2015 75 17 2017 2024 10.1007/s40265‑015‑0484‑9 26541764
    [Google Scholar]
  172. Qu N. Song K. Ji Y. Liu M. Chen L. Lee R. Teng L. Albumin Nanoparticle-Based Drug Delivery Systems. Int. J. Nanomedicine 2024 19 6945 6980 10.2147/IJN.S467876 39005962
    [Google Scholar]
  173. Karami E. Mesbahi Moghaddam M. Kazemi-Lomedasht F. Use of Albumin for Drug Delivery as a Diagnostic and Therapeutic Tool. Curr. Pharm. Biotechnol. 2024 25 6 676 693 10.2174/1389201024666230807161200 37550918
    [Google Scholar]
  174. Liu L.H. Liu Y.F. Zhang H.B. Liu X.L. Zhang H.W. Huang B. Lin F. Li W.H. A Novel ANG-BSA/BCNU/ICG MNPs Integrated for Targeting Therapy of Glioblastoma. Technol. Cancer Res. Treat. 2024 23 10.1177/15330338241281321 39444362
    [Google Scholar]
  175. Provenzano R. Schiller B. Rao M. Coyne D. Brenner L. Pereira B.J.G. Ferumoxytol as an intravenous iron replacement therapy in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2009 4 2 386 393 10.2215/CJN.02840608 19176796
    [Google Scholar]
  176. Lu M. Cohen M.H. Rieves D. Pazdur R. FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am. J. Hematol. 2010 85 5 315 319 10.1002/ajh.21656 20201089
    [Google Scholar]
  177. Huang Y. Hsu J.C. Koo H. Cormode D.P. Repurposing ferumoxytol: Diagnostic and therapeutic applications of an FDA-approved nanoparticle. Theranostics 2022 12 2 796 816 10.7150/thno.67375 34976214
    [Google Scholar]
  178. Singh A. Patel T. Hertel J. Bernardo M. Kausz A. Brenner L. Safety of ferumoxytol in patients with anemia and CKD. Am. J. Kidney Dis. 2008 52 5 907 915 10.1053/j.ajkd.2008.08.001 18824288
    [Google Scholar]
  179. Pai A.B. Nielsen J.C. Kausz A. Miller P. Owen J.S. Plasma pharmacokinetics of two consecutive doses of ferumoxytol in healthy subjects. Clin. Pharmacol. Ther. 2010 88 2 237 242 10.1038/clpt.2010.80 20592725
    [Google Scholar]
  180. Hampilos P.J. Luppi A. Ghoshhajra B. Gee M.S. Harisinghani M. Hedgire S. Selective use of ferumoxytol-enhanced magnetic resonance angiography in patients with renal insufficiency: Insights from a pilot study. Int. J. Cardiovasc. Imaging 2025 10.1007/s10554‑025‑03337‑6 39870959
    [Google Scholar]
  181. Bashir M.R. Bhatti L. Marin D. Nelson R.C. Emerging applications for ferumoxytol as a contrast agent in MRI. J. Magn. Reson. Imaging 2015 41 4 884 898 10.1002/jmri.24691 24974785
    [Google Scholar]
  182. Mukundan S. Steigner M.L. Hsiao L.L. Malek S.K. Tullius S.G. Chin M.S. Siedlecki A.M. Ferumoxytol-Enhanced Magnetic Resonance Imaging in Late-Stage CKD. Am. J. Kidney Dis. 2016 67 6 984 988 10.1053/j.ajkd.2015.12.017 26786296
    [Google Scholar]
  183. Long M. Li Y. He H. Gu N. The Story of Ferumoxytol: Synthesis Production, Current Clinical Applications, and Therapeutic Potential. Adv. Healthc. Mater. 2024 13 6 10.1002/adhm.202302773 37931150
    [Google Scholar]
  184. Dósa E. Tuladhar S. Muldoon L.L. Hamilton B.E. Rooney W.D. Neuwelt E.A. MRI using ferumoxytol improves the visualization of central nervous system vascular malformations. Stroke 2011 42 6 1581 1588 10.1161/STROKEAHA.110.607994 21493906
    [Google Scholar]
  185. Alzahrani A.M. Alnuhait M.A. Alqahtani T. The Clinical Safety and Efficacy of Cytarabine and Daunorubicin Liposome ( CPX -351) in Acute Myeloid Leukemia Patients: A Systematic Review. Cancer Rep. 2025 8 5 e70199 10.1002/cnr2.70199 40348597
    [Google Scholar]
  186. Issa G.C. Kantarjian H.M. Xiao L. Ning J. Alvarado Y. Borthakur G. Daver N. DiNardo C.D. Jabbour E. Bose P. Jain N. Kadia T.M. Naqvi K. Pemmaraju N. Takahashi K. Verstovsek S. Andreeff M. Kornblau S.M. Estrov Z. Ferrajoli A. Garcia-Manero G. Ohanian M. Wierda W.G. Ravandi F. Cortes J.E. Phase II trial of CPX-351 in patients with acute myeloid leukemia at high risk for induction mortality. Leukemia 2020 34 11 2914 2924 10.1038/s41375‑020‑0916‑8 32546726
    [Google Scholar]
  187. Imai S. Kitada A. Ogura A. Akagi M. Hasegawa M. Vasilinin G. Marier J.F. Wang Q. Ichikawa T. Kusano K. Population pharmacokinetic and exposure-response analysis to support a dosing regimen of CPX-351 (NS-87) in Japanese adult and pediatric patients with untreated high-risk acute myeloid leukemia. Drug Metab. Pharmacokinet. 2025 60 101038 10.1016/j.dmpk.2024.101038 39729780
    [Google Scholar]
  188. Usuki K. Miyamoto T. Yamauchi T. Ando K. Ogawa Y. Onozawa M. Yamauchi T. Kiyoi H. Yokota A. Ikezoe T. Katsuoka Y. Takada S. Aotsuka N. Morita Y. Ishikawa T. Asada N. Ota S. Dohi A. Morimoto K. Imai S. Kishimoto U. Akashi K. Miyazaki Y. Kuroda J. Iida H. Sekiguchi N. Takenaka K. Kawakita T. Imada K. Suzuki T. Miyawaki S. Usui N. Asou N. Muta M. Tsuruda K. Taniwaki M. Fujita M. Makishima H. Nakanishi Y. Tajima M. Masutomi Y. Chiba M. Hokazomo M. Hirooka S. Mikasa T. Okamoto M. Kawase A. Yamada A. Shimizu Y. Isogaya K. Ichikawa T. A phase 1/2 study of NS-87/CPX-351 (cytarabine and daunorubicin liposome) in Japanese patients with high-risk acute myeloid leukemia. Int. J. Hematol. 2024 119 6 647 659 10.1007/s12185‑024‑03733‑z 38532078
    [Google Scholar]
  189. Pagano L. Danesi R. Benedetti E. Morgagni R. Romani L. Venditti A. The role of cpx-351 in the acute myeloid leukemia treatment landscape: Mechanism of action, efficacy, and safety. Drugs 2025 85 7 855 866 10.1007/s40265‑025‑02194‑w 40347359
    [Google Scholar]
  190. Lancet J.E. Uy G.L. Cortes J.E. Newell L.F. Lin T.L. Ritchie E.K. Stuart R.K. Strickland S.A. Hogge D. Solomon S.R. Stone R.M. Bixby D.L. Kolitz J.E. Schiller G.J. Wieduwilt M.J. Ryan D.H. Hoering A. Banerjee K. Chiarella M. Louie A.C. Medeiros B.C. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J. Clin. Oncol. 2018 36 26 2684 2692 10.1200/JCO.2017.77.6112 30024784
    [Google Scholar]
  191. Douer D. Efficacy and Safety of Vincristine Sulfate Liposome Injection in the Treatment of Adult Acute Lymphocytic Leukemia. Oncologist 2016 21 7 840 847 10.1634/theoncologist.2015‑0391 27328933
    [Google Scholar]
  192. Silverman J.A. Deitcher S.R. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol. 2013 71 3 555 564 10.1007/s00280‑012‑2042‑4 23212117
    [Google Scholar]
  193. Silverman J.A. Reynolds L. Deitcher S.R. Pharmacokinetics and pharmacodynamics of vincristine sulfate liposome injection (VSLI) in adults with acute lymphoblastic leukemia. J. Clin. Pharmacol. 2013 53 11 1139 1145 10.1002/jcph.155 23907766
    [Google Scholar]
  194. Lu L. Liu Y. Chen X. Xu F. Zhang Q. Yin Z. Yuwen L. Magnetic Field/Ultrasound-Responsive Fe3O4 Microbubbles for Targeted Mechanical/Catalytic Removal of Bacterial Biofilms. Nanomaterials 2024 14 22 1830 10.3390/nano14221830 39591070
    [Google Scholar]
  195. Li LS Chen PW Zhao XJ Nuclear-targeted smart nanoplatforms featuring double-shell hollow mesoporous copper sulfide coated with manganese dioxide synergistically potentiate chemotherapy and immunotherapy in hepatocellular carcinoma cells. Journal of Colloid and Interface Science 2024 Nov 680 10.1016/j.jcis.2024.11.003
    [Google Scholar]
  196. Zhang D. Zhang M. Fan H. Sun R. Liu J. Ma W. FA-PEG Modified ZIF(Mn) Nanoparticles Loaded with Baicalin for Imaging-Guided Treatment of Melanoma in Mice. Int. J. Nanomedicine 2024 19 13593 13613 10.2147/IJN.S493185 39723175
    [Google Scholar]
  197. Safwat S. Ishak R.A.H. Hathout R.M. Mortada N.D. Bioinspired caffeic acid-laden milk protein-based nanoparticles targeting folate receptors for breast cancer treatment. Ther. Deliv. 2025 16 1 43 61 10.1080/20415990.2024.2433938 39589423
    [Google Scholar]
  198. Soroudi S. Jaafari M.R. Arabi L. Lipid nanoparticle (LNP) mediated mRNA delivery in cardiovascular diseases: Advances in genome editing and CAR T cell therapy. J. Control. Release 2024 372 113 140 10.1016/j.jconrel.2024.06.023 38876358
    [Google Scholar]
  199. Hasanzadeh A. Hamblin M.R. Kiani J. Noori H. Hardie J.M. Karimi M. Shafiee H. Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? Nano Today 2022 47 101665 10.1016/j.nantod.2022.101665 37034382
    [Google Scholar]
  200. Mahdi W.A. Alhowyan A. Obaidullah A.J. Intelligence analysis of drug nanoparticles delivery efficiency to cancer tumor sites using machine learning models. Sci. Rep. 2025 15 1 1017 10.1038/s41598‑024‑84450‑9 39762427
    [Google Scholar]
  201. Wang W. Chen K. Jiang T. Wu Y. Wu Z. Ying H. Yu H. Lu J. Lin J. Ouyang D. Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery. Nat. Commun. 2024 15 1 10804 10.1038/s41467‑024‑55072‑6 39738043
    [Google Scholar]
  202. Alsabbagh Y. Erben Y. Vandenberg J. Farres H. New Trends of Personalized Medicine in the Management of Abdominal Aortic Aneurysm: A Review. J. Pers. Med. 2024 14 12 1148 10.3390/jpm14121148 39728062
    [Google Scholar]
  203. Chen S. Gao F. Zhao L. Liao D. Ge Y. Tan B. Application and development of biosensing strategies for the analysis of the activity of the tumour-associated enzyme FEN1. Talanta 2025 286 127527 10.1016/j.talanta.2025.127527 39765083
    [Google Scholar]
  204. Han Y. Zhang P. Duan X. Gao X. Gao L. Advances in precise synthesis of metal nanoclusters and their applications in electrochemical biosensing of disease biomarkers. Nanoscale 2025 17 7 3616 3634 10.1039/D4NR04714A 39744955
    [Google Scholar]
  205. Hasannezhad H. Bakhshi A. Mozafari M.R. Naghib S.M. A review of chitosan role in milk bioactive-based drug delivery, smart packaging and biosensors: Recent advances and developments. Int. J. Biol. Macromol. 2025 294 139248 10.1016/j.ijbiomac.2024.139248 39740715
    [Google Scholar]
  206. Yang Z. Zhang J. Wang C. Yu F. Yu W. Zhao Z. A glucose responsive multifunctional hydrogel with antibacterial properties and real-time monitoring for diabetic wound treatment. Biomater. Sci. 2024 13 1 275 286 10.1039/D4BM01097C 39541248
    [Google Scholar]
  207. Liu J. Yi X. Zhang J. Yao Y. Panichayupakaranant P. Chen H. Recent advances in the drugs and glucose-responsive drug delivery systems for the treatment of diabetes: A systematic review. Pharmaceutics 2024 16 10 1343 10.3390/pharmaceutics16101343 39458671
    [Google Scholar]
  208. Mu Q. Jiang G. Chen L. Zhou H. Fourches D. Tropsha A. Yan B. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem. Rev. 2014 114 15 7740 7781 10.1021/cr400295a 24927254
    [Google Scholar]
  209. Huang L. Mao X. Li J. Li Q. Shen J. Liu M. Fan C. Tian Y. Nanoparticle Spikes Enhance Cellular Uptake via Regulating Myosin IIA Recruitment. ACS Nano 2023 17 10 9155 9166 10.1021/acsnano.2c12660 37171255
    [Google Scholar]
  210. Li Y. Gu N. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: A simulation study. J. Phys. Chem. B 2010 114 8 2749 2754 10.1021/jp904550b 20146444
    [Google Scholar]
  211. Darvish Ganji M. Tavassoli Larijani H. Alamol-hoda R. Mehdizadeh M. First-principles and Molecular Dynamics simulation studies of functionalization of Au32 golden fullerene with amino acids. Sci. Rep. 2018 8 1 11400 10.1038/s41598‑018‑29887‑5 30061669
    [Google Scholar]
  212. Yadav N.P. Yadav T. Pattanaik S. Shakerzadeh E. Chakroborty S. Xiaofeng C. Vishwkarma A.K. Pathak A. Malviya J. Pandey F.P. Understanding the Interaction Mechanism between the Epinephrine Neurotransmitter and Small Gold Nanoclusters (Aun; n = 6, 8, and 10): A Computational Insight. ACS Omega 2024 9 3 acsomega.3c06382 10.1021/acsomega.3c06382 38284044
    [Google Scholar]
  213. Ghosh R. Satarifard V. Lipowsky R. Different pathways for engulfment and endocytosis of liquid droplets by nanovesicles. Nat. Commun. 2023 14 1 615 10.1038/s41467‑023‑35847‑z 36739277
    [Google Scholar]
  214. Li Y. Zhang M. Zhang Y. Niu X. Liu Z. Yue T. Zhang W. A computational study of the influence of nanoparticle shape on clathrin-mediated endocytosis. J. Mater. Chem. B Mater. Biol. Med. 2023 11 27 6319 6334 10.1039/D3TB00322A 37232123
    [Google Scholar]
  215. Grzetic D.J. Hamilton N.B. Shelley J.C. Coarse-Grained Simulation of mRNA-Loaded Lipid Nanoparticle Self-Assembly. Mol. Pharm. 2024 21 9 4747 4753 10.1021/acs.molpharmaceut.4c00216 39145436
    [Google Scholar]
  216. Yuan D. He H. Wu Y. Fan J. Cao Y. Physiologically based pharmacokinetic modeling of nanoparticles. J. Pharm. Sci. 2019 108 1 58 72 10.1016/j.xphs.2018.10.037 30385282
    [Google Scholar]
  217. Ozbek O. Genc D.E. O Ulgen K. Advances in physiologically based pharmacokinetic (pbpk) modeling of nanomaterials. ACS Pharmacol. Transl. Sci. 2024 7 8 2251 2279 10.1021/acsptsci.4c00250 39144562
    [Google Scholar]
  218. Cao X. Li K. Wang J. Xie X. Sun L. PBPK model of pegylated liposomal doxorubicin to simultaneously predict the concentration–time profile of encapsulated and free doxorubicin in tissues. Drug Deliv. Transl. Res. 2025 15 4 1342 1362 10.1007/s13346‑024‑01680‑0 39103592
    [Google Scholar]
  219. Vasalou C. Harding J. Jones R.D.O. Hariparsad N. McGinnity D.F. Interspecies evaluation of a physiologically based pharmacokinetic model to predict the biodistribution dynamics of dendritic nanoparticles. PLoS One 2023 18 5 e0285798 10.1371/journal.pone.0285798 37195991
    [Google Scholar]
  220. Hickman R.J. Bannigan P. Bao Z. Aspuru-Guzik A. Allen C. Self-driving laboratories: A paradigm shift in nanomedicine development. Matter 2023 6 4 1071 1081 10.1016/j.matt.2023.02.007 37020832
    [Google Scholar]
  221. Zaslavsky J. Bannigan P. Allen C. Re-envisioning the design of nanomedicines: Harnessing automation and artificial intelligence. Expert Opin. Drug Deliv. 2023 20 2 241 257 10.1080/17425247.2023.2167978 36644850
    [Google Scholar]
  222. Yang L. Gong L. Wang P. Zhao X. Zhao F. Zhang Z. Li Y. Huang W. Recent Advances in Lipid Nanoparticles for Delivery of mRNA. Pharmaceutics 2022 14 12 2682 10.3390/pharmaceutics14122682 36559175
    [Google Scholar]
  223. Richarz A.N. Avramopoulos A. Benfenati E. Gajewicz A. Golbamaki Bakhtyari N. Leonis G. Marchese Robinson R.L. Papadopoulos M.G. Cronin M.T.D. Puzyn T. Compilation of Data and Modelling of Nanoparticle Interactions and Toxicity in the NanoPUZZLES Project. Adv. Exp. Med. Biol. 2017 947 303 324 10.1007/978‑3‑319‑47754‑1_10 28168672
    [Google Scholar]
  224. Bossa C. Andreoli C. Bakker M. Barone F. De Angelis I. Jeliazkova N. Nymark P. Battistelli C.L. FAIRification of nanosafety data to improve applicability of (Q)SAR approaches: A case study on in vitro Comet assay genotoxicity data. Comput. Toxicol. 2021 20 100190 10.1016/j.comtox.2021.100190 34820591
    [Google Scholar]
  225. Akhtar M. Nehal N. Gull A. Parveen R. Khan S. Khan S. Ali J. Explicating the transformative role of artificial intelligence in designing targeted nanomedicine. Expert Opin. Drug Deliv. 2025 22 7 971 991 10.1080/17425247.2025.2502022 40321117
    [Google Scholar]
  226. Karimi Jirandehi A. Asgari R. Keshavarz Shahbaz S. Rezaei N. Nanomedicine marvels: Crafting the future of cancer therapy with innovative statin nano-formulation strategies. Nanoscale Adv. 2024 6 23 5748 5772 10.1039/D4NA00808A 39478996
    [Google Scholar]
  227. Binnebose A.M. Mullis A.S. Haughney S.L. Narasimhan B. Bellaire B.H. Nanotherapeutic delivery of antibiotic cocktail enhances intra-macrophage killing of Mycobacterium marinum. Front. Antibiot. 2023 2 1162941 10.3389/frabi.2023.1162941 39816663
    [Google Scholar]
  228. Sumaila M. Kumar P. Ubanako P. Adeyemi S.A. Choonara Y.E. Dual Rifampicin and Isoniazid Mannose-Decorated Lipo- polysaccharide Nanospheres for Macrophage- Targeted Lung Delivery. Curr. Drug Deliv. 2023 20 10 1487 1503 10.2174/1567201819666220812092556 35959905
    [Google Scholar]
  229. Peng C. Luan H. Shang Q. Xiang W. Yasin P. Song X. Mannosamine-Modified Poly(lactic- co -glycolic acid)-Polyethylene Glycol Nanoparticles for the Targeted Delivery of Rifapentine and Isoniazid in Tuberculosis Therapy. Bioconjug. Chem. 2025 36 5 1021 1033 10.1021/acs.bioconjchem.5c00062 40262736
    [Google Scholar]
  230. Shofolawe-Bakare O. Toragall V.B. Hulugalla K. Mayatt R. Iammarino P. Bentley J.P. Smith A.E. Werfel T. Glycopolymeric Nanoparticles Block Breast Cancer Growth by Inhibiting Efferocytosis in the Tumor Microenvironment. ACS Appl. Nano Mater. 2024 7 24 28851 28863 10.1021/acsanm.4c06534 40443825
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501393535250903071153
Loading
/content/journals/cdt/10.2174/0113894501393535250903071153
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test