Skip to content
2000
image of Exploring the Therapeutic Potential of Plant-Based Natural Products in Combating Aging

Abstract

Aging is a complex biological process marked by progressive cellular and tissue decline, leading to an increased risk of age-related diseases. Plant-based natural compounds, including polyphenols, flavonoids, carotenoids, alkaloids, and terpenoids, have gained attention for their potential in mitigating aging-related damage through antioxidant, anti-inflammatory, and cellular repair mechanisms. The review identified that plant-derived bioactive compounds target key pathways involved in aging, including Sirtuins (SIRT1), AMP-activated protein kinase (AMPK), and Nuclear Factor-kappa B (NF-κB). These compounds address key hallmarks of aging, such as oxidative stress, mitochondrial dysfunction, cellular senescence, and chronic inflammation. Evidence suggests their potential in preventing or delaying age-related disorders, including neurodegenerative diseases, cardiovascular conditions, and skin aging. Plant-derived compounds offer a promising alternative to synthetic anti-aging interventions due to their efficacy, safety, and sustainability. However, challenges such as low bioavailability and limited clinical validation must be addressed. Advances in drug delivery systems and comprehensive clinical trials are critical to realizing their full therapeutic potential. Plant-based bioactive compounds represent a significant opportunity for developing safer and more sustainable anti-aging therapies. Continued research is essential to overcome existing limitations and facilitate the integration of these approaches into mainstream healthcare practices.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501384653250903110249
2025-09-16
2025-10-24
Loading full text...

Full text loading...

References

  1. Das G. Kameswaran S. Ramesh B. Bangeppagari M. Nath R. Das Talukdar A. Shin H.S. Patra J.K. Anti-Aging effect of traditional plant-based food: An overview. Foods 2024 13 23 3785 10.3390/foods13233785 39682858
    [Google Scholar]
  2. Zhang S. Duan E. Fighting against skin aging: The way from bench to bedside. Cell Transplant. 2018 27 5 729 738 10.1177/0963689717725755 29692196
    [Google Scholar]
  3. Xue F. Li X. Qin L. Liu X. Li C. Adhikari B. Anti-aging properties of phytoconstituents and phyto-nanoemulsions and their application in managing aging-related diseases. Adv. Drug Deliv. Rev. 2021 176 113886 10.1016/j.addr.2021.113886 34314783
    [Google Scholar]
  4. Reuter S. Gupta S.C. Chaturvedi M.M. Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010 49 11 1603 1616 10.1016/j.freeradbiomed.2010.09.006 20840865
    [Google Scholar]
  5. Mukherjee P.K. Maity N. Nema N.K. Sarkar B.K. Bioactive compounds from natural resources against skin aging. Phytomedicine 2011 19 1 64 73 10.1016/j.phymed.2011.10.003 22115797
    [Google Scholar]
  6. Payne A. Nahashon S. Taka E. Adinew G.M. Soliman K.F.A. Epigallocatechin-3-Gallate (EGCG): New therapeutic perspectives for neuroprotection, aging, and neuroinflammation for the modern age. Biomolecules 2022 12 3 371 10.3390/biom12030371 35327563
    [Google Scholar]
  7. Burtner C.R. Kennedy B.K. Progeria syndromes and ageing: What is the connection? Nat. Rev. Mol. Cell Biol. 2010 11 8 567 578 10.1038/nrm2944 20651707
    [Google Scholar]
  8. Allen J.C. Toapanta F.R. Chen W. Tennant S.M. Understanding immunosenescence and its impact on vaccination of older adults. Vaccine 2020 38 52 8264 8272 10.1016/j.vaccine.2020.11.002 33229108
    [Google Scholar]
  9. Muñoz-Espín D. Serrano M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014 15 7 482 496 10.1038/nrm3823 24954210
    [Google Scholar]
  10. López-Otín C. Blasco M.A. Partridge L. Serrano M. Kroemer G. The hallmarks of aging. Cell 2013 153 6 1194 1217 10.1016/j.cell.2013.05.039 23746838
    [Google Scholar]
  11. Bjørklund G. Shanaida M. Lysiuk R. Butnariu M. Peana M. Sarac I. Strus O. Smetanina K. Chirumbolo S. Natural compounds and products from an anti-aging perspective. Molecules 2022 27 20 7084 10.3390/molecules27207084 36296673
    [Google Scholar]
  12. Cadenas E. Davies K.J.A. Mitochondrial free radical generation, oxidative stress, and aging11This article is dedicated to the memory of our dear friend, colleague, and mentor Lars Ernster (1920–1998), in gratitude for all he gave to us. Free Radic. Biol. Med. 2000 29 3-4 222 230 10.1016/S0891‑5849(00)00317‑8 11035250
    [Google Scholar]
  13. Valko M. Leibfritz D. Moncol J. Cronin M.T.D. Mazur M. Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007 39 1 44 84 10.1016/j.biocel.2006.07.001 16978905
    [Google Scholar]
  14. Jones-Weinert C. Mainz L. Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat. Rev. Mol. Cell Biol. 2024 ••• 1 7 39614014
    [Google Scholar]
  15. Larsson LG Oncogene-and tumor suppressor gene-mediated suppression of cellular senescence. Semin. cancer biol 2011 21 6 367 10.1016/j.semcancer.2011.10.005
    [Google Scholar]
  16. Hartl F.U. Bracher A. Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature 2011 475 7356 324 332 10.1038/nature10317 21776078
    [Google Scholar]
  17. Horvath S. Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018 19 6 371 384 10.1038/s41576‑018‑0004‑3 29643443
    [Google Scholar]
  18. Blanpain C. Fuchs E. Epidermal stem cells of the skin. Annu. Rev. Cell Dev. Biol. 2006 22 1 339 373 10.1146/annurev.cellbio.22.010305.104357 16824012
    [Google Scholar]
  19. Pu S.Y. Huang Y.L. Pu C.M. Kang Y.N. Hoang K.D. Chen K.H. Chen C. Effects of oral collagen for skin anti-aging: A systematic review and meta-analysis. Nutrients 2023 15 9 2080 10.3390/nu15092080 37432180
    [Google Scholar]
  20. Velarde M.C. Demaria M. Targeting senescent cells: Possible implications for delaying skin aging: a mini-review. Gerontology 2016 62 5 513 518 10.1159/000444877 27031122
    [Google Scholar]
  21. Farage M.A. Miller K.W. Elsner P. Maibach H.I. Characteristics of the aging skin. Adv. Wound Care (New Rochelle) 2013 2 1 5 10 10.1089/wound.2011.0356 24527317
    [Google Scholar]
  22. Quan T. Human skin aging and the anti-aging properties of retinol. Biomolecules 2023 13 11 1614 10.3390/biom13111614 38002296
    [Google Scholar]
  23. Oshima J. Sidorova J.M. Monnat R.J. Jr Werner syndrome: Clinical features, pathogenesis and potential therapeutic interventions. Ageing Res. Rev. 2017 33 105 114 10.1016/j.arr.2016.03.002 26993153
    [Google Scholar]
  24. Edwards D.N. Orren D.K. Machwe A. Strand exchange of telomeric DNA catalyzed by the Werner syndrome protein (WRN) is specifically stimulated by TRF2. Nucleic Acids Res. 2014 42 12 7748 7761 10.1093/nar/gku454 24880691
    [Google Scholar]
  25. Lee J.W. Harrigan J. Opresko P.L. Bohr V.A. Pathways and functions of the Werner syndrome protein. Mech. Ageing Dev. 2005 126 1 79 86 10.1016/j.mad.2004.09.011 15610765
    [Google Scholar]
  26. Cisneros B. García-Aguirre I. De Ita M. Arrieta-Cruz I. Rosas-Vargas H. Hutchinson-Gilford progeria syndrome: Cellular mechanisms and therapeutic perspectives. Arch. Med. Res. 2023 54 5 102837 10.1016/j.arcmed.2023.06.002 37390702
    [Google Scholar]
  27. Ahmed M.S. Ikram S. Bibi N. Mir A. Hutchinson–Gilford progeria syndrome: A premature aging disease. Mol. Neurobiol. 2018 55 5 4417 4427 28660486
    [Google Scholar]
  28. Zhao X.N. Song H.P. Yang F. Wu D.J. Gong W.Q. Zhang Y. Sun X. Zheng M.J. Ultrasonic characteristics of cardiovascular changes in children with hutchinson–gilford progeria syndrome: A comparative study with normal children and aging people. BioMed Res. Int. 2020 2020 1 9631851 10.1155/2020/9631851 32382582
    [Google Scholar]
  29. de Boer J. Andressoo J.O. de Wit J. Huijmans J. Beems R.B. van Steeg H. Weeda G. van der Horst G.T.J. van Leeuwen W. Themmen A.P.N. Meradji M. Hoeijmakers J.H.J. Premature aging in mice deficient in DNA repair and transcription. Science 2002 296 5571 1276 1279 10.1126/science.1070174 11950998
    [Google Scholar]
  30. Palmer AK Kirkland JL Age-related disease: Diabetes. Aging Academic Press. 2024
    [Google Scholar]
  31. Kalyani R.R. Golden S.H. Cefalu W.T. Diabetes and aging: Unique considerations and goals of care. Diabetes Care 2017 40 4 440 443 10.2337/dci17‑0005 28325794
    [Google Scholar]
  32. Chang A.M. Halter J.B. Aging and insulin secretion. Am. J. Physiol. Endocrinol. Metab. 2003 284 1 E7 E12 10.1152/ajpendo.00366.2002 12485807
    [Google Scholar]
  33. Narasimhan A. Flores R.R. Robbins P.D. Niedernhofer L.J. Role of cellular senescence in type II diabetes. Endocrinology 2021 162 10 bqab136 10.1210/endocr/bqab136 34363464
    [Google Scholar]
  34. Miki Y. Holton J.L. Wakabayashi K. Autophagy in neurodegeneration and aging. Aging (Albany NY) 2018 10 12 3632 3633 10.18632/aging.101652 30428452
    [Google Scholar]
  35. Kim D.K. Lim H.S. Kawasaki I. Shim Y.H. Vaikath N.N. El-Agnaf O.M.A. Lee H.J. Lee S.J. Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function. Autophagy 2016 12 10 1849 1863 10.1080/15548627.2016.1207014 27485532
    [Google Scholar]
  36. Hur E.M. Lee B.D. LRRK2 at the crossroad of aging and parkinson’s disease. Genes 2021 12 4 505 10.3390/genes12040505 33805527
    [Google Scholar]
  37. Collier T.J. Kanaan N.M. Kordower J.H. Aging and Parkinson’s disease: Different sides of the same coin? Mov. Disord. 2017 32 7 983 990 10.1002/mds.27037 28520211
    [Google Scholar]
  38. Cortes-Canteli M. Iadecola C. Alzheimer’s disease and vascular aging: JACC focus seminar. J. Am. Coll. Cardiol. 2020 75 8 942 951 10.1016/j.jacc.2019.10.062 32130930
    [Google Scholar]
  39. Ionescu-Tucker A. Cotman C.W. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol. Aging 2021 107 86 95 10.1016/j.neurobiolaging.2021.07.014 34416493
    [Google Scholar]
  40. Mecocci P. Boccardi V. Cecchetti R. Bastiani P. Scamosci M. Ruggiero C. Baroni M. A long journey into aging, brain aging, and Alzheimer’s disease following the oxidative stress tracks. J. Alzheimers Dis. 2018 62 3 1319 1335 10.3233/JAD‑170732 29562533
    [Google Scholar]
  41. Zhang W. Song M. Qu J. Liu G.H. Epigenetic modifications in cardiovascular aging and diseases. Circ. Res. 2018 123 7 773 786 10.1161/CIRCRESAHA.118.312497 30355081
    [Google Scholar]
  42. Paneni F. Diaz Cañestro C. Libby P. Lüscher T.F. Camici G.G. The aging cardiovascular system: Understanding it at the cellular and clinical levels. J. Am. Coll. Cardiol. 2017 69 15 1952 1967 10.1016/j.jacc.2017.01.064 28408026
    [Google Scholar]
  43. Zhang W. Chen Y. Wang Y. Liu P. Zhang M. Zhang C. Hu F.B. Hui R. Short telomere length in blood leucocytes contributes to the presence of atherothrombotic stroke and haemorrhagic stroke and risk of post-stroke death. Clin. Sci. (Lond.) 2013 125 1 27 36 10.1042/CS20120691 23323942
    [Google Scholar]
  44. Cesare A.J. Karlseder J. A three-state model of telomere control over human proliferative boundaries. Curr. Opin. Cell Biol. 2012 24 6 731 738 10.1016/j.ceb.2012.08.007 22947495
    [Google Scholar]
  45. Deng R. Wang F. Wang L. Xiong L. Shen X. Song H. Advances in plant polysaccharides as antiaging agents: effects and signaling mechanisms. J. Agric. Food Chem. 2023 71 19 7175 7191 10.1021/acs.jafc.3c00493 37155561
    [Google Scholar]
  46. Ho C.Y. Dreesen O. Faces of cellular senescence in skin aging. Mech. Ageing Dev. 2021 198 111525 10.1016/j.mad.2021.111525 34166688
    [Google Scholar]
  47. Calleja-Agius J. Muscat-Baron Y. Brincat M.P. Skin ageing. Menopause Int. 2007 13 2 60 64 10.1258/175404507780796325 17540135
    [Google Scholar]
  48. Freitas A.A. de Magalhães J.P. A review and appraisal of the DNA damage theory of ageing. Mutat. Res. Rev. Mutat. Res. 2011 728 1-2 12 22 10.1016/j.mrrev.2011.05.001 21600302
    [Google Scholar]
  49. Hennekam R.C.M. Hutchinson–Gilford progeria syndrome: Review of the phenotype. Am. J. Med. Genet. A. 2006 140A 23 2603 2624 10.1002/ajmg.a.31346 16838330
    [Google Scholar]
  50. North B.J. Sinclair D.A. The intersection between aging and cardiovascular disease. Circ. Res. 2012 110 8 1097 1108 10.1161/CIRCRESAHA.111.246876 22499900
    [Google Scholar]
  51. Rosenberg I.H. Sarcopenia: Origins and clinical relevance. J. Nutr. 1997 127 5 990S 991S 10.1093/jn/127.5.990S 9164280
    [Google Scholar]
  52. Goronzy J.J. Weyand C.M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 2019 19 9 573 583 10.1038/s41577‑019‑0180‑1 31186548
    [Google Scholar]
  53. Aguado J. Wolvetang E.J. Exploring aging interventions in human brain organoids. Aging (Albany NY) 2022 14 4 1592 1593 10.18632/aging.203925 35247254
    [Google Scholar]
  54. Selkoe D.J. Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016 8 6 595 608 10.15252/emmm.201606210 27025652
    [Google Scholar]
  55. Yankner B.A. Lu T. Loerch P. The aging brain. Annu. Rev. Pathol. 2008 3 1 41 66 10.1146/annurev.pathmechdis.2.010506.092044 18039130
    [Google Scholar]
  56. Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85α: The two sides of a coin. Diabetes 2006 55 8 2392 2397 10.2337/db06‑0391 16873706
    [Google Scholar]
  57. Craft S. Stennis Watson G. Insulin and neurodegenerative disease: Shared and specific mechanisms. Lancet Neurol. 2004 3 3 169 178 10.1016/S1474‑4422(04)00681‑7 14980532
    [Google Scholar]
  58. Iweala E.J. Adurosakin O.E. Innocent U. Omonhinmin C.A. Dania O.E. Ugbogu E.A. Anti-Aging potential of bioactive phytoconstituents found in edible medicinal plants: A review. Sci 2024 6 2 36 10.3390/sci6020036
    [Google Scholar]
  59. Thring T.S.A. Hili P. Naughton D.P. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement. Altern. Med. 2009 9 1 27 10.1186/1472‑6882‑9‑27 19653897
    [Google Scholar]
  60. Yousefzadeh M.J. Zhu Y. McGowan S.J. Angelini L. Fuhrmann-Stroissnigg H. Xu M. Ling Y.Y. Melos K.I. Pirtskhalava T. Inman C.L. McGuckian C. Wade E.A. Kato J.I. Grassi D. Wentworth M. Burd C.E. Arriaga E.A. Ladiges W.L. Tchkonia T. Kirkland J.L. Robbins P.D. Niedernhofer L.J. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 2018 36 18 28 10.1016/j.ebiom.2018.09.015 30279143
    [Google Scholar]
  61. Gasmi A. Asghar F. Zafar S. Oliinyk P. Khavrona O. Lysiuk R. Peana M. Piscopo S. Antonyak H. Pen J.J. Lozynska I. Noor S. Lenchyk L. Muhammad A. Vladimirova I. Dub N. Antoniv O. Tsal O. Upyr T. Bjørklund G. Berberine: Pharmacological features in health, disease and aging. Curr. Med. Chem. 2024 31 10 1214 1234 10.2174/0929867330666230207112539 36748808
    [Google Scholar]
  62. Mills K.F. Yoshida S. Stein L.R. Grozio A. Kubota S. Sasaki Y. Redpath P. Migaud M.E. Apte R.S. Uchida K. Yoshino J. Imai S. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016 24 6 795 806 10.1016/j.cmet.2016.09.013 28068222
    [Google Scholar]
  63. Masser D.R. Stanford D.R. Hadad N. Sonntag W.E. Richardson A. Freeman W.M. Retinal DNA methylation alterations in a rodent model of diabetic retinopathy. Exp. Gerontol. 2017 94 109 10.1016/j.exger.2017.02.014
    [Google Scholar]
  64. Liu X. Xing Y. Yuen M. Yuen T. Yuen H. Peng Q. Anti-aging effect and mechanism of proanthocyanidins extracted from sea buckthorn on hydrogen peroxide-induced aging Human skin fibroblasts. Antioxidants 2022 11 10 1900 10.3390/antiox11101900 36290623
    [Google Scholar]
  65. Zhang H. Ryu D. Wu Y. Gariani K. Wang X. Luan P. D’Amico D. Ropelle E.R. Lutolf M.P. Aebersold R. Schoonjans K. Menzies K.J. Auwerx J. NAD + repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 2016 352 6292 1436 1443 10.1126/science.aaf2693 27127236
    [Google Scholar]
  66. Zhao D. Gao F. Zhu H. Qian Z. Mao W. Yin Y. Chen D. Selenium-enriched Bifidobacterium longum DD98 relieves metabolic alterations and liver injuries associated with obesity in high-fat diet-fed mice. J. Funct. Foods 2020 72 104051 10.1016/j.jff.2020.104051
    [Google Scholar]
  67. Arunkumar R Gorusupudi A Bernstein PS The macular carotenoids: A biochemical overview. Biochimica et biophysica acta 1865 1865 158617 10.1016/j.bbalip.2020.158617
    [Google Scholar]
  68. Sadekar N. Jones L. Date M. Joshi K. Api A.M. Ritacco G. Botelho D. Patel A. Fryer A.D. Penning T.M. Buschmann J. RIFM fragrance ingredient safety assessment, tricyclodecenyl acetate, CAS Registry Number 5413-60-5. Food Chem. Toxicol. 2018 122 S57 S67 10.1016/j.fct.2018.08.021
    [Google Scholar]
  69. Mandal S.M. Dias R.O. Franco O.L. Phenolic compounds in antimicrobial therapy. J. Med. Food 2017 20 10 1031 1038 10.1089/jmf.2017.0017 28661772
    [Google Scholar]
  70. a Hewlings S.J. Kalman D.S. Curcumin: A review of its effects on human health. Foods. 2017 6 10 92
    [Google Scholar]
  71. b Davinelli S. Nielsen M.E. Scapagnini G. Astaxanthin in skin health, repair, and disease: A comprehensive review. Nutrients 2018 10 4 522 10.3390/nu10040522
    [Google Scholar]
  72. Mamode Cassim A. Gouguet P. Gronnier J. Laurent N. Germain V. Grison M. Boutté Y. Gerbeau-Pissot P. Simon-Plas F. Mongrand S. Plant lipids: Key players of plasma membrane organization and function. Prog. Lipid Res. 2019 73 1 27 10.1016/j.plipres.2018.11.002 30465788
    [Google Scholar]
  73. Scalbert A. Johnson I.T. Saltmarsh M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005 81 1 215S 217S 10.1093/ajcn/81.1.215S 15640483
    [Google Scholar]
  74. Del Rio D. Costa L.G. Lean M.E.J. Crozier A. Polyphenols and health: What compounds are involved? Nutr. Metab. Cardiovasc. Dis. 2010 20 1 1 6 10.1016/j.numecd.2009.05.015 19713090
    [Google Scholar]
  75. Rahman I. Biswas S.K. Kirkham P.A. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem. Pharmacol. 2006 72 11 1439 1452 10.1016/j.bcp.2006.07.004 16920072
    [Google Scholar]
  76. Franceschi C. Garagnani P. Parini P. Giuliani C. Santoro A. Inflammaging: A new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018 14 10 576 590 10.1038/s41574‑018‑0059‑4 30046148
    [Google Scholar]
  77. Buglio D.S. Marton L.T. Laurindo L.F. Guiguer E.L. Araújo A.C. Buchaim R.L. Goulart R.A. Rubira C.J. Barbalho S.M. The role of resveratrol in mild cognitive impairment and Alzheimer’s disease: a systematic review. J. Med. Food 2022 25 8 797 806 10.1089/jmf.2021.0084 35353606
    [Google Scholar]
  78. Baur J.A. Sinclair D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov. 2006 5 6 493 506 10.1038/nrd2060 16732220
    [Google Scholar]
  79. Proksch E. Schunck M. Zague V. Segger D. Degwert J. Oesser S. Oral intake of specific bioactive collagen peptides reduces skin wrinkles and increases dermal matrix synthesis. Skin Pharmacol. Physiol. 2014 27 3 113 119 10.1159/000355523 24401291
    [Google Scholar]
  80. Poulsen M.W. Hedegaard R.V. Andersen J.M. de Courten B. Bügel S. Nielsen J. Skibsted L.H. Dragsted L.O. Advanced glycation endproducts in food and their effects on health. Food Chem. Toxicol. 2013 60 10 37 10.1016/j.fct.2013.06.052 23867544
    [Google Scholar]
  81. Diwan A.D. Ninawe A.S. Harke S.N. Gene editing (CRISPR-Cas) technology and fisheries sector. Canadian J. Biotechnol. 2017 1 2 65 72 10.24870/cjb.2017‑000108
    [Google Scholar]
  82. Singhai H. Rathee S. Jain S.K. Patil U.K. The potential of natural products in the management of cardiovascular disease. Curr. Pharm. Des. 2024 30 8 624 638 10.2174/0113816128295053240207090928 38477208
    [Google Scholar]
  83. Rathee S. Patil U.K. Jain S.K. Exploring the potential of dietary phytochemicals in cancer prevention: A comprehensive review. J. Explor. Res. Pharmacol. 2024 9 1 51 64 10.14218/JERP.2023.00050
    [Google Scholar]
  84. Sen D. Rathee S. Pandey V. Jain S.K. Patil U.K. Comprehensive insights into pathophysiology of alzheimer’s disease: Herbal approaches for mitigating neurodegeneration. Curr. Alzheimer Res. 2025 21 9 625 648 10.2174/0115672050309057240404075003 38623983
    [Google Scholar]
  85. Sahu A. Rathee S. Jain S.K. Patil U.K. Exploring the promising role of guggulipid in rheumatoid arthritis management: An in-depth analysis. Curr. Rheumatol. Rev. 2024 20 5 469 487 10.2174/0115733971280984240101115203 38284718
    [Google Scholar]
  86. Rathee S. Sen D. Pandey V. Jain S.K. Advances in understanding and managing alzheimer’s disease: From pathophysiology to innovative therapeutic strategies. Curr. Drug Targets 2024 25 11 752 774 10.2174/0113894501320096240627071400 39039673
    [Google Scholar]
  87. Mishra N Pandey V Eds Block Co-polymeric Nanocarriers: Design, Concept, and Therapeutic Applications. Springer 2023 10.1007/978‑981‑99‑6917‑3
    [Google Scholar]
  88. Sen D Rathee S Pandey V Jain SK Exploring saffron's therapeutic potential: Insights on phytochemistry, bioactivity, and clinical implications. Curr. Pharmaceutical Biotechnol 2023 10.2174/0113816128337941240928181943
    [Google Scholar]
  89. Manikishore M. Maurya S.K. Rathee S. Patil U.K. Genome Editing Approaches Using Zinc Finger Nucleases (ZFNs) for the Treatment of Motor Neuron Diseases. Curr. Pharm. Biotechnol. 2024 25 38847163
    [Google Scholar]
  90. Rathee S Saraf S Panda PK Raikwar S Bidla PD Jain SK Nanotechnology in Drug Delivery. Advances in Pharmaceutical Technology for Drug Delivery Systems Apple Academic Press 2025 10.1201/9781003592365‑3
    [Google Scholar]
  91. Singhai H. Raikwar S. Rathee S. Jain S.K. Emerging combinatorial drug delivery strategies for breast cancer: A comprehensive review. Curr. Drug Targets 2025 26 5 331 349 10.2174/0113894501352081241211090911 39791149
    [Google Scholar]
  92. Yadav DK Rathee S Sharma V Patil UK A comprehensive review on insect repellent agents: Medicinal plants and synthetic compounds. Antiinflamm Antiallergy Agents Med Chem. 2024 Epub ahead of print 10.2174/0118715230322355240903072704
    [Google Scholar]
  93. Pandey V. Sen D. Rathee S. Soni S. Mishra S. Jain S.K. Patil U.K. Unlocking toll-like receptors: Targeting therapeutics for respiratory tract infections and inflammatory disorders. Recent Adv. Inflamm. Allergy Drug Discov. 2024 18 10.2174/0127722708329138240926073013
    [Google Scholar]
  94. Jain S.K. Molecular docking analysis of d-glucosamine and rivastigmine tartrate targeting alzheimer’s disease-associated proteins: An in silico approach. Asian J. Pharm. 2024 18 2 10.22377/ajp.v18i02.5458
    [Google Scholar]
  95. Sahu A. Rathee S. Saraf S. Jain S.K. A review on the recent advancements and artificial intelligence in tablet technology. Curr. Drug Targets 2024 25 6 416 430 10.2174/0113894501281290231221053939 38213164
    [Google Scholar]
  96. Panda PK Raikwar S Bidla PD Rathee S Jain SK Role of block Co-polymers in drug delivery. Block Co-polymeric Nanocarriers: Design, Concept, and Therapeutic Applications. Springer 2023 35 52 10.1007/978‑981‑99‑6917‑3_2
    [Google Scholar]
  97. Raikwar S Panda PK Saraf S Bidla PD Rathee S Jain SK Liposomes as a Drug Carrier. Advances in Pharmaceutical Technology for Drug Delivery Systems Apple Academic Press 2025 199 233 10.1201/9781003592365‑6
    [Google Scholar]
  98. Rathee S Saraf S Panda PK Raikwar S Bidla PD Jain SK Optimization techniques for the development of pharmaceutical products. Advances in Pharmaceutical Product Development Singapore 2025 10.1007/978‑981‑97‑9230‑6_3
    [Google Scholar]
  99. Maurya S.K. Divakar S. Rathee S. Patil U.K. Diverse therapeutic potentials of hypericin: An in-depth review. Curr. Top. Med. Chem. 2025 25 10.2174/0115680266330142250224101958 40017246
    [Google Scholar]
  100. Rathee S Saraf S Raikwar S Bidla PD Jain SK Biosensors for targeted therapeutics. Applications of Biosensors in Healthcare Academic Press. 2025 51 71 10.1016/B978‑0‑443‑21592‑6.00026‑4
    [Google Scholar]
  101. Raikwar S Rathee S Jain SK Biosensors used for bioimaging applications. Applications of Biosensors in Healthcare Academic Press 2025 51 71 10.1016/B978‑0‑443‑21592‑6.00031‑8
    [Google Scholar]
  102. Pandey V. Rathee S. Sen D. Jain S.K. Patil U.K. Phytovesicular nanoconstructs for advanced delivery of medicinal metabolites: An in-depth review. Curr. Drug Targets 2024 25 13 847 865 10.2174/0113894501310832240815071618 39171597
    [Google Scholar]
  103. Mishra G Rathee S Garg M Patil UK mRNA Vaccines: Unlocking potential, exploring applications, and envisioning future horizons. Current drug deliv 2011 Epub ahead of print 10.2174/0115672018320938241121075859.
    [Google Scholar]
  104. Xu Z. Zhao S.J. Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem. 2019 183 111700 10.1016/j.ejmech.2019.111700 31546197
    [Google Scholar]
  105. Piccinin E. Cariello M. De Santis S. Ducheix S. Sabbà C. Ntambi J.M. Moschetta A. Role of oleic acid in the gut-liver axis: From diet to the regulation of its synthesis via stearoyl-CoA desaturase 1 (SCD1). Nutrients 2019 11 10 2283 10.3390/nu11102283 31554181
    [Google Scholar]
  106. Vauzour D. Dietary polyphenols as modulators of brain functions: Biological actions and molecular mechanisms underpinning their beneficial effects. Oxid. Med. Cell. Longev. 2012 2012 1 1 16 10.1155/2012/914273 22701758
    [Google Scholar]
  107. Karnewar S. Neeli P.K. Panuganti D. Kotagiri S. Mallappa S. Jain N. Jerald M.K. Kotamraju S. Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: Relevance in age-associated vascular dysfunction. Biochim. Biophys. Acta Mol. Basis Dis. 2018 1864 4 1115 1128 10.1016/j.bbadis.2018.01.018 29366775
    [Google Scholar]
  108. Banerjee A Pavane MS Banu LH Gopikar AS Elizabeth KR Pathak S Traditional medicine for aging-related disorders: Implications for drug discovery. Stem cells and aging Academic Press. 2021 281 297
    [Google Scholar]
  109. Messina M. Soy foods, isoflavones, and the health of postmenopausal women. Am. J. Clin. Nutr. 2014 100 Suppl. 1 423S 430S 10.3945/ajcn.113.071464 24898224
    [Google Scholar]
  110. Britton G. Liaaen-Jensen S. Pfander H. Carotenoids: handbook. Birkhäuser 2012
    [Google Scholar]
  111. Boullart A.C.I. de Graaf J. Stalenhoef A.F. Serum triglycerides and risk of cardiovascular disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2012 1821 5 867 875 10.1016/j.bbalip.2011.10.002
    [Google Scholar]
  112. Krinsky N.I. Johnson E.J. Carotenoid actions and their relation to health and disease. Mol. Aspects Med. 2005 26 6 459 516 10.1016/j.mam.2005.10.001 16309738
    [Google Scholar]
  113. Tominaga K. Hongo N. Karato M. Yamashita E. Cosmetic benefits of astaxanthin on humans subjects. Acta Biochim. Pol. 2012 59 1 43 47 10.18388/abp.2012_2168 22428137
    [Google Scholar]
  114. Landrum J.T. Bone R.A. Lutein, zeaxanthin, and the macular pigment. Arch. Biochem. Biophys. 2001 385 1 28 40 10.1006/abbi.2000.2171 11361022
    [Google Scholar]
  115. Levine E.S. Zam A. Zhang P. Pechko A. Wang X. FitzGerald P. Pugh E.N. Jr Zawadzki R.J. Burns M.E. Rapid light-induced activation of retinal microglia in mice lacking Arrestin-1. Vision Res. 2014 102 71 79 10.1016/j.visres.2014.07.011 25091460
    [Google Scholar]
  116. Rao A.V. Agarwal S. Role of antioxidant lycopene in cancer and heart disease. J. Am. Coll. Nutr. 2000 19 5 563 569 10.1080/07315724.2000.10718953 11022869
    [Google Scholar]
  117. Cho J.H. Won M-H. Lee T-K. Kim H. Song M. Lee J-C. Park J.H. Ahn J.H. Yang G.E. Kim H. Ohk T.G. Shin M.C. Time-course pattern of neuronal loss and gliosis in gerbil hippocampi following mild, severe, or lethal transient global cerebral ischemia. Neural Regen. Res. 2019 14 8 1394 1403 10.4103/1673‑5374.253524 30964065
    [Google Scholar]
  118. de Santana Souza M.T. Almeida J.R.G.S. de Souza Araujo A.A. Duarte M.C. Gelain D.P. Moreira J.C.F. dos Santos M.R.V. Quintans-Júnior L.J. Structure–activity relationship of terpenes with anti-inflammatory profile: A systematic review. Basic Clin. Pharmacol. Toxicol. 2014 115 3 244 256 10.1111/bcpt.12221 25275147
    [Google Scholar]
  119. Prakash V. Terpenoids as source of anti-inflammatory compounds. Asian J. Pharm. Clin. Res. 2017 10 3 68 76 10.22159/ajpcr.2017.v10i3.16435
    [Google Scholar]
  120. Ge J. Liu Z. Zhong Z. Wang L. Zhuo X. Li J. Jiang X. Ye X.Y. Xie T. Bai R. Natural terpenoids with anti-inflammatory activities: Potential leads for anti-inflammatory drug discovery. Bioorg. Chem. 2022 124 105817 10.1016/j.bioorg.2022.105817 35490583
    [Google Scholar]
  121. Gallily R. Yekhtin Z. Hanuš L.O. The anti-inflammatory properties of terpenoids from cannabis. Cannabis Cannabinoid Res. 2018 3 1 282 290 10.1089/can.2018.0014 30596146
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501384653250903110249
Loading
/content/journals/cdt/10.2174/0113894501384653250903110249
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test