Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Recent studies have identified significant advancements in understanding the role of PEST sequence-containing proteins in retinal neovascularization. Retinal neovascularization, a critical pathological process, leads to severe visual impairment associated with conditions such as diabetic retinopathy, retinopathy of prematurity, and neovascular age-related macular degeneration. These conditions represent the leading causes of blindness worldwide. Although initially effective, current anti-VEGF treatments can lose efficacy over time and impose a burden due to frequent administrations, highlighting the need for novel therapeutic targets. PEST sequences, characterized by proline, glutamic acid, serine, and threonine enrichment, are structural motifs within proteins that target them for rapid degradation the ubiquitin-proteasome pathway. Beyond influencing protein degradation, PEST sequences are crucial in regulating angiogenesis and inflammation, essential factors in retinal disease progression. This review focuses on the dual regulatory roles of PEST sequences in VEGFR-2 degradation and stabilization, crucial receptors in angiogenic signaling, as well as their involvement in essential signaling pathways including Notch and JAK/STAT. These findings suggest that PEST sequences could serve as promising new therapeutic targets to control pathological neovascularization and associated inflammatory responses, paving the way for more effective treatments in retinal diseases. Furthermore, advances in gene editing technologies and innovative drug delivery systems enhance the potential for the development of PEST sequence-targeted therapies, offering promising avenues for future clinical applications.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501383009250410081726
2025-04-18
2025-09-14
Loading full text...

Full text loading...

References

  1. CheungN. MitchellP. WongT.Y. Diabetic retinopathy.Lancet2010376973512413610.1016/S0140‑6736(09)62124‑320580421
    [Google Scholar]
  2. YangY. LiuY. LiY. ChenZ. XiongY. ZhouT. TaoW. XuF. YangH. Ylä-HerttualaS. ChaurasiaS.S. AdamW.C. YangK. MicroRNA-15b targets VEGF and inhibits angiogenesis in proliferative diabetic retinopathy.J. Clin. Endocrinol. Metab.2020105113404341532797181
    [Google Scholar]
  3. MuniyandiA. HartmanG.D. SongY. MijitM. KelleyM.R. CorsonT.W. Beyond VEGF: Targeting inflammation and other pathways for treatment of retinal disease.J. Pharmacol. Exp. Ther.20233861152510.1124/jpet.122.00156337142441
    [Google Scholar]
  4. AntonettiD.A. SilvaP.S. StittA.W. Current understanding of the molecular and cellular pathology of diabetic retinopathy.Nat. Rev. Endocrinol.202117419520610.1038/s41574‑020‑00451‑433469209
    [Google Scholar]
  5. ChenL. MessingerJ.D. SloanK.R. SwainT.A. SugiuraY. YannuzziL.A. CurcioC.A. FreundK.B. Nonexudative macular neovascularization supporting outer retina in age-related macular degeneration.Ophthalmology2020127793194710.1016/j.ophtha.2020.01.04032247535
    [Google Scholar]
  6. ApteR.S. ChenD.S. FerraraN. VEGF in signaling and disease: Beyond discovery and development.Cell201917661248126410.1016/j.cell.2019.01.02130849371
    [Google Scholar]
  7. EldeebM.A. FahlmanR.P. EsmailiM. RaghebM.A. Regulating apoptosis by degradation: The N-end rule-mediated regulation of apoptotic proteolytic fragments in mammalian cells.Int. J. Mol. Sci.20181911341410.3390/ijms1911341430384441
    [Google Scholar]
  8. RechsteinerM. RogersS.W. PEST sequences and regulation by proteolysis.Trends Biochem. Sci.199621726727110.1016/S0968‑0004(96)10031‑18755249
    [Google Scholar]
  9. HouC. LiY. WangM. WuH. LiT. Systematic prediction of degrons and E3 ubiquitin ligase binding via deep learning.BMC Biol.202220116210.1186/s12915‑022‑01364‑635836176
    [Google Scholar]
  10. ChatterjeeD. BhattM. ButlerD. De GenstE. DobsonC.M. MesserA. KordowerJ.H. Proteasome-targeted nanobodies alleviate pathology and functional decline in an α-synuclein-based Parkinson’s disease model.NPJ Parkinsons Dis.2018412510.1038/s41531‑018‑0062‑430155513
    [Google Scholar]
  11. YamamotoK. MakinoN. NagaiM. HonmaY. ArakiH. UshimaruT. TORC1 signaling regulates DNA replication via DNA replication protein levels.Biochem. Biophys. Res. Commun.201850541128113310.1016/j.bbrc.2018.10.01830316513
    [Google Scholar]
  12. QileM. JiY. HoutmanM.J.C. VeldhuisM. RomundeF. KokB. van der HeydenM.A.G. Identification of a PEST sequence in vertebrate KIR2.1 that modifies rectification.Front. Physiol.20191086310.3389/fphys.2019.0086331333502
    [Google Scholar]
  13. XiaoleiZ. Large putative PEST-like sequence motif at the carboxyl tail of human calcium receptor directs lysosomal degradation and regulates cell surface receptor level.J. Biol. Chem.20122876
    [Google Scholar]
  14. BiesJ. MarkusJ. WolffL. Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity.J. Biol. Chem.2002277118999900910.1074/jbc.M11045320011779867
    [Google Scholar]
  15. ZhaoL. ZhaoJ. ZhongK. TongA. JiaD. Targeted protein degradation: Mechanisms, strategies and application.Signal Transduct. Target. Ther.20227111335379777
    [Google Scholar]
  16. ShangF. TaylorA. Roles for the ubiquitin–proteasome pathway in protein quality control and signaling in the retina: Implications in the pathogenesis of age-related macular degeneration.Mol. Aspects Med.201233444646610.1016/j.mam.2012.04.00122521794
    [Google Scholar]
  17. AravamudhanS. TürkC. BockT. KeufgensL. NolteH. LangF. KrishnanR.K. KönigT. HammerschmidtP. SchindlerN. BrodesserS. RozsivalovaD.H. RugarliE. TrifunovicA. BrüningJ. LangerT. BraunT. KrügerM. Phosphoproteomics of the developing heart identifies PERM1 - An outer mitochondrial membrane protein.J. Mol. Cell. Cardiol.2021154415933549681
    [Google Scholar]
  18. HongyanX. YilingH. D SK. PEST sequences mediate heat shock factor 2 turnover by interacting with the Cul3 subunit of the Cul3-RING ubiquitin ligase.Cell Stress Chaperones2010153
    [Google Scholar]
  19. MeyerRD. PEST motif serine and tyrosine phosphorylation controls vascular endothelial growth factor receptor 2 stability and downregulation.Mol. Cell Biol.201131102010202510.1128/MCB.01006‑10
    [Google Scholar]
  20. LiJ. CaiZ. VaitesL.P. ShenN. MitchellD.C. HuttlinE.L. PauloJ.A. HarryB.L. GygiS.P. Proteome-wide mapping of short- lived proteins in human cells.Mol. Cell2021812247224735.e510.1016/j.molcel.2021.09.01534626566
    [Google Scholar]
  21. MiyazakiT. MiyazakiA. Dysregulation of calpain proteolytic systems underlies degenerative vascular disorders.J. Atheroscler. Thromb.201825111510.5551/jat.RV1700828819082
    [Google Scholar]
  22. KangN. ShanH. WangJ. MeiJ. JiangY. ZhouJ. HuangC. ZhangH. ZhangM. ZhenX. YanG. SunH. Calpain7 negatively regulates human endometrial stromal cell decidualization in EMs by promoting FoxO1 nuclear exclusion via hydrolyzing AKT1.Biol. Reprod.202210661112112510.1093/biolre/ioac04135191464
    [Google Scholar]
  23. YiJ.J. EhlersM.D. Emerging roles for ubiquitin and protein degradation in neuronal function.Pharmacol. Rev.2007591143910.1124/pr.59.1.417329546
    [Google Scholar]
  24. WangS. JiL.Y. LiL. LiJ.M. Oxidative stress, autophagy and pyroptosis in the neovascularization of oxygen-induced retinopathy in mice.Mol. Med. Rep.201919292793430569132
    [Google Scholar]
  25. AiX. YuP. HouY. SongX. LuoJ. LiN. LaiX. WangX. MengX. A review of traditional Chinese medicine on treatment of diabetic retinopathy and involved mechanisms.Biomed. Pharmacother.202013211085210.1016/j.biopha.2020.11085233065390
    [Google Scholar]
  26. AiX. YuP. LuoL. SunJ. TaoH. WangX. MengX. Berberis dictyophylla F. inhibits angiogenesis and apoptosis of diabetic retinopathy via suppressing HIF-1α/VEGF/DLL-4/Notch-1 pathway.J. Ethnopharmacol.202229611545310.1016/j.jep.2022.11545335697191
    [Google Scholar]
  27. AlvesJ. Garay-MalpartidaM. OcchiucciJ.M. BelizárioJ.E. Modulation of procaspase-7 self-activation by PEST amino acid residues of the N-terminal prodomain and intersubunit linker.Biochem. Cell Biol.201795663464310.1139/bcb‑2016‑022028658581
    [Google Scholar]
  28. BelizarioJE. Coupling caspase cleavage and proteasomal degradation of proteins carrying PEST motif.Curr. Protein Pept. Sci.20089321022010.2174/138920308784534023
    [Google Scholar]
  29. XieY. MansouriM. RizkA. BergerP. Regulation of VEGFR2 trafficking and signaling by Rab GTPase-activating proteins.Sci. Rep.2019911334210.1038/s41598‑019‑49646‑431527750
    [Google Scholar]
  30. SinghA.J. MeyerR.D. BandH. RahimiN. The carboxyl terminus of VEGFR-2 is required for PKC-mediated down-regulation.Mol. Biol. Cell20051642106211810.1091/mbc.e04‑08‑074915673613
    [Google Scholar]
  31. AbhinandC.S. RajuR. SoumyaS.J. AryaP.S. SudhakaranP.R. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis.J. Cell Commun. Signal.201610434735410.1007/s12079‑016‑0352‑827619687
    [Google Scholar]
  32. LiX.M. ZhaoZ.Y. YuX. XiaQ.D. ZhouP. WangS.G. WuH.L. HuJ. Exploiting E3 ubiquitin ligases to reeducate the tumor microenvironment for cancer therapy.Exp. Hematol. Oncol.20231213410.1186/s40164‑023‑00394‑236998063
    [Google Scholar]
  33. RahimiN. The ubiquitin-proteasome system meets angiogenesis.Mol. Cancer Ther.201211353854810.1158/1535‑7163.MCT‑11‑055522357635
    [Google Scholar]
  34. CrusioK.M. KingB. ReavieL.B. AifantisI. The ubiquitous nature of cancer: The role of the SCFFbw7 complex in development and transformation.Oncogene201029354865487310.1038/onc.2010.22220543859
    [Google Scholar]
  35. BrunsA.F. HerbertS.P. OdellA.F. JoplingH.M. HooperN.M. ZacharyI.C. WalkerJ.H. PonnambalamS. Ligand-stimulated VEGFR2 signaling is regulated by co-ordinated trafficking and proteolysis.Traffic201011116117410.1111/j.1600‑0854.2009.01001.x19883397
    [Google Scholar]
  36. MeyerR.D. SinghA.J. RahimiN. The carboxyl terminus controls ligand-dependent activation of VEGFR-2 and its signaling.J. Biol. Chem.2004279173574210.1074/jbc.M30557520014573614
    [Google Scholar]
  37. LiB. HussainW. JiangZ.L. WangJ.Y. HussainS. YasoobT.B. ZhaiY.K. JiX.Y. DangY.L. Nuclear proteins and diabetic retinopathy: A review.Biomed. Eng. Online20242316210.1186/s12938‑024‑01258‑438918766
    [Google Scholar]
  38. ZhouW. YangL. NieL. LinH. Unraveling the molecular mechanisms between inflammation and tumor angiogenesis.Am. J. Cancer Res.202111230131733575073
    [Google Scholar]
  39. AminM.N. SiddiquiS.A. IbrahimM. HakimM.L. AhammedM.S. KabirA. SultanaF. Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer.SAGE Open Med.20208205031212096575210.1177/205031212096575233194199
    [Google Scholar]
  40. JeongJ.H. OjhaU. LeeY.M. Pathological angiogenesis and inflammation in tissues.Arch. Pharm. Res.202144111510.1007/s12272‑020‑01287‑233230600
    [Google Scholar]
  41. SchoonbroodtS. FerreiraV. Best-BelpommeM. BoelaertJ.R. Legrand-PoelsS. KornerM. PietteJ. Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of I kappa B alpha in NF-kappa B activation by an oxidative stress.J. Immunol.200016484292430010.4049/jimmunol.164.8.429210754328
    [Google Scholar]
  42. BergqvistS. GhoshG. KomivesE.A. The IκBα/NF-κB complex has two hot spots, one at either end of the interface.Protein Sci.200817122051205810.1110/ps.037481.10818824506
    [Google Scholar]
  43. PrescottJ.A. MitchellJ.P. CookS.J. Inhibitory feedback control of NF-κB signalling in health and disease.Biochem. J.2021478132619266410.1042/BCJ2021013934269817
    [Google Scholar]
  44. PotoyanDA. PEST control of molecular stripping of NFκB from DNA transcription sites.J. Phys. Chem. B2016120338532853810.1021/acs.jpcb.6b02359
    [Google Scholar]
  45. WangX. PengH. HuangY. KongW. CuiQ. DuJ. JinH. Post-translational modifications of IκBα: The state of the art.Front. Cell Dev. Biol.2020857470610.3389/fcell.2020.57470633224945
    [Google Scholar]
  46. MukherjeeS.P. QuintasP.O. McNultyR. KomivesE.A. DysonH.J. Structural characterization of the ternary complex that mediates termination of NF-κB signaling by IκBα.Proc. Natl. Acad. Sci. USA2016113226212621710.1073/pnas.160348811327185953
    [Google Scholar]
  47. ZhengM. ZhangZ. ZhaoX. DingY. HanH. The Notch signaling pathway in retinal dysplasia and retina vascular homeostasis.J. Genet. Genomics201037957358210.1016/S1673‑8527(09)60077‑120933211
    [Google Scholar]
  48. DuanL.J. JiangY. FongG.H. Endothelial HIF2α suppresses retinal angiogenesis in neonatal mice by upregulating NOTCH signaling.Development202415111dev20280210.1242/dev.20280238770916
    [Google Scholar]
  49. DouG.R. WangL. WangY.S. HanH. Notch signaling in ocular vasculature development and diseases.Mol. Med.2012181475510.2119/molmed.2011.0025621989947
    [Google Scholar]
  50. BrayS.J. Notch signalling: A simple pathway becomes complex.Nat. Rev. Mol. Cell Biol.20067967868916921404
    [Google Scholar]
  51. ZhouB. LinW. LongY. YangY. ZhangH. WuK. ChuQ. Notch signaling pathway: Architecture, disease, and therapeutics.Signal Transduct. Target. Ther.2022719535332121
    [Google Scholar]
  52. SachanN. SharmaV. MutsuddiM. MukherjeeA. Notch signalling: Multifaceted role in development and disease.FEBS J.2024291143030305937166442
    [Google Scholar]
  53. WangK. ZhangQ. LiD. ChingK. ZhangC. ZhengX. OzeckM. ShiS. LiX. WangH. RejtoP. ChristensenJ. OlsonP. PEST domain mutations in Notch receptors comprise an oncogenic driver segment in triple-negative breast cancer sensitive to a γ-secretase inhibitor.Clin. Cancer Res.20152161487149625564152
    [Google Scholar]
  54. CraveroK. PantoneM.V. ShinD.H. BergmanR. CochranR. ChuD. ZabranskyD.J. KarthikeyanS. WatersI.G. HunterN. RosenD.M. Kyker-SnowmanK. DaltonW.B. ButtonB. ShinnD. WongH.Y. DonaldsonJ. HurleyP.J. CroessmannS. ParkB.H. NOTCH1 PEST domain variants are responsive to standard of care treatments despite distinct transformative properties in a breast cancer model.Oncotarget20221337338635186194
    [Google Scholar]
  55. ByfieldG. BuddS. HartnettM.E. The role of supplemental oxygen and JAK/STAT signaling in intravitreous neovascularization in a ROP rat model.Invest. Ophthalmol. Vis. Sci.20095073360336510.1167/iovs.08‑325619264880
    [Google Scholar]
  56. BabonJ.J. YaoS. DeSouzaD.P. HarrisonC.F. FabriL.J. LiepinshE. ScrofaniS.D. BacaM. NortonR.S. Secondary structure assignment of mouse SOCS3 by NMR defines the domain boundaries and identifies an unstructured insertion in the SH2 domain.FEBS J.2005272236120613010.1111/j.1742‑4658.2005.05010.x16302975
    [Google Scholar]
  57. WhiteC.A. NicolaN.A. SOCS3: An essential physiological inhibitor of signaling by interleukin-6 and G-CSF family cytokines.JAK-STAT201324e2504510.4161/jkst.2504524416642
    [Google Scholar]
  58. MiyazakiT. TaketomiY. SaitoY. HosonoT. LeiX.F. Kim-KaneyamaJ. ArataS. TakahashiH. MurakamiM. MiyazakiA. Calpastatin counteracts pathological angiogenesis by inhibiting suppressor of cytokine signaling 3 degradation in vascular endothelial cells.Circ. Res.201511671170118110.1161/CIRCRESAHA.116.30536325648699
    [Google Scholar]
  59. BabonJ.J. McManusE.J. YaoS. DeSouzaD.P. MielkeL.A. SpriggN.S. WillsonT.A. HiltonD.J. NicolaN.A. BacaM. NicholsonS.E. NortonR.S. The structure of SOCS3 reveals the basis of the extended SH2 domain function and identifies an unstructured insertion that regulates stability.Mol. Cell200622220521610.1016/j.molcel.2006.03.02416630890
    [Google Scholar]
  60. CrokerB.A. KiuH. NicholsonS.E. SOCS regulation of the JAK/STAT signalling pathway.Semin. Cell Dev. Biol.200819441442210.1016/j.semcdb.2008.07.01018708154
    [Google Scholar]
  61. WilliamsJ.J.L. AlotaiqN. MullenW. BurchmoreR. LiuL. BaillieG.S. SchaperF. PilchP.F. PalmerT.M. Interaction of suppressor of cytokine signalling 3 with cavin-1 links SOCS3 function and cavin-1 stability.Nat. Commun.20189116810.1038/s41467‑017‑02585‑y29330478
    [Google Scholar]
  62. LiY. JinK. BunkerE. ZhangX. LuoX. LiuX. HaoB. Structural basis of the phosphorylation-independent recognition of cyclin D1 by the SCF FBXO31 ubiquitin ligase.Proc. Natl. Acad. Sci. USA2018115231932410.1073/pnas.170867711529279382
    [Google Scholar]
  63. TchakarskaG. SolaB. The double dealing of cyclin D1.Cell Cycle202019216317810.1080/15384101.2019.170690331885322
    [Google Scholar]
  64. InoueK. FryE.A. Aberrant expression of cyclin D1 in cancer.Signal Transduct. Insights20154STI.S3030610.4137/STI.S3030628090171
    [Google Scholar]
  65. ShiQ. LiY. LiS. JinL. LaiH. WuY. CaiZ. ZhuM. LiQ. LiY. WangJ. LiuY. WuZ. SongE. LiuQ. LncRNA DILA1 inhibits Cyclin D1 degradation and contributes to tamoxifen resistance in breast cancer.Nat. Commun.2020111551310.1038/s41467‑020‑19349‑w33139730
    [Google Scholar]
  66. BaiC. Human cyclin F.EMBO J.199413246087609810.1002/j.1460‑2075.1994.tb06955.x
    [Google Scholar]
  67. LeeA. RaynerS.L. De LucaA. GweeS.S.L. MorschM. SundaramoorthyV. ShahheydariH. RagagninA. ShiB. YangS. WilliamsK.L. DonE.K. WalkerA.K. ZhangK.Y. YerburyJ.J. ColeN.J. AtkinJ.D. BlairI.P. MolloyM.P. ChungR.S. Casein kinase II phosphorylation of cyclin F at serine 621 regulates the Lys48-ubiquitylation E3 ligase activity of the SCF (cyclin F) complex.Open Biol.201771017005810.1098/rsob.17005829021214
    [Google Scholar]
  68. BernaudoS. KhazaiS. HonarparvarE. KoptevaA. PengC. PengC. Epidermal growth factor promotes cyclin G2 degradation via calpain-mediated proteolysis in gynaecological cancer cells.PLoS One2017126e017990610.1371/journal.pone.017990628640887
    [Google Scholar]
  69. WatsonE.C. WhiteheadL. AdamsR.H. DewsonG. CoultasL. Endothelial cell survival during angiogenesis requires the pro-survival protein MCL1.Cell Death Differ.20162381371137910.1038/cdd.2016.2026943318
    [Google Scholar]
  70. JudithH. UrsulaK-K. PetraO. A novel Mcl1 variant inhibits apoptosis via increased Bim sequestration.Oncotarget2013481241125210.18632/oncotarget.1147
    [Google Scholar]
  71. SanchoM. LeivaD. LucendoE. OrzáezM. Understanding MCL1: From cellular function and regulation to pharmacological inhibition.FEBS J.2022289206209623410.1111/febs.1613634310025
    [Google Scholar]
  72. WuX. LuoQ. LiuZ. Ubiquitination and deubiquitination of MCL1 in cancer: Deciphering chemoresistance mechanisms and providing potential therapeutic options.Cell Death Dis.202011755610.1038/s41419‑020‑02760‑y32699213
    [Google Scholar]
  73. ChoudharyG.S. TatT.T. MisraS. HillB.T. SmithM.R. AlmasanA. MazumderS. Cyclin E/Cdk2-dependent phosphorylation of Mcl-1 determines its stability and cellular sensitivity to BH3 mimetics.Oncotarget2015619169121692510.18632/oncotarget.485726219338
    [Google Scholar]
  74. WangH. GuoM. WeiH. ChenY. Targeting MCL-1 in cancer: Current status and perspectives.J. Hematol. Oncol.20211416710.1186/s13045‑021‑01079‑133883020
    [Google Scholar]
  75. XiaoK. ChenP. ChangD.C. The VTLISFG motif in the BH1 domain plays a significant role in regulating the degradation of Mcl-1.FEBS Open Bio20144114715210.1016/j.fob.2014.01.00624490139
    [Google Scholar]
  76. LiB. HuQ. XuR. RenH. FeiE. ChenD. WangG. Hax-1 is rapidly degraded by the proteasome dependent on its PEST sequence.BMC Cell Biol.20121312010.1186/1471‑2121‑13‑2022827267
    [Google Scholar]
  77. MoriT. LiY. HataH. OnoK. KochiH. NIRF, a novel RING finger protein, is involved in cell-cycle regulation.Biochem. Biophys. Res. Commun.2002296353053610.1016/S0006‑291X(02)00890‑212176013
    [Google Scholar]
  78. MoriT. LiY. HataH. KochiH. NIRF is a ubiquitin ligase that is capable of ubiquitinating PCNP, a PEST-containing nuclear protein.FEBS Lett.20045571-320921410.1016/S0014‑5793(03)01495‑914741369
    [Google Scholar]
  79. MoriT. IkedaD.D. FukushimaT. TakenoshitaS. KochiH. NIRF constitutes a nodal point in the cell cycle network and is a candidate tumor suppressor.Cell Cycle201110193284329910.4161/cc.10.19.1717621952639
    [Google Scholar]
  80. WuD.D. GaoY.R. LiT. WangD.Y. LuD. LiuS.Y. HongY. NingH.B. LiuJ.P. ShangJ. ShiJ.F. WeiJ.S. JiX.Y. PEST-containing nuclear protein mediates the proliferation, migration, and invasion of human neuroblastoma cells through MAPK and PI3K/AKT/mTOR signaling pathways.BMC Cancer201818149910.1186/s12885‑018‑4391‑929716528
    [Google Scholar]
  81. ChenY.G. LiuH.X. HongY. DongP.Z. LiuS.Y. GaoY.R. LuD. LiT. WangD.Y. WuD.D. JiX.Y. PCNP is a novel regulator of proliferation, migration, and invasion in human thyroid cancer.Int. J. Biol. Sci.20221893605362010.7150/ijbs.7039435813472
    [Google Scholar]
  82. WangD.Y. HongY. ChenY.G. DongP.Z. LiuS.Y. GaoY.R. LuD. LiH.M. LiT. GuoJ.C. HeF. RenX.Q. SunS.Y. WuD.D. DuanS.F. JiX.Y. PEST-containing nuclear protein regulates cell proliferation, migration, and invasion in lung adenocarcinoma.Oncogenesis2019832210.1038/s41389‑019‑0132‑430872582
    [Google Scholar]
  83. MillerW.P. MihailescuM.L. YangC. BarberA.J. KimballS.R. JeffersonL.S. DennisM.D. The translational repressor 4E-BP1 contributes to diabetes-induced visual dysfunction.Invest. Ophthalmol. Vis. Sci.20165731327133710.1167/iovs.15‑1871926998719
    [Google Scholar]
  84. AfzalA. SarfrazM. LiG.L. JiS.P. DuanS.F. KhanN.H. WuD.D. JiX.Y. Taking a holistic view of PEST- containing nuclear protein (PCNP) in cancer biology.Cancer Med.20198146335634310.1002/cam4.246531487123
    [Google Scholar]
  85. TsukamotoY. MaedaY. TamuraT. MukaiT. MitaraiS. YamamotoS. MakinoM. Enhanced protective efficacy against tuberculosis provided by a recombinant urease deficient BCG expressing heat shock protein 70-major membrane protein-II having PEST sequence.Vaccine201634506301630810.1016/j.vaccine.2016.10.06927847173
    [Google Scholar]
  86. BolomskyA. VoglerM. KöseM.C. HeckmanC.A. EhxG. LudwigH. CaersJ. MCL-1 inhibitors, fast-lane development of a new class of anti-cancer agents.J. Hematol. Oncol.202013117310.1186/s13045‑020‑01007‑933308268
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501383009250410081726
Loading
/content/journals/cdt/10.2174/0113894501383009250410081726
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test