Skip to content
2000
image of Sepsis-Associated Brain Dysfunction: Mechanisms, Clinical Insights, and Therapeutic Strategies

Abstract

Sepsis is a lethal clinical condition representing severe inflammation and immune suppression to pathogen or infection, leading to tissue damage or organ dysfunction. Hyper-inflammation and immune suppression cause a fatal, escalated Blood-Brain Barrier permeability, being a secondary response towards infection resulting in sepsis-associated brain dysfunction. These changes in the BBB lead to the brain’s susceptibility to increased morbidity and mortality. An important mechanism of sepsis-associated brain dysfunction includes excessive activation of microglial cells, altered brain endothelial barrier function, and BBB dysfunction. Lipopoly- saccharide, a bacterial cell wall component (endotoxin), by forming a complex through membrane-bound CD receptors on macrophages, monocytes, and neutrophils, begins synthesizing anti-inflammatory agents for defense of the host, including nitric oxide, cytokines, chemokines, interleukins, and the complement system. Unrestrained endotoxemia and pro-inflammatory cytokines result in microglial as well as brain endothelial cell stimulation, downregulation of tight junctions, along with intense recruitment of leucocytes. Subsequent neuroinflammation, together with BBB dysfunction, aggravates brain pathology as well as worsens sepsis-associated brain dysfunction. The clinical demonstration includes mild (confusion and delirium) along with severe (cognitive impairment, coma, as well as sequel death). Different clinical neurophysiological evaluation parameters can be used for the quantification and important issues of the disorder, including SOFA, imaging methods, and the use of biomarkers associated with brain dysfunction. The present review addresses the mechanism, clinical examination, the long-term cognitive effects, and current treatment modalities for sepsis-associated brain dysfunction.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501381183250825144834
2025-09-02
2025-09-10
Loading full text...

Full text loading...

References

  1. Hotchkiss R.S. Moldawer L.L. Opal S.M. Reinhart K. Turnbull I.R. Vincent J.L. Sepsis and septic shock. Nat. Rev. Dis. Primers 2016 2 1 16045 10.1038/nrdp.2016.45 28117397
    [Google Scholar]
  2. Lelubre C. Vincent J.L. Mechanisms and treatment of organ failure in sepsis. Nat. Rev. Nephrol. 2018 14 7 417 427 10.1038/s41581‑018‑0005‑7 29691495
    [Google Scholar]
  3. Shankar-Hari M. Saha R. Wilson J. Prescott H.C. Harrison D. Rowan K. Rubenfeld G.D. Adhikari N.K.J. Rate and risk factors for rehospitalisation in sepsis survivors: Systematic review and meta- analysis. Intensive Care Med. 2020 46 4 619 636 10.1007/s00134‑019‑05908‑3 31974919
    [Google Scholar]
  4. Hosokawa K. Gaspard N. Su F. Oddo M. Vincent J.L. Taccone F.S. Clinical neurophysiological assessment of sepsis-associated brain dysfunction: A systematic review. Crit. Care 2014 18 6 674 10.1186/s13054‑014‑0674‑y 25482125
    [Google Scholar]
  5. Czempik P.F. Pluta M.P. Krzych Ł.J. Sepsis-associated brain dysfunction: A review of current literature. Int. J. Environ. Res. Public Health 2020 17 16 5852 10.3390/ijerph17165852 32806705
    [Google Scholar]
  6. Sonneville R. Verdonk F. Rauturier C. Klein I.F. Wolff M. Annane D. Chretien F. Sharshar T. Understanding brain dysfunction in sepsis. Ann. Intensive Care 2013 3 1 15 10.1186/2110‑5820‑3‑15 23718252
    [Google Scholar]
  7. Stephen A.H. Montoya R.L. Aluisio A.R. Sepsis and septic shock in low-and middle-income countries. Surg. Infect. (Larchmt.) 2020 21 7 571 578 10.1089/sur.2020.047 32401160
    [Google Scholar]
  8. Rabee H.A. Tanbour R. Nazzal Z. Hamshari Y. Habash Y. Anaya A. Iter A. Gharbeyah M. Abugaber D. Epidemiology of sepsis syndrome among intensive care unit patients at a tertiary university hospital in palestine in 2019. Indian J. Crit. Care Med. 2020 24 7 551 556 10.5005/jp‑journals‑10071‑23474 32963438
    [Google Scholar]
  9. Rudd K.E. Johnson S.C. Agesa K.M. Shackelford K.A. Tsoi D. Kievlan D.R. Colombara D.V. Ikuta K.S. Kissoon N. Finfer S. Fleischmann-Struzek C. Machado F.R. Reinhart K.K. Rowan K. Seymour C.W. Watson R.S. West T.E. Marinho F. Hay S.I. Lozano R. Lopez A.D. Angus D.C. Murray C.J.L. Naghavi M. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the global burden of disease study. Lancet 2020 395 10219 200 211 10.1016/S0140‑6736(19)32989‑7 31954465
    [Google Scholar]
  10. World Health Organization Global report on the epidemiology and burden of sepsis: current evidence, identifying gaps and future directions. https://apps.who.int/iris/handle/10665/334216 2020
  11. World Health Organization Public consultation of experts to join the Guideline Development Group (GDG) for Defeating Meningitis by 2030 Roadmap: Meningitis diagnosis, treatment and care guidelines. https://www.who.int/news/item/01-05-2023- public-consultation-of-experts-to-join-the-guideline-development-group-(gdg)-for-defeating-meningitis-by-2030-roadmap-meningitis-diagnosis-treatment-and-care-guidelines 2023
  12. Cecconi M. Evans L. Levy M. Rhodes A. Sepsis and septic shock. Lancet 2018 392 10141 75 87 10.1016/S0140‑6736(18)30696‑2 29937192
    [Google Scholar]
  13. Nguyen H.B. Rivers E.P. Abrahamian F.M. Moran G.J. Abraham E. Trzeciak S. Huang D.T. Osborn T. Stevens D. Talan D.A. Program E.D.S.E. Severe sepsis and septic shock: Review of the literature and emergency department management guidelines. Ann. Emerg. Med. 2006 48 1 54.e1 10.1016/j.annemergmed.2006.02.015 16781920
    [Google Scholar]
  14. Mira J.C. Gentile L.F. Mathias B.J. Efron P.A. Brakenridge S.C. Mohr A.M. Moore F.A. Moldawer L.L. Sepsis pathophysiology, chronic critical illness and PICS. Crit. Care Med. 2017 45 2 253 10.1097/CCM.0000000000002074 27632674
    [Google Scholar]
  15. Sazonov V. Abylkassov R. Tobylbayeva Z. Saparov A. Mironova O. Poddighe D. Case series: Efficacy and safety of hemoadsorption with HA-330 adsorber in septic pediatric patients with cancer. Front Pediatr. 2021 9 672260 10.3389/fped.2021.672260 34178889
    [Google Scholar]
  16. Keith P.D. Wells A.H. Hodges J. Fast S.H. Adams A. Scott L.K. The therapeutic efficacy of adjunct therapeutic plasma exchange for septic shock with multiple organ failure: A single-center experience. Crit. Care 2020 24 1 518 10.1186/s13054‑020‑03241‑6 32831133
    [Google Scholar]
  17. Kumar S. Payal N. Srivastava V.K. Kaushik S. Saxena J. Jyoti A. Neutrophil extracellular traps and organ dysfunction in sepsis. Clin. Chim. Acta 2021 523 152 162 10.1016/j.cca.2021.09.012 34537216
    [Google Scholar]
  18. Tang D. Kang R. Coyne C.B. Zeh H.J. Lotze M.T. PAMPs and DAMPs: Signal 0s that spur autophagy and immunity. Immunol. Rev. 2012 249 1 158 175 10.1111/j.1600‑065X.2012.01146.x 22889221
    [Google Scholar]
  19. Hotchkiss R.S. Tinsley K.W. Karl i.e. Role of apoptotic cell death in sepsis. Scand. J. Infect. Dis. 2003 35 9 585 592 10.1080/00365540310015692 14620139
    [Google Scholar]
  20. Merle N.S. Noe R. Halbwachs-Mecarelli L. Fremeaux-Bacchi V. Roumenina L.T. Complement system part II: Role in immunity. Front. Immunol. 2015 6 257 10.3389/fimmu.2015.00257 26074922
    [Google Scholar]
  21. Guo R.F. Ward P.A. Role of C5a in inflammatory responses. Annu. Rev. Immunol. 2005 23 1 821 852 10.1146/annurev.immunol.23.021704.115835 15771587
    [Google Scholar]
  22. Shao Z. Nishimura T. Leung L.L.K. Morser J. Carboxypeptidase B2 deficiency reveals opposite effects of complement C3a and C5a in a murine polymicrobial sepsis model. J. Thromb. Haemost. 2015 13 6 1090 1102 10.1111/jth.12956 25851247
    [Google Scholar]
  23. Ward P.A. The harmful role of c5a on innate immunity in sepsis. J. Innate Immun. 2010 2 5 439 445 10.1159/000317194 20588003
    [Google Scholar]
  24. Ward P.A. New approaches to the study of sepsis. EMBO Mol. Med. 2012 4 12 1234 1243 10.1002/emmm.201201375 23208733
    [Google Scholar]
  25. Ono S. Tsujimoto H. Hiraki S. Aosasa S. Mechanisms of sepsis-induced immunosuppression and immunological modification therapies for sepsis. Ann. Gastroenterol. Surg. 2018 2 5 351 358 10.1002/ags3.12194 30238076
    [Google Scholar]
  26. Gentile L.F. Cuenca A.G. Efron P.A. Ang D. Bihorac A. McKinley B.A. Moldawer L.L. Moore F.A. Persistent inflammation and immunosuppression. J. Trauma Acute Care Surg. 2012 72 6 1491 1501 10.1097/TA.0b013e318256e000 22695412
    [Google Scholar]
  27. Wu J. Hu L. Zhang G. Wu F. He T. Accuracy of presepsin in sepsis diagnosis: A systematic review and meta-analysis. PLoS One 2015 10 7 e0133057 10.1371/journal.pone.0133057 26192602
    [Google Scholar]
  28. Vanzant E.L. Lopez C.M. Ozrazgat-Baslanti T. Ungaro R. Davis R. Cuenca A.G. Gentile L.F. Nacionales D.C. Cuenca A.L. Bihorac A. Leeuwenburgh C. Lanz J. Baker H.V. McKinley B. Moldawer L.L. Moore F.A. Efron P.A. Persistent inflammation, immunosuppression, and catabolism syndrome after severe blunt trauma. J. Trauma Acute Care Surg. 2014 76 1 21 30 10.1097/TA.0b013e3182ab1ab5 24368353
    [Google Scholar]
  29. Walton A.H. Muenzer J.T. Rasche D. Boomer J.S. Sato B. Brownstein B.H. Pachot A. Brooks T.L. Deych E. Shannon W.D. Green J.M. Storch G.A. Hotchkiss R.S. Reactivation of multiple viruses in patients with sepsis. PLoS One 2014 9 6 e98819 10.1371/journal.pone.0098819 24919177
    [Google Scholar]
  30. Deutschman C.S. Tracey K.J. Sepsis: Current dogma and new perspectives. Immunity 2014 40 4 463 475 10.1016/j.immuni.2014.04.001 24745331
    [Google Scholar]
  31. Joffre J. Hellman J. Ince C. Ait-Oufella H. Endothelial responses in sepsis. Am. J. Respir. Crit. Care Med. 2020 202 3 361 370 10.1164/rccm.201910‑1911TR 32101446
    [Google Scholar]
  32. Pons S. Arnaud M. Loiselle M. Arrii E. Azoulay E. Zafrani L. Immune consequences of endothelial cells’ activation and dysfunction during sepsis. Crit. Care Clin. 2020 36 2 401 413 10.1016/j.ccc.2019.12.001 32172821
    [Google Scholar]
  33. Costello R.A. Nehring S.M. Disseminated intravascular coagulation. StatPearls [Internet]. StatPearls Treasure Island 2017 28722864
    [Google Scholar]
  34. Iba T. Levy J.H. Connors J.M. Warkentin T.E. Thachil J. Levi M. The unique characteristics of COVID-19 coagulopathy. Crit. Care 2020 24 1 360 10.1186/s13054‑020‑03077‑0 32552865
    [Google Scholar]
  35. Sygitowicz G. Sitkiewicz D. Molecular mechanisms of organ damage in sepsis: An overview. Braz. J. Infect. Dis. 2020 24 6 552 560 10.1016/j.bjid.2020.09.004 33169675
    [Google Scholar]
  36. Sygitowicz G. Sitkiewicz D. Organ damage in sepsis: Molecular mechanisms. Infections and Sepsis Development. IntechOpen 2021 10.5772/intechopen.98302
    [Google Scholar]
  37. Gu M. Mei X.L. Zhao Y.N. Sepsis and cerebral dysfunction: BBB damage, neuroinflammation, oxidative stress, apoptosis and autophagy as key mediators and the potential therapeutic approaches. Neurotox. Res. 2021 39 2 489 503 10.1007/s12640‑020‑00270‑5 32876918
    [Google Scholar]
  38. Bozza F.A. D’Avila J.C. Ritter C. Sonneville R. Sharshar T. Dal-Pizzol F. Bioenergetics, mitochondrial dysfunction, and oxidative stress in the pathophysiology of septic encephalopathy. Shock 2013 39 Suppl. 1 10 16 10.1097/SHK.0b013e31828fade1 23481496
    [Google Scholar]
  39. Rittirsch D. Flierl M.A. Ward P.A. Harmful molecular mechanisms in sepsis. Nat. Rev. Immunol. 2008 8 10 776 787 10.1038/nri2402 18802444
    [Google Scholar]
  40. Fülesdi B. Molnar L. Németh N. Molnár C. Sepsis-associated encephalopathy: A review of literature. Neurol. India 2018 66 2 352 361 10.4103/0028‑3886.227299 29547154
    [Google Scholar]
  41. Boomer J.S. Shuherk-Shaffer J. Hotchkiss R.S. Green J.M. A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis. Crit. Care 2012 16 3 R112 10.1186/cc11404 22742734
    [Google Scholar]
  42. Berg R.M.G. Møller K. Bailey D.M. Neuro-oxidative-nitrosative stress in sepsis. J. Cereb. Blood Flow Metab. 2011 31 7 1532 1544 10.1038/jcbfm.2011.48 21487413
    [Google Scholar]
  43. Duchini A. McHutchison J.G. Pockros P.J. LKM-positive autoimmune hepatitis in the western United States: A case series. Am. J. Gastroenterol. 2000 95 11 3238 3241 10.1111/j.1572‑0241.2000.03207.x 11095348
    [Google Scholar]
  44. Abramova A.A. Grinberg L.M. [Pathology of anthrax sepsis according to materials of the infectious outbreak in 1979 in Sverdlovsk (macroscopic changes)]. Arkh. Patol. 1993 55 1 12 17 7980032
    [Google Scholar]
  45. Akrout N. Sharshar T. Annane D. Mechanisms of brain signaling during sepsis. Curr. Neuropharmacol. 2009 7 4 296 301 10.2174/157015909790031175 20514209
    [Google Scholar]
  46. Rivest S. Lacroix S. Vallières L. Nadeau S. Zhang J. Laflamme N. How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proc. Soc. Exp. Biol. Med. 2000 223 1 22 38 10632958
    [Google Scholar]
  47. Roth E. Funovics J. Mühlbacher F. Schemper M. Mauritz W. Sporn P. Fritsch A. Metabolic disorders in severe abdominal sepsis: Glutamine deficiency in skeletal muscle. Clin. Nutr. 1982 1 1 25 41 10.1016/0261‑5614(82)90004‑8 16829366
    [Google Scholar]
  48. Laflamme N. Rivest S. Effects of systemic immunogenic insults and circulating proinflammatory cytokines on the transcription of the inhibitory factor kappaB α within specific cellular populations of the rat brain. J. Neurochem. 1999 73 1 309 321 10.1046/j.1471‑4159.1999.0730309.x 10386984
    [Google Scholar]
  49. Lacroix-Desmazes S. Bayry J. Kaveri S.V. Hayon-Sonsino D. Thorenoor N. Charpentier J. Luyt C.E. Mira J.P. Nagaraja V. Kazatchkine M.D. Dhainaut J.F. Mallet V.O. High levels of catalytic antibodies correlate with favorable outcome in sepsis. Proc. Natl. Acad. Sci. USA 2005 102 11 4109 4113 10.1073/pnas.0500586102 15743915
    [Google Scholar]
  50. Siami S. Annane D. Sharshar T. The encephalopathy in sepsis. Crit. Care Clin. 2008 24 1 67 82, viii 10.1016/j.ccc.2007.10.001 18241779
    [Google Scholar]
  51. Tracey K.J. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Invest. 2007 117 2 289 296 10.1172/JCI30555 17273548
    [Google Scholar]
  52. Heir R. Stellwagen D. TNF-mediated homeostatic synaptic plasticity: From in vitro to in vivo models. Front. Cell. Neurosci. 2020 14 565841 10.3389/fncel.2020.565841 33192311
    [Google Scholar]
  53. Terrando N. Rei Fidalgo A. Vizcaychipi M. Cibelli M. Ma D. Monaco C. Feldmann M. Maze M. The impact of IL-1 modulation on the development of lipopolysaccharide-induced cognitive dysfunction. Crit. Care 2010 14 3 R88 10.1186/cc9019 20470406
    [Google Scholar]
  54. Terrando N. Pavlov V.A. Neuro-immune interactions in inflammation and autoimmunity. Front. Immunol. 2018 9 772 10.3389/fimmu.2018.00772 29713326
    [Google Scholar]
  55. Chavan S.S. Huerta P.T. Robbiati S. Valdes-Ferrer S.I. Ochani M. Dancho M. Frankfurt M. Volpe B.T. Tracey K.J. Diamond B. HMGB1 mediates cognitive impairment in sepsis survivors. Mol. Med. 2012 18 6 930 937 10.2119/molmed.2012.00195 22634723
    [Google Scholar]
  56. Westhoff D. Engelen-Lee J.Y. Hoogland I.C.M. Aronica E.M.A. van Westerloo D.J. van de Beek D. van Gool W.A. Systemic infection and microglia activation: a prospective postmortem study in sepsis patients. Immun. Ageing 2019 16 1 18 10.1186/s12979‑019‑0158‑7 31384283
    [Google Scholar]
  57. Semmler A. Hermann S. Mormann F. Weberpals M. Paxian S.A. Okulla T. Schäfers M. Kummer M.P. Klockgether T. Heneka M.T. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J. Neuroinflammation 2008 5 1 38 10.1186/1742‑2094‑5‑38 18793399
    [Google Scholar]
  58. Sharshar T. Carlier R. Bernard F. Guidoux C. Brouland J.P. Nardi O. de la Grandmaison G.L. Aboab J. Gray F. Menon D. Annane D. Brain lesions in septic shock: A magnetic resonance imaging study. Intensive Care Med. 2007 33 5 798 806 10.1007/s00134‑007‑0598‑y 17377766
    [Google Scholar]
  59. Sharshar T. Gray F. Poron F. Raphael J.C. Gajdos P. Annane D. Multifocal necrotizing leukoencephalopathy in septic shock. Crit. Care Med. 2002 30 10 2371 2375 10.1097/00003246‑200210000‑00031 12394971
    [Google Scholar]
  60. Barichello T. Generoso J.S. Collodel A. Petronilho F. Dal-Pizzol F. The blood-brain barrier dysfunction in sepsis. Tissue Barriers. 2021 9 1 1840912 10.1080/21688370.2020.1840912 33319634
    [Google Scholar]
  61. Barichello T. Generoso J.S. Singer M. Dal-Pizzol F. Biomarkers for sepsis: More than just fever and leukocytosis—a narrative review. Crit. Care 2022 26 1 14 10.1186/s13054‑021‑03862‑5 34991675
    [Google Scholar]
  62. Nishioku T. Dohgu S. Takata F. Eto T. Ishikawa N. Kodama K.B. Nakagawa S. Yamauchi A. Kataoka Y. Detachment of brain pericytes from the basal lamina is involved in disruption of the blood-brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cell. Mol. Neurobiol. 2009 29 3 309 316 10.1007/s10571‑008‑9322‑x 18987969
    [Google Scholar]
  63. Ziaja M. Septic Encephalopathy. Curr. Neurol. Neurosci. Rep. 2013 13 10 383 10.1007/s11910‑013‑0383‑y 23954971
    [Google Scholar]
  64. Handa O. Stephen J. Cepinskas G. Role of endothelial nitric oxide synthase-derived nitric oxide in activation and dysfunction of cerebrovascular endothelial cells during early onsets of sepsis. Am. J. Physiol. Heart Circ. Physiol. 2008 295 4 H1712 H1719 10.1152/ajpheart.00476.2008 18723768
    [Google Scholar]
  65. Taccone F.S. Scolletta S. Franchi F. Donadello K. Oddo M. Brain perfusion in sepsis. Curr. Vasc. Pharmacol. 2013 11 2 170 186 23506496
    [Google Scholar]
  66. Davis W.T. April M.D. Mehta S. Long B. Shroyer S. High risk clinical characteristics for pyogenic spinal infection in acute neck or back pain: Prospective cohort study. Am. J. Emerg. Med. 2020 38 3 491 496 10.1016/j.ajem.2019.05.025 31128933
    [Google Scholar]
  67. Davies B. Cohen J. Endotoxin removal devices for the treatment of sepsis and septic shock. Lancet Infect. Dis. 2011 11 1 65 71 10.1016/S1473‑3099(10)70220‑6 21183148
    [Google Scholar]
  68. Abohassan A. Hashish M. Community acquired pneumonia, risk factors and mortality in patients admitted to internal medicine icu unit, al azhar university’s hospitals. J. Egypt. Soc. Parasitol. 2021 51 1 73 78 10.21608/jesp.2021.165941
    [Google Scholar]
  69. van Gool W.A. van de Beek D. Eikelenboom P. Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet 2010 375 9716 773 775 10.1016/S0140‑6736(09)61158‑2 20189029
    [Google Scholar]
  70. Huston J.M. The vagus nerve and the inflammatory reflex: Wandering on a new treatment paradigm for systemic inflammation and sepsis. Surg. Infect. (Larchmt.) 2012 13 4 187 193 10.1089/sur.2012.126 22913335
    [Google Scholar]
  71. Bariş E. Arici M.A. Hamurteki̇n E. The role of nicotinic anti-inflammatory pathway in prostaglandin mediated inflammatory response in sepsis: A short review. Clin Exp Health Sci. 2019 9 4 350 357 10.33808/clinexphealthsci.548030
    [Google Scholar]
  72. Cesar Pontes Azevedo L. Mitochondrial dysfunction during sepsis. Endocr Metab Immune Disord Drug Targets. 2010 10 3 214 23 10.2174/187153010791936946 20509844
    [Google Scholar]
  73. Chaudhry N. Duggal A.K. Duggal, A.K. Sepsis associated encephalopathy. Adv. Med. 2014 2014 1 16 10.1155/2014/762320
    [Google Scholar]
  74. Zampieri F.G. Park M. Machado F.S. Azevedo L.C.P. Sepsis-associated encephalopathy: not just delirium. Clinics (São Paulo) 2011 66 10 1825 1831 10.1590/S1807‑59322011001000024 22012058
    [Google Scholar]
  75. Galley H.F. Oxidative stress and mitochondrial dysfunction in sepsis. Br. J. Anaesth. 2011 107 1 57 64 10.1093/bja/aer093 21596843
    [Google Scholar]
  76. Mattson M.P. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 1997 77 4 1081 1132 10.1152/physrev.1997.77.4.1081 9354812
    [Google Scholar]
  77. Xie Z. Xu M. Xie J. Liu T. Xu X. Gao W. Li Z. Bai X. Liu X. Inhibition of ferroptosis attenuates glutamate excitotoxicity and nuclear autophagy in a clp septic mouse model. shock: Injury, inflammation, and sepsis. Shock 2022 57 5 694 702 10.1097/SHK.0000000000001893 35066511
    [Google Scholar]
  78. Wilson J.X. Young G.B. Progress in clinical neurosciences: Sepsis-associated encephalopathy: Evolving concepts. Can. J. Neurol. Sci. 2003 30 2 98 105 10.1017/S031716710005335X 12774948
    [Google Scholar]
  79. Mantzarlis K. Tsolaki V. Zakynthinos E. Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies. Oxid. Med. Cell. Longev. 2017 2017 1 5985209 10.1155/2017/5985209 28904739
    [Google Scholar]
  80. Ricklin D. Hajishengallis G. Yang K. Lambris J.D. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol. 2010 11 9 785 797 10.1038/ni.1923 20720586
    [Google Scholar]
  81. Mollnes T.E. Huber-Lang M. Complement in sepsis—when science meets clinics. FEBS Lett. 2020 594 16 2621 2632 10.1002/1873‑3468.13881 32621378
    [Google Scholar]
  82. Halbgebauer R. Schmidt C.Q. Karsten C.M. Ignatius A. Huber-Lang M. Janus face of complement-driven neutrophil activation during sepsis. Semin. Immunol. 2018 37 12 20 10.1016/j.smim.2018.02.004 29454576
    [Google Scholar]
  83. Pytel P. Alexander J.J. Pathogenesis of septic encephalopathy. Curr. Opin. Neurol. 2009 22 3 283 287 10.1097/WCO.0b013e32832b3101 19387342
    [Google Scholar]
  84. Hirano Y. Aziz M. Yang W.L. Wang Z. Zhou M. Ochani M. Khader A. Wang P. Neutralization of osteopontin attenuates neutrophil migration in sepsis-induced acute lung injury. Crit. Care 2015 19 1 53 10.1186/s13054‑015‑0782‑3 25887405
    [Google Scholar]
  85. Matsumoto H. Ogura H. Shimizu K. Ikeda M. Hirose T. Matsuura H. Kang S. Takahashi K. Tanaka T. Shimazu T. The clinical importance of a cytokine network in the acute phase of sepsis. Sci. Rep. 2018 8 1 13995 10.1038/s41598‑018‑32275‑8 30228372
    [Google Scholar]
  86. Pravda J. Sepsis: Evidence-based pathogenesis and treatment. World J. Crit. Care Med. 2021 10 4 66 80 10.5492/wjccm.v10.i4.66 34316443
    [Google Scholar]
  87. Englert J.A. Rogers A.J. Metabolism, metabolomics, and nutritional support of patients with sepsis. Clin. Chest Med. 2016 37 2 321 331 10.1016/j.ccm.2016.01.011 27229648
    [Google Scholar]
  88. Bissinger R. Bhuyan A.A.M. Qadri S.M. Lang F. Oxidative stress, eryptosis and anemia: A pivotal mechanistic nexus in systemic diseases. FEBS J. 2019 286 5 826 854 10.1111/febs.14606 30028073
    [Google Scholar]
  89. Pan S. Lv Z. Wang R. Shu H. Yuan S. Yu Y. Shang Y. Sepsis-induced brain dysfunction: Pathogenesis, diagnosis, and treatment. Oxid Med Cell Longev. 2022 10.1155/2022/1328729 36062193 PMC9433216
    [Google Scholar]
  90. Pandharipande P.P. Girard T.D. Jackson J.C. Morandi A. Thompson J.L. Pun B.T. Brummel N.E. Hughes C.G. Vasilevskis E.E. Shintani A.K. Moons K.G. Geevarghese S.K. Canonico A. Hopkins R.O. Bernard G.R. Dittus R.S. Ely E.W. Long-term cognitive impairment after critical illness. N. Engl. J. Med. 2013 369 14 1306 1316 10.1056/NEJMoa1301372 24088092
    [Google Scholar]
  91. Shah F.A. Pike F. Alvarez K. Angus D. Newman A.B. Lopez O. Tate J. Kapur V. Wilsdon A. Krishnan J.A. Hansel N. Au D. Avdalovic M. Fan V.S. Barr R.G. Yende S. Bidirectional relationship between cognitive function and pneumonia. Am. J. Respir. Crit. Care Med. 2013 188 5 586 592 10.1164/rccm.201212‑2154OC 23848267
    [Google Scholar]
  92. Dlugaj M. Gerwig M. Wege N. Siegrist J. Mann K. Bröcker-Preuß M. Dragano N. Moebus S. Jöckel K.H. Bokhof B. Möhlenkamp S. Erbel R. Weimar C. Elevated levels of high-sensitivity C-reactive protein are associated with mild cognitive impairment and its subtypes: Results of a population-based case-control study. J. Alzheimers Dis. 2012 28 3 503 514 10.3233/JAD‑2011‑111352 22008268
    [Google Scholar]
  93. Sasannejad C. Ely E.W. Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: A review of clinical impact and pathophysiological mechanisms. Crit. Care 2019 23 1 352 10.1186/s13054‑019‑2626‑z 31718695
    [Google Scholar]
  94. Ide K. Uchida H. Sakamoto S. Nishimura N. Nakagawa S. Kobayashi T. Ito S. Kasahara M. Neurological impairment in children with acute liver failure following liver transplantation—a single-center experience. Pediatr. Transplant. 2022 26 4 e14240 10.1111/petr.14240 35132740
    [Google Scholar]
  95. Mostel Z. Perl A. Marck M. Mehdi S.F. Lowell B. Bathija S. Santosh R. Pavlov V.A. Chavan S.S. Roth J. Post-sepsis syndrome – an evolving entity that afflicts survivors of sepsis. Mol. Med. 2020 26 1 6 10.1186/s10020‑019‑0132‑z 31892321
    [Google Scholar]
  96. Hopkins R.O. Weaver L.K. Pope D. Orme J.F. Jr Bigler E.D. Larson-Lohr V. Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1999 160 1 50 56 10.1164/ajrccm.160.1.9708059 10390379
    [Google Scholar]
  97. Granja C. Amaro A. Dias C. Costa-Pereira A. Outcome of ICU survivors: A comprehensive review. the role of patient-reported outcome studies. Acta Anaesthesiol. Scand. 2012 56 9 1092 1103 10.1111/j.1399‑6576.2012.02686.x 22471617
    [Google Scholar]
  98. Marik P.E. Farkas J.D. The changing paradigm of sepsis: Early diagnosis, early antibiotics, early pressors, and early adjuvant treatment. Crit. Care Med. 2018 46 10 1690 1692 10.1097/CCM.0000000000003310 30216303
    [Google Scholar]
  99. Glasper A. Recognising and responding to the early signs of sepsis. Br. J. Nurs. 2016 25 15 874 875 10.12968/bjon.2016.25.15.874 27523762
    [Google Scholar]
  100. Magalhaes E. Polito A. Polito A. Sharshar T. Sepsis-Associated Encephalopathy. Textbook of Post-ICU Medicine: The Legacy of Critical Care. Oxford Academic Robert D. Stevens Hart N. Herridge M.S. 2014 355 368 10.1093/med/9780199653461.003.0032
    [Google Scholar]
  101. Browne C.A. Clarke G. Fitzgerald P. O’Sullivan J. Dinan T.G. Cryan J.F. Distinct post-sepsis induced neurochemical alterations in two mouse strains. Brain Behav. Immun. 2022 104 39 53 10.1016/j.bbi.2022.05.005 35569797
    [Google Scholar]
  102. Manabe T. Heneka M.T. Cerebral dysfunctions caused by sepsis during ageing. Nat. Rev. Immunol. 2022 22 7 444 458 10.1038/s41577‑021‑00643‑7 34764472
    [Google Scholar]
  103. Chiesa C. Panero A. Osborn J.F. Simonetti A.F. Pacifico L. Diagnosis of neonatal sepsis: A clinical and laboratory challenge. Clin. Chem. 2004 50 2 279 287 10.1373/clinchem.2003.025171 14752012
    [Google Scholar]
  104. Chanques G. Ely E.W. Garnier O. Perrigault F. Eloi A. Carr J. Rowan C.M. Prades A. de Jong A. Moritz-Gasser S. Molinari N. Jaber S. The 2014 updated version of the confusion assessment method for the intensive care unit compared to the 5th version of the diagnostic and statistical manual of mental disorders and other current methods used by intensivists. Ann. Intensive Care 2018 8 1 33 10.1186/s13613‑018‑0377‑7 29492696
    [Google Scholar]
  105. von Hofen-Hohloch J. Awissus C. Fischer M.M. Michalski D. Rumpf J.J. Classen J. Delirium screening in neurocritical care and stroke unit patients: a pilot study on the influence of neurological deficits on CAM-ICU and ICDSC outcome. Neurocrit. Care 2020 33 3 708 717 10.1007/s12028‑020‑00938‑y 32198728
    [Google Scholar]
  106. Frymoyer A. Joshi N.S. Allan J.M. Cohen R.S. Aby J.L. Kim J.L. Benitz W.E. Gupta A. Sustainability of a clinical examination-based approach for ascertainment of early-onset sepsis in late preterm and term neonates. J. Pediatr. 2020 225 263 268 10.1016/j.jpeds.2020.05.055 32511960
    [Google Scholar]
  107. Adam N. Kandelman S. Mantz J. Chrétien F. Sharshar T. Sepsis-induced brain dysfunction. Expert Rev. Anti Infect. Ther. 2013 11 2 211 221 10.1586/eri.12.159 23409826
    [Google Scholar]
  108. Sekino N. Selim M. Shehadah A. Sepsis-associated brain injury: underlying mechanisms and potential therapeutic strategies for acute and long-term cognitive impairments. J. Neuroinflammation 2022 19 1 101 10.1186/s12974‑022‑02464‑4 35488237
    [Google Scholar]
  109. Esen F. Orhun G. Özcan P.E. Brenes Bastos A.R. Tüzün E. Diagnosing acute brain dysfunction due to sepsis. Neurol. Sci. 2020 41 1 25 33 10.1007/s10072‑019‑04069‑x 31520167
    [Google Scholar]
  110. Pantzaris N.D. Platanaki C. Tsiotsios K. Koniari I. Velissaris D. The use of electroencephalography in patients with sepsis: A review of the literature. J. Transl. Int. Med. 2021 9 1 12 16 10.2478/jtim‑2021‑0007 33850796
    [Google Scholar]
  111. Iacobone E. Bailly-Salin J. Polito A. Friedman D. Stevens R.D. Sharshar T. Sepsis-associated encephalopathy and its differential diagnosis. Crit. Care Med. 2009 37 10 Suppl. S331 S336 10.1097/CCM.0b013e3181b6ed58 20046118
    [Google Scholar]
  112. Liu D. Saikam V. Skrada K.A. Merlin D. Iyer S.S. Inflammatory bowel disease biomarkers. Med. Res. Rev. 2022 42 5 1856 1887 10.1002/med.21893 35603998
    [Google Scholar]
  113. Andersen L.L. Behm D.G. Maffiuletti N.A. Schoenfeld B.J. High-intensity physical training in the treatment of chronic diseases and disorders. BioMed Res. Int. 2014 2014 1 10.1155/2014/927304 24895628
    [Google Scholar]
  114. Alloza I. Heggarty S. Goris A. Graham C.A. Dubois B. McDonnell G. Hawkins S.A. Bibliography. current world literature. demyelinating diseases. Curr. Opin. Neurol. 2006 19 3 316 28 10.1097/01.wco.0000227045.46565.9f 16702842
    [Google Scholar]
  115. Arnason S. Molewijk K. Henningsson A.J. Tjernberg I. Skogman B.H. Brain damage markers neuron-specific enolase (NSE) and S100B in serum in children with Lyme neuroborreliosis—detection and evaluation as prognostic biomarkers for clinical outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2022 41 7 1051 1057 10.1007/s10096‑022‑04460‑1 35665437
    [Google Scholar]
  116. Bangshøj J. Liebetrau B. Wiberg S. Gjedsted J. Kjærgaard J. Hassager C. Wanscher M. The value of the biomarkers neuron-specific enolase and S100 calcium-binding protein for prediction of mortality in children resuscitated after cardiac arrest. Pediatr. Cardiol. 2022 43 7 1659 1665 10.1007/s00246‑022‑02899‑9 35429240
    [Google Scholar]
  117. Trzeciak A. Pietropaoli A.P. Kim M. Biomarkers and associated immune mechanisms for early detection and therapeutic management of sepsis. Immune Netw. 2020 20 3 e23 10.4110/in.2020.20.e23 32655971
    [Google Scholar]
  118. Larsen F.F. Petersen J.A. Novel biomarkers for sepsis: A narrative review. Eur. J. Intern. Med. 2017 45 46 50 10.1016/j.ejim.2017.09.030 28965741
    [Google Scholar]
  119. Sharma L. Sharma A. Kumar D. Asthana M.K. Lalhlenmawia H. Kumar A. Bhattacharyya S. Kumar D. Promising protein biomarkers in the early diagnosis of alzheimer’s disease. Metab. Brain Dis. 2022 37 6 1727 1744 10.1007/s11011‑021‑00847‑9 35015199
    [Google Scholar]
  120. Orhun G. Esen F. Özcan P.E. Sencer S. Bilgiç B. Ulusoy C. Noyan H. Küçükerden M. Ali A. Barburoğlu M. Tüzün E. Neuroimaging findings in sepsis-induced brain dysfunction: Association with clinical and laboratory findings. Neurocrit. Care 2019 30 1 106 117 10.1007/s12028‑018‑0581‑1 30027347
    [Google Scholar]
  121. Faix J.D. Biomarkers of sepsis. Crit. Rev. Clin. Lab. Sci. 2013 50 1 23 36 10.3109/10408363.2013.764490 23480440
    [Google Scholar]
  122. Dolin H.H. Papadimos T.J. Stepkowski S. Chen X. Pan Z.K. A novel combination of biomarkers to herald the onset of sepsis prior to the manifestation of symptoms. Shock 2018 49 4 364 370 10.1097/SHK.0000000000001010 29016484
    [Google Scholar]
  123. Morawska-Kochman M. Śmieszek A. Marcinkowska K. Marycz K.M. Nelke K. Zub K. Zatoński T. Bochnia M. Expression of apoptosis-related biomarkers in inflamed nasal sinus epithelium of patients with chronic rhinosinusitis with nasal polyps (CRSwNP)—evaluation at mRNA and miRNA levels. Biomedicines 2022 10 6 1400 10.3390/biomedicines10061400 35740420
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501381183250825144834
Loading
/content/journals/cdt/10.2174/0113894501381183250825144834
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test