Skip to content
2000
Volume 26, Issue 14
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Sepsis is a lethal clinical condition representing severe inflammation and immune suppression to pathogen or infection, leading to tissue damage or organ dysfunction. Hyper-inflammation and immune suppression cause a fatal, escalated Blood-Brain Barrier permeability, being a secondary response towards infection resulting in sepsis-associated brain dysfunction. These changes in the BBB lead to the brain’s susceptibility to increased morbidity and mortality. An important mechanism of sepsis-associated brain dysfunction includes excessive activation of microglial cells, altered brain endothelial barrier function, and BBB dysfunction. Lipopoly- saccharide, a bacterial cell wall component (endotoxin), by forming a complex through membrane-bound CD receptors on macrophages, monocytes, and neutrophils, begins synthesizing anti-inflammatory agents for defense of the host, including nitric oxide, cytokines, chemokines, interleukins, and the complement system. Unrestrained endotoxemia and pro-inflammatory cytokines result in microglial as well as brain endothelial cell stimulation, downregulation of tight junctions, along with intense recruitment of leucocytes. Subsequent neuroinflammation, together with BBB dysfunction, aggravates brain pathology as well as worsens sepsis-associated brain dysfunction. The clinical demonstration includes mild (confusion and delirium) along with severe (cognitive impairment, coma, as well as sequel death). Different clinical neurophysiological evaluation parameters can be used for the quantification and important issues of the disorder, including SOFA, imaging methods, and the use of biomarkers associated with brain dysfunction. The present review addresses the mechanism, clinical examination, the long-term cognitive effects, and current treatment modalities for sepsis-associated brain dysfunction.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501381183250825144834
2025-09-02
2026-02-02
Loading full text...

Full text loading...

References

  1. HotchkissR.S. MoldawerL.L. OpalS.M. ReinhartK. TurnbullI.R. VincentJ.L. Sepsis and septic shock.Nat. Rev. Dis. Primers2016211604510.1038/nrdp.2016.4528117397
    [Google Scholar]
  2. LelubreC. VincentJ.L. Mechanisms and treatment of organ failure in sepsis.Nat. Rev. Nephrol.201814741742710.1038/s41581‑018‑0005‑729691495
    [Google Scholar]
  3. Shankar-HariM. SahaR. WilsonJ. PrescottH.C. HarrisonD. RowanK. RubenfeldG.D. AdhikariN.K.J. Rate and risk factors for rehospitalisation in sepsis survivors: Systematic review and meta- analysis.Intensive Care Med.202046461963610.1007/s00134‑019‑05908‑331974919
    [Google Scholar]
  4. HosokawaK. GaspardN. SuF. OddoM. VincentJ.L. TacconeF.S. Clinical neurophysiological assessment of sepsis-associated brain dysfunction: A systematic review.Crit. Care201418667410.1186/s13054‑014‑0674‑y25482125
    [Google Scholar]
  5. CzempikP.F. PlutaM.P. KrzychŁ.J. Sepsis-associated brain dysfunction: A review of current literature.Int. J. Environ. Res. Public Health20201716585210.3390/ijerph1716585232806705
    [Google Scholar]
  6. SonnevilleR. VerdonkF. RauturierC. KleinI.F. WolffM. AnnaneD. ChretienF. SharsharT. Understanding brain dysfunction in sepsis.Ann. Intensive Care2013311510.1186/2110‑5820‑3‑1523718252
    [Google Scholar]
  7. StephenA.H. MontoyaR.L. AluisioA.R. Sepsis and septic shock in low-and middle-income countries.Surg. Infect. (Larchmt.)202021757157810.1089/sur.2020.04732401160
    [Google Scholar]
  8. RabeeH.A. TanbourR. NazzalZ. HamshariY. HabashY. AnayaA. IterA. GharbeyahM. AbugaberD. Epidemiology of sepsis syndrome among intensive care unit patients at a tertiary university hospital in palestine in 2019.Indian J. Crit. Care Med.202024755155610.5005/jp‑journals‑10071‑2347432963438
    [Google Scholar]
  9. RuddK.E. JohnsonS.C. AgesaK.M. ShackelfordK.A. TsoiD. KievlanD.R. ColombaraD.V. IkutaK.S. KissoonN. FinferS. Fleischmann-StruzekC. MachadoF.R. ReinhartK.K. RowanK. SeymourC.W. WatsonR.S. WestT.E. MarinhoF. HayS.I. LozanoR. LopezA.D. AngusD.C. MurrayC.J.L. NaghaviM. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the global burden of disease study.Lancet20203951021920021110.1016/S0140‑6736(19)32989‑731954465
    [Google Scholar]
  10. World Health OrganizationGlobal report on the epidemiology and burden of sepsis: current evidence, identifying gaps and future directions. https://apps.who.int/iris/handle/10665/334216 2020
  11. World Health OrganizationPublic consultation of experts to join the Guideline Development Group (GDG) for Defeating Meningitis by 2030 Roadmap: Meningitis diagnosis, treatment and care guidelines. https://www.who.int/news/item/01-05-2023- public-consultation-of-experts-to-join-the-guideline-development-group-(gdg)-for-defeating-meningitis-by-2030-roadmap-meningitis-diagnosis-treatment-and-care-guidelines 2023
  12. CecconiM. EvansL. LevyM. RhodesA. Sepsis and septic shock.Lancet201839210141758710.1016/S0140‑6736(18)30696‑229937192
    [Google Scholar]
  13. NguyenH.B. RiversE.P. AbrahamianF.M. MoranG.J. AbrahamE. TrzeciakS. HuangD.T. OsbornT. StevensD. TalanD.A. ProgramE.D.S.E. Severe sepsis and septic shock: Review of the literature and emergency department management guidelines.Ann. Emerg. Med.200648154.e110.1016/j.annemergmed.2006.02.01516781920
    [Google Scholar]
  14. MiraJ.C. GentileL.F. MathiasB.J. EfronP.A. BrakenridgeS.C. MohrA.M. MooreF.A. MoldawerL.L. Sepsis pathophysiology, chronic critical illness and PICS.Crit. Care Med.201745225310.1097/CCM.000000000000207427632674
    [Google Scholar]
  15. SazonovV. AbylkassovR. TobylbayevaZ. SaparovA. MironovaO. PoddigheD. Case series: Efficacy and safety of hemoadsorption with HA-330 adsorber in septic pediatric patients with cancer.Front Pediatr.2021967226010.3389/fped.2021.67226034178889
    [Google Scholar]
  16. KeithP.D. WellsA.H. HodgesJ. FastS.H. AdamsA. ScottL.K. The therapeutic efficacy of adjunct therapeutic plasma exchange for septic shock with multiple organ failure: A single-center experience.Crit. Care202024151810.1186/s13054‑020‑03241‑632831133
    [Google Scholar]
  17. KumarS. PayalN. SrivastavaV.K. KaushikS. SaxenaJ. JyotiA. Neutrophil extracellular traps and organ dysfunction in sepsis.Clin. Chim. Acta202152315216210.1016/j.cca.2021.09.01234537216
    [Google Scholar]
  18. TangD. KangR. CoyneC.B. ZehH.J. LotzeM.T. PAMPs and DAMPs: Signal 0s that spur autophagy and immunity.Immunol. Rev.2012249115817510.1111/j.1600‑065X.2012.01146.x22889221
    [Google Scholar]
  19. HotchkissR.S. TinsleyK.W. Karlie Role of apoptotic cell death in sepsis.Scand. J. Infect. Dis.200335958559210.1080/0036554031001569214620139
    [Google Scholar]
  20. MerleN.S. NoeR. Halbwachs-MecarelliL. Fremeaux-BacchiV. RoumeninaL.T. Complement system part II: Role in immunity.Front. Immunol.2015625710.3389/fimmu.2015.0025726074922
    [Google Scholar]
  21. GuoR.F. WardP.A. Role of C5a in inflammatory responses.Annu. Rev. Immunol.200523182185210.1146/annurev.immunol.23.021704.11583515771587
    [Google Scholar]
  22. ShaoZ. NishimuraT. LeungL.L.K. MorserJ. Carboxypeptidase B2 deficiency reveals opposite effects of complement C3a and C5a in a murine polymicrobial sepsis model.J. Thromb. Haemost.20151361090110210.1111/jth.1295625851247
    [Google Scholar]
  23. WardP.A. The harmful role of c5a on innate immunity in sepsis.J. Innate Immun.20102543944510.1159/00031719420588003
    [Google Scholar]
  24. WardP.A. New approaches to the study of sepsis.EMBO Mol. Med.20124121234124310.1002/emmm.20120137523208733
    [Google Scholar]
  25. OnoS. TsujimotoH. HirakiS. AosasaS. Mechanisms of sepsis-induced immunosuppression and immunological modification therapies for sepsis.Ann. Gastroenterol. Surg.20182535135810.1002/ags3.1219430238076
    [Google Scholar]
  26. GentileL.F. CuencaA.G. EfronP.A. AngD. BihoracA. McKinleyB.A. MoldawerL.L. MooreF.A. Persistent inflammation and immunosuppression.J. Trauma Acute Care Surg.20127261491150110.1097/TA.0b013e318256e00022695412
    [Google Scholar]
  27. WuJ. HuL. ZhangG. WuF. HeT. Accuracy of presepsin in sepsis diagnosis: A systematic review and meta-analysis.PLoS One2015107e013305710.1371/journal.pone.013305726192602
    [Google Scholar]
  28. VanzantE.L. LopezC.M. Ozrazgat-BaslantiT. UngaroR. DavisR. CuencaA.G. GentileL.F. NacionalesD.C. CuencaA.L. BihoracA. LeeuwenburghC. LanzJ. BakerH.V. McKinleyB. MoldawerL.L. MooreF.A. EfronP.A. Persistent inflammation, immunosuppression, and catabolism syndrome after severe blunt trauma.J. Trauma Acute Care Surg.2014761213010.1097/TA.0b013e3182ab1ab524368353
    [Google Scholar]
  29. WaltonA.H. MuenzerJ.T. RascheD. BoomerJ.S. SatoB. BrownsteinB.H. PachotA. BrooksT.L. DeychE. ShannonW.D. GreenJ.M. StorchG.A. HotchkissR.S. Reactivation of multiple viruses in patients with sepsis.PLoS One201496e9881910.1371/journal.pone.009881924919177
    [Google Scholar]
  30. DeutschmanC.S. TraceyK.J. Sepsis: Current dogma and new perspectives.Immunity201440446347510.1016/j.immuni.2014.04.00124745331
    [Google Scholar]
  31. JoffreJ. HellmanJ. InceC. Ait-OufellaH. Endothelial responses in sepsis.Am. J. Respir. Crit. Care Med.2020202336137010.1164/rccm.201910‑1911TR32101446
    [Google Scholar]
  32. PonsS. ArnaudM. LoiselleM. ArriiE. AzoulayE. ZafraniL. Immune consequences of endothelial cells’ activation and dysfunction during sepsis.Crit. Care Clin.202036240141310.1016/j.ccc.2019.12.00132172821
    [Google Scholar]
  33. CostelloR.A. NehringS.M. Disseminated intravascular coagulation.StatPearls [InternetStatPearlsTreasure Island201728722864
    [Google Scholar]
  34. IbaT. LevyJ.H. ConnorsJ.M. WarkentinT.E. ThachilJ. LeviM. The unique characteristics of COVID-19 coagulopathy.Crit. Care202024136010.1186/s13054‑020‑03077‑032552865
    [Google Scholar]
  35. SygitowiczG. SitkiewiczD. Molecular mechanisms of organ damage in sepsis: An overview.Braz. J. Infect. Dis.202024655256010.1016/j.bjid.2020.09.00433169675
    [Google Scholar]
  36. SygitowiczG. SitkiewiczD. Organ damage in sepsis: Molecular mechanisms.Infections and Sepsis Development.IntechOpen202110.5772/intechopen.98302
    [Google Scholar]
  37. GuM. MeiX.L. ZhaoY.N. Sepsis and cerebral dysfunction: BBB damage, neuroinflammation, oxidative stress, apoptosis and autophagy as key mediators and the potential therapeutic approaches.Neurotox. Res.202139248950310.1007/s12640‑020‑00270‑532876918
    [Google Scholar]
  38. BozzaF.A. D’AvilaJ.C. RitterC. SonnevilleR. SharsharT. Dal-PizzolF. Bioenergetics, mitochondrial dysfunction, and oxidative stress in the pathophysiology of septic encephalopathy.Shock201339Suppl. 1101610.1097/SHK.0b013e31828fade123481496
    [Google Scholar]
  39. RittirschD. FlierlM.A. WardP.A. Harmful molecular mechanisms in sepsis.Nat. Rev. Immunol.200881077678710.1038/nri240218802444
    [Google Scholar]
  40. FülesdiB. MolnarL. NémethN. MolnárC. Sepsis-associated encephalopathy: A review of literature.Neurol. India201866235236110.4103/0028‑3886.22729929547154
    [Google Scholar]
  41. BoomerJ.S. Shuherk-ShafferJ. HotchkissR.S. GreenJ.M. A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis.Crit. Care2012163R11210.1186/cc1140422742734
    [Google Scholar]
  42. BergR.M.G. MøllerK. BaileyD.M. Neuro-oxidative-nitrosative stress in sepsis.J. Cereb. Blood Flow Metab.20113171532154410.1038/jcbfm.2011.4821487413
    [Google Scholar]
  43. DuchiniA. McHutchisonJ.G. PockrosP.J. LKM-positive autoimmune hepatitis in the western United States: A case series.Am. J. Gastroenterol.200095113238324110.1111/j.1572‑0241.2000.03207.x11095348
    [Google Scholar]
  44. AbramovaA.A. GrinbergL.M. [Pathology of anthrax sepsis according to materials of the infectious outbreak in 1979 in Sverdlovsk (macroscopic changes)Arkh. Patol.199355112177980032
    [Google Scholar]
  45. AkroutN. SharsharT. AnnaneD. Mechanisms of brain signaling during sepsis.Curr. Neuropharmacol.20097429630110.2174/15701590979003117520514209
    [Google Scholar]
  46. RivestS. LacroixS. VallièresL. NadeauS. ZhangJ. LaflammeN. How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli.Proc. Soc. Exp. Biol. Med.20002231223810632958
    [Google Scholar]
  47. RothE. FunovicsJ. MühlbacherF. SchemperM. MauritzW. SpornP. FritschA. Metabolic disorders in severe abdominal sepsis: Glutamine deficiency in skeletal muscle.Clin. Nutr.198211254110.1016/0261‑5614(82)90004‑816829366
    [Google Scholar]
  48. LaflammeN. RivestS. Effects of systemic immunogenic insults and circulating proinflammatory cytokines on the transcription of the inhibitory factor kappaB α within specific cellular populations of the rat brain.J. Neurochem.199973130932110.1046/j.1471‑4159.1999.0730309.x10386984
    [Google Scholar]
  49. Lacroix-DesmazesS. BayryJ. KaveriS.V. Hayon-SonsinoD. ThorenoorN. CharpentierJ. LuytC.E. MiraJ.P. NagarajaV. KazatchkineM.D. DhainautJ.F. MalletV.O. High levels of catalytic antibodies correlate with favorable outcome in sepsis.Proc. Natl. Acad. Sci. USA2005102114109411310.1073/pnas.050058610215743915
    [Google Scholar]
  50. SiamiS. AnnaneD. SharsharT. The encephalopathy in sepsis.Crit. Care Clin.20082416782, viii10.1016/j.ccc.2007.10.00118241779
    [Google Scholar]
  51. TraceyK.J. Physiology and immunology of the cholinergic antiinflammatory pathway.J. Clin. Invest.2007117228929610.1172/JCI3055517273548
    [Google Scholar]
  52. HeirR. StellwagenD. TNF-mediated homeostatic synaptic plasticity: From in vitro to in vivo models.Front. Cell. Neurosci.20201456584110.3389/fncel.2020.56584133192311
    [Google Scholar]
  53. TerrandoN. Rei FidalgoA. VizcaychipiM. CibelliM. MaD. MonacoC. FeldmannM. MazeM. The impact of IL-1 modulation on the development of lipopolysaccharide-induced cognitive dysfunction.Crit. Care2010143R8810.1186/cc901920470406
    [Google Scholar]
  54. TerrandoN. PavlovV.A. Neuro-immune interactions in inflammation and autoimmunity.Front. Immunol.2018977210.3389/fimmu.2018.0077229713326
    [Google Scholar]
  55. ChavanS.S. HuertaP.T. RobbiatiS. Valdes-FerrerS.I. OchaniM. DanchoM. FrankfurtM. VolpeB.T. TraceyK.J. DiamondB. HMGB1 mediates cognitive impairment in sepsis survivors.Mol. Med.201218693093710.2119/molmed.2012.0019522634723
    [Google Scholar]
  56. WesthoffD. Engelen-LeeJ.Y. HooglandI.C.M. AronicaE.M.A. van WesterlooD.J. van de BeekD. van GoolW.A. Systemic infection and microglia activation: a prospective postmortem study in sepsis patients.Immun. Ageing20191611810.1186/s12979‑019‑0158‑731384283
    [Google Scholar]
  57. SemmlerA. HermannS. MormannF. WeberpalsM. PaxianS.A. OkullaT. SchäfersM. KummerM.P. KlockgetherT. HenekaM.T. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism.J. Neuroinflammation2008513810.1186/1742‑2094‑5‑3818793399
    [Google Scholar]
  58. SharsharT. CarlierR. BernardF. GuidouxC. BroulandJ.P. NardiO. de la GrandmaisonG.L. AboabJ. GrayF. MenonD. AnnaneD. Brain lesions in septic shock: A magnetic resonance imaging study.Intensive Care Med.200733579880610.1007/s00134‑007‑0598‑y17377766
    [Google Scholar]
  59. SharsharT. GrayF. PoronF. RaphaelJ.C. GajdosP. AnnaneD. Multifocal necrotizing leukoencephalopathy in septic shock.Crit. Care Med.200230102371237510.1097/00003246‑200210000‑0003112394971
    [Google Scholar]
  60. BarichelloT. GenerosoJ.S. CollodelA. PetronilhoF. Dal-PizzolF. The blood-brain barrier dysfunction in sepsis.Tissue Barriers.202191184091210.1080/21688370.2020.184091233319634
    [Google Scholar]
  61. BarichelloT. GenerosoJ.S. SingerM. Dal-PizzolF. Biomarkers for sepsis: More than just fever and leukocytosis—a narrative review.Crit. Care20222611410.1186/s13054‑021‑03862‑534991675
    [Google Scholar]
  62. NishiokuT. DohguS. TakataF. EtoT. IshikawaN. KodamaK.B. NakagawaS. YamauchiA. KataokaY. Detachment of brain pericytes from the basal lamina is involved in disruption of the blood-brain barrier caused by lipopolysaccharide-induced sepsis in mice.Cell. Mol. Neurobiol.200929330931610.1007/s10571‑008‑9322‑x18987969
    [Google Scholar]
  63. ZiajaM. Septic Encephalopathy.Curr. Neurol. Neurosci. Rep.2013131038310.1007/s11910‑013‑0383‑y23954971
    [Google Scholar]
  64. HandaO. StephenJ. CepinskasG. Role of endothelial nitric oxide synthase-derived nitric oxide in activation and dysfunction of cerebrovascular endothelial cells during early onsets of sepsis.Am. J. Physiol. Heart Circ. Physiol.20082954H1712H171910.1152/ajpheart.00476.200818723768
    [Google Scholar]
  65. TacconeF.S. ScollettaS. FranchiF. DonadelloK. OddoM. Brain perfusion in sepsis.Curr. Vasc. Pharmacol.201311217018623506496
    [Google Scholar]
  66. DavisW.T. AprilM.D. MehtaS. LongB. ShroyerS. High risk clinical characteristics for pyogenic spinal infection in acute neck or back pain: Prospective cohort study.Am. J. Emerg. Med.202038349149610.1016/j.ajem.2019.05.02531128933
    [Google Scholar]
  67. DaviesB. CohenJ. Endotoxin removal devices for the treatment of sepsis and septic shock.Lancet Infect. Dis.2011111657110.1016/S1473‑3099(10)70220‑621183148
    [Google Scholar]
  68. AbohassanA. HashishM. Community acquired pneumonia, risk factors and mortality in patients admitted to internal medicine icu unit, al azhar university’s hospitals.J. Egypt. Soc. Parasitol.2021511737810.21608/jesp.2021.165941
    [Google Scholar]
  69. van GoolW.A. van de BeekD. EikelenboomP. Systemic infection and delirium: when cytokines and acetylcholine collide.Lancet2010375971677377510.1016/S0140‑6736(09)61158‑220189029
    [Google Scholar]
  70. HustonJ.M. The vagus nerve and the inflammatory reflex: Wandering on a new treatment paradigm for systemic inflammation and sepsis.Surg. Infect. (Larchmt.)201213418719310.1089/sur.2012.12622913335
    [Google Scholar]
  71. BarişE. AriciM.A. Hamurteki̇nE. The role of nicotinic anti-inflammatory pathway in prostaglandin mediated inflammatory response in sepsis: A short review.Clin Exp Health Sci.20199435035710.33808/clinexphealthsci.548030
    [Google Scholar]
  72. Cesar Pontes AzevedoL. Mitochondrial dysfunction during sepsis.Endocr Metab Immune Disord Drug Targets.20101032142310.2174/18715301079193694620509844
    [Google Scholar]
  73. ChaudhryN. DuggalA.K. Duggal, A.K. Sepsis associated encephalopathy.Adv. Med.2014201411610.1155/2014/762320
    [Google Scholar]
  74. ZampieriF.G. ParkM. MachadoF.S. AzevedoL.C.P. Sepsis-associated encephalopathy: not just delirium.Clinics (São Paulo)201166101825183110.1590/S1807‑5932201100100002422012058
    [Google Scholar]
  75. GalleyH.F. Oxidative stress and mitochondrial dysfunction in sepsis.Br. J. Anaesth.20111071576410.1093/bja/aer09321596843
    [Google Scholar]
  76. MattsonM.P. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives.Physiol. Rev.19977741081113210.1152/physrev.1997.77.4.10819354812
    [Google Scholar]
  77. XieZ. XuM. XieJ. LiuT. XuX. GaoW. LiZ. BaiX. LiuX. Inhibition of ferroptosis attenuates glutamate excitotoxicity and nuclear autophagy in a clp septic mouse model. shock: Injury, inflammation, and sepsis.Shock202257569470210.1097/SHK.000000000000189335066511
    [Google Scholar]
  78. WilsonJ.X. YoungG.B. Progress in clinical neurosciences: Sepsis-associated encephalopathy: Evolving concepts.Can. J. Neurol. Sci.20033029810510.1017/S031716710005335X12774948
    [Google Scholar]
  79. MantzarlisK. TsolakiV. ZakynthinosE. Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies.Oxid. Med. Cell. Longev.201720171598520910.1155/2017/598520928904739
    [Google Scholar]
  80. RicklinD. HajishengallisG. YangK. LambrisJ.D. Complement: A key system for immune surveillance and homeostasis.Nat. Immunol.201011978579710.1038/ni.192320720586
    [Google Scholar]
  81. MollnesT.E. Huber-LangM. Complement in sepsis—when science meets clinics.FEBS Lett.2020594162621263210.1002/1873‑3468.1388132621378
    [Google Scholar]
  82. HalbgebauerR. SchmidtC.Q. KarstenC.M. IgnatiusA. Huber-LangM. Janus face of complement-driven neutrophil activation during sepsis.Semin. Immunol.201837122010.1016/j.smim.2018.02.00429454576
    [Google Scholar]
  83. PytelP. AlexanderJ.J. Pathogenesis of septic encephalopathy.Curr. Opin. Neurol.200922328328710.1097/WCO.0b013e32832b310119387342
    [Google Scholar]
  84. HiranoY. AzizM. YangW.L. WangZ. ZhouM. OchaniM. KhaderA. WangP. Neutralization of osteopontin attenuates neutrophil migration in sepsis-induced acute lung injury.Crit. Care20151915310.1186/s13054‑015‑0782‑325887405
    [Google Scholar]
  85. MatsumotoH. OguraH. ShimizuK. IkedaM. HiroseT. MatsuuraH. KangS. TakahashiK. TanakaT. ShimazuT. The clinical importance of a cytokine network in the acute phase of sepsis.Sci. Rep.2018811399510.1038/s41598‑018‑32275‑830228372
    [Google Scholar]
  86. PravdaJ. Sepsis: Evidence-based pathogenesis and treatment.World J. Crit. Care Med.2021104668010.5492/wjccm.v10.i4.6634316443
    [Google Scholar]
  87. EnglertJ.A. RogersA.J. Metabolism, metabolomics, and nutritional support of patients with sepsis.Clin. Chest Med.201637232133110.1016/j.ccm.2016.01.01127229648
    [Google Scholar]
  88. BissingerR. BhuyanA.A.M. QadriS.M. LangF. Oxidative stress, eryptosis and anemia: A pivotal mechanistic nexus in systemic diseases.FEBS J.2019286582685410.1111/febs.1460630028073
    [Google Scholar]
  89. PanS. LvZ. WangR. ShuH. YuanS. YuY. ShangY. Sepsis-induced brain dysfunction: Pathogenesis, diagnosis, and treatment.Oxid Med Cell Longev.202210.1155/2022/132872936062193PMC9433216
    [Google Scholar]
  90. PandharipandeP.P. GirardT.D. JacksonJ.C. MorandiA. ThompsonJ.L. PunB.T. BrummelN.E. HughesC.G. VasilevskisE.E. ShintaniA.K. MoonsK.G. GeevargheseS.K. CanonicoA. HopkinsR.O. BernardG.R. DittusR.S. ElyE.W. Long-term cognitive impairment after critical illness.N. Engl. J. Med.2013369141306131610.1056/NEJMoa130137224088092
    [Google Scholar]
  91. ShahF.A. PikeF. AlvarezK. AngusD. NewmanA.B. LopezO. TateJ. KapurV. WilsdonA. KrishnanJ.A. HanselN. AuD. AvdalovicM. FanV.S. BarrR.G. YendeS. Bidirectional relationship between cognitive function and pneumonia.Am. J. Respir. Crit. Care Med.2013188558659210.1164/rccm.201212‑2154OC23848267
    [Google Scholar]
  92. DlugajM. GerwigM. WegeN. SiegristJ. MannK. Bröcker-PreußM. DraganoN. MoebusS. JöckelK.H. BokhofB. MöhlenkampS. ErbelR. WeimarC. Elevated levels of high-sensitivity C-reactive protein are associated with mild cognitive impairment and its subtypes: Results of a population-based case-control study.J. Alzheimers Dis.201228350351410.3233/JAD‑2011‑11135222008268
    [Google Scholar]
  93. SasannejadC. ElyE.W. LahiriS. Long-term cognitive impairment after acute respiratory distress syndrome: A review of clinical impact and pathophysiological mechanisms.Crit. Care201923135210.1186/s13054‑019‑2626‑z31718695
    [Google Scholar]
  94. IdeK. UchidaH. SakamotoS. NishimuraN. NakagawaS. KobayashiT. ItoS. KasaharaM. Neurological impairment in children with acute liver failure following liver transplantation—a single-center experience.Pediatr. Transplant.2022264e1424010.1111/petr.1424035132740
    [Google Scholar]
  95. MostelZ. PerlA. MarckM. MehdiS.F. LowellB. BathijaS. SantoshR. PavlovV.A. ChavanS.S. RothJ. Post-sepsis syndrome – an evolving entity that afflicts survivors of sepsis.Mol. Med.2020261610.1186/s10020‑019‑0132‑z31892321
    [Google Scholar]
  96. HopkinsR.O. WeaverL.K. PopeD. OrmeJ.F.Jr BiglerE.D. Larson-LohrV. Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome.Am. J. Respir. Crit. Care Med.19991601505610.1164/ajrccm.160.1.970805910390379
    [Google Scholar]
  97. GranjaC. AmaroA. DiasC. Costa-PereiraA. Outcome of ICU survivors: A comprehensive review. the role of patient-reported outcome studies.Acta Anaesthesiol. Scand.20125691092110310.1111/j.1399‑6576.2012.02686.x22471617
    [Google Scholar]
  98. MarikP.E. FarkasJ.D. The changing paradigm of sepsis: Early diagnosis, early antibiotics, early pressors, and early adjuvant treatment.Crit. Care Med.201846101690169210.1097/CCM.000000000000331030216303
    [Google Scholar]
  99. GlasperA. Recognising and responding to the early signs of sepsis.Br. J. Nurs.2016251587487510.12968/bjon.2016.25.15.87427523762
    [Google Scholar]
  100. MagalhaesE. PolitoA. PolitoA. SharsharT. Sepsis-Associated Encephalopathy.Textbook of Post-ICU Medicine: The Legacy of Critical Care.Oxford Academic RobertD. Stevens HartN. HerridgeM.S. 201435536810.1093/med/9780199653461.003.0032
    [Google Scholar]
  101. BrowneC.A. ClarkeG. FitzgeraldP. O’SullivanJ. DinanT.G. CryanJ.F. Distinct post-sepsis induced neurochemical alterations in two mouse strains.Brain Behav. Immun.2022104395310.1016/j.bbi.2022.05.00535569797
    [Google Scholar]
  102. ManabeT. HenekaM.T. Cerebral dysfunctions caused by sepsis during ageing.Nat. Rev. Immunol.202222744445810.1038/s41577‑021‑00643‑734764472
    [Google Scholar]
  103. ChiesaC. PaneroA. OsbornJ.F. SimonettiA.F. PacificoL. Diagnosis of neonatal sepsis: A clinical and laboratory challenge.Clin. Chem.200450227928710.1373/clinchem.2003.02517114752012
    [Google Scholar]
  104. ChanquesG. ElyE.W. GarnierO. PerrigaultF. EloiA. CarrJ. RowanC.M. PradesA. de JongA. Moritz-GasserS. MolinariN. JaberS. The 2014 updated version of the confusion assessment method for the intensive care unit compared to the 5th version of the diagnostic and statistical manual of mental disorders and other current methods used by intensivists.Ann. Intensive Care2018813310.1186/s13613‑018‑0377‑729492696
    [Google Scholar]
  105. von Hofen-HohlochJ. AwissusC. FischerM.M. MichalskiD. RumpfJ.J. ClassenJ. Delirium screening in neurocritical care and stroke unit patients: a pilot study on the influence of neurological deficits on CAM-ICU and ICDSC outcome.Neurocrit. Care202033370871710.1007/s12028‑020‑00938‑y32198728
    [Google Scholar]
  106. FrymoyerA. JoshiN.S. AllanJ.M. CohenR.S. AbyJ.L. KimJ.L. BenitzW.E. GuptaA. Sustainability of a clinical examination-based approach for ascertainment of early-onset sepsis in late preterm and term neonates.J. Pediatr.202022526326810.1016/j.jpeds.2020.05.05532511960
    [Google Scholar]
  107. AdamN. KandelmanS. MantzJ. ChrétienF. SharsharT. Sepsis-induced brain dysfunction.Expert Rev. Anti Infect. Ther.201311221122110.1586/eri.12.15923409826
    [Google Scholar]
  108. SekinoN. SelimM. ShehadahA. Sepsis-associated brain injury: underlying mechanisms and potential therapeutic strategies for acute and long-term cognitive impairments.J. Neuroinflammation202219110110.1186/s12974‑022‑02464‑435488237
    [Google Scholar]
  109. EsenF. OrhunG. ÖzcanP.E. Brenes BastosA.R. TüzünE. Diagnosing acute brain dysfunction due to sepsis.Neurol. Sci.2020411253310.1007/s10072‑019‑04069‑x31520167
    [Google Scholar]
  110. PantzarisN.D. PlatanakiC. TsiotsiosK. KoniariI. VelissarisD. The use of electroencephalography in patients with sepsis: A review of the literature.J. Transl. Int. Med.202191121610.2478/jtim‑2021‑000733850796
    [Google Scholar]
  111. IacoboneE. Bailly-SalinJ. PolitoA. FriedmanD. StevensR.D. SharsharT. Sepsis-associated encephalopathy and its differential diagnosis.Crit. Care Med.20093710Suppl.S331S33610.1097/CCM.0b013e3181b6ed5820046118
    [Google Scholar]
  112. LiuD. SaikamV. SkradaK.A. MerlinD. IyerS.S. Inflammatory bowel disease biomarkers.Med. Res. Rev.20224251856188710.1002/med.2189335603998
    [Google Scholar]
  113. AndersenL.L. BehmD.G. MaffiulettiN.A. SchoenfeldB.J. High-intensity physical training in the treatment of chronic diseases and disorders.BioMed Res. Int.20142014110.1155/2014/92730424895628
    [Google Scholar]
  114. AllozaI. HeggartyS. GorisA. GrahamC.A. DuboisB. McDonnellG. HawkinsS.A. Bibliography. current world literature. demyelinating diseases.Curr. Opin. Neurol.20061933162810.1097/01.wco.0000227045.46565.9f16702842
    [Google Scholar]
  115. ArnasonS. MolewijkK. HenningssonA.J. TjernbergI. SkogmanB.H. Brain damage markers neuron-specific enolase (NSE) and S100B in serum in children with Lyme neuroborreliosis—detection and evaluation as prognostic biomarkers for clinical outcome.Eur. J. Clin. Microbiol. Infect. Dis.20224171051105710.1007/s10096‑022‑04460‑135665437
    [Google Scholar]
  116. BangshøjJ. LiebetrauB. WibergS. GjedstedJ. KjærgaardJ. HassagerC. WanscherM. The value of the biomarkers neuron-specific enolase and S100 calcium-binding protein for prediction of mortality in children resuscitated after cardiac arrest.Pediatr. Cardiol.20224371659166510.1007/s00246‑022‑02899‑935429240
    [Google Scholar]
  117. TrzeciakA. PietropaoliA.P. KimM. Biomarkers and associated immune mechanisms for early detection and therapeutic management of sepsis.Immune Netw.2020203e2310.4110/in.2020.20.e2332655971
    [Google Scholar]
  118. LarsenF.F. PetersenJ.A. Novel biomarkers for sepsis: A narrative review.Eur. J. Intern. Med.201745465010.1016/j.ejim.2017.09.03028965741
    [Google Scholar]
  119. SharmaL. SharmaA. KumarD. AsthanaM.K. LalhlenmawiaH. KumarA. BhattacharyyaS. KumarD. Promising protein biomarkers in the early diagnosis of alzheimer’s disease.Metab. Brain Dis.20223761727174410.1007/s11011‑021‑00847‑935015199
    [Google Scholar]
  120. OrhunG. EsenF. ÖzcanP.E. SencerS. BilgiçB. UlusoyC. NoyanH. KüçükerdenM. AliA. BarburoğluM. TüzünE. Neuroimaging findings in sepsis-induced brain dysfunction: Association with clinical and laboratory findings.Neurocrit. Care201930110611710.1007/s12028‑018‑0581‑130027347
    [Google Scholar]
  121. FaixJ.D. Biomarkers of sepsis.Crit. Rev. Clin. Lab. Sci.2013501233610.3109/10408363.2013.76449023480440
    [Google Scholar]
  122. DolinH.H. PapadimosT.J. StepkowskiS. ChenX. PanZ.K. A novel combination of biomarkers to herald the onset of sepsis prior to the manifestation of symptoms.Shock201849436437010.1097/SHK.000000000000101029016484
    [Google Scholar]
  123. Morawska-KochmanM. ŚmieszekA. MarcinkowskaK. MaryczK.M. NelkeK. ZubK. ZatońskiT. BochniaM. Expression of apoptosis-related biomarkers in inflamed nasal sinus epithelium of patients with chronic rhinosinusitis with nasal polyps (CRSwNP)—evaluation at mRNA and miRNA levels.Biomedicines2022106140010.3390/biomedicines1006140035740420
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501381183250825144834
Loading
/content/journals/cdt/10.2174/0113894501381183250825144834
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test