Skip to content
2000
image of Innovative Strategies and Advances in Drug Delivery Systems to Address Poor Solubility: A Comprehensive Review

Abstract

Poor solubility remains a significant obstacle in drug administration, adversely affecting the bioavailability and therapeutic efficacy of many drugs. It is also recognized as a primary factor contributing to issues with bioavailability, such as poor, inconsistent, limited, and highly variable bioavailability of marketed products. It is estimated that 40% of marketed drugs face bioavailability challenges primarily due to poor water solubility, and about 90% of pharmacological compounds exhibit poor water solubility in their early development stages. Addressing this issue is crucial for improving drug performance, efficacy, and patient outcomes. This review provides an overview of the challenges associated with poorly soluble drugs, including low bioavailability, limited dissolution rates, inconsistent absorption, decreased patient compliance, formulation difficulties, and associated costs and time constraints. Numerous strategies have been now investigated to tackle the issue of poor solubility. This review offers an updated overview of commonly used macro and nano drug delivery systems, including micelles, nanoemulsions, dendrimers, liposomes, lipid-based delivery systems, microemulsions, cosolvents, polymeric micelle preparation, drug nanocrystals, solid dispersion methods, crystal engineering techniques, and microneedle-based systems. Additionally, the review examines advanced techniques like cyclodextrin-based delivery systems, co-solvency and co-crystallization approaches, polymeric micelles, spray drying, co-precipitation, and amorphous solid dispersion. The role of computational modeling and formulation prediction is also addressed. Recent advancements in protein-based approaches, 3D printing, mesoporous silica nanoparticles, supramolecular delivery systems, magnetic nanoparticles, nanostructured lipid carriers, and lipid-based nanoparticles are highlighted as novel solutions for enhancing the solubility of poorly soluble drugs. The review concludes with predictions for the future, emphasizing the potential for further innovation in drug delivery methods to overcome the challenges associated with poorly soluble drugs.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501375776250713110838
2025-07-21
2025-09-29
Loading full text...

Full text loading...

References

  1. Fathi-Karkan S. Amiri Ramsheh N. Arkaban H. Narooie-Noori F. Sargazi S. Mirinejad S. Roostaee M. Sargazi S. Barani M. Malahat Shadman S. Althomali R.H. Rahman M.M. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases. Int. J. Pharm. 2024 658 124226 10.1016/j.ijpharm.2024.124226 38744414
    [Google Scholar]
  2. Di L. Fish P.V. Mano T. Bridging solubility between drug discovery and development. Drug Discov. Today 2012 17 9-10 486 495 10.1016/j.drudis.2011.11.007 22138563
    [Google Scholar]
  3. Kalepu S. Nekkanti V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B 2015 5 5 442 453 10.1016/j.apsb.2015.07.003 26579474
    [Google Scholar]
  4. Khan K.U. Minhas M.U. Badshah S.F. Suhail M. Ahmad A. Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 2022 291 120301 10.1016/j.lfs.2022.120301 34999114
    [Google Scholar]
  5. Liu Y. Liang Y. Yuhong J. Xin P. Han J.L. Du Y. Yu X. Zhu R. Zhang M. Chen W. Ma Y. Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs. Drug Des. Devel. Ther. 2024 18 1469 1495 10.2147/DDDT.S447496 38707615
    [Google Scholar]
  6. Milliken R.L. Quinten T. Andersen S.K. Lamprou D.A. Application of 3D printing in early phase development of pharmaceutical solid dosage forms. Int. J. Pharm. 2024 653 123902 10.1016/j.ijpharm.2024.123902 38360287
    [Google Scholar]
  7. Manzari-Tavakoli A. Babajani A. Tavakoli M.M. Safaeinejad F. Jafari A. Integrating natural compounds and nanoparticle-based drug delivery systems: A novel strategy for enhanced efficacy and selectivity in cancer therapy. Cancer Med. 2024 13 5 e7010 10.1002/cam4.7010 38491817
    [Google Scholar]
  8. Kumari L. Choudhari Y. Patel P. Gupta G.D. Singh D. Rosenholm J.M. Bansal K.K. Kurmi B.D. Advancement in solubilization approaches: A step towards bioavailability enhancement of poorly soluble drugs. Life 2023 13 5 1099 10.3390/life13051099 37240744
    [Google Scholar]
  9. Ezike T.C. Okpala U.S. Onoja U.L. Nwike C.P. Ezeako E.C. Okpara O.J. Okoroafor C.C. Eze S.C. Kalu O.L. Odoh E.C. Nwadike U.G. Ogbodo J.O. Umeh B.U. Ossai E.C. Nwanguma B.C. Advances in drug delivery systems, challenges and future directions. Heliyon 2023 9 6 e17488 10.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  10. Cardoso P.H.N. Araújo E.S. An approach to 3D printing techniques, polymer materials, and their applications in the production of drug delivery systems. Compounds 2024 4 1 71 105 10.3390/compounds4010004
    [Google Scholar]
  11. Islam P. Schaly S. Abosalha A.K. Boyajian J. Thareja R. Ahmad W. Shum-Tim D. Prakash S. Nanotechnology in development of next generation of stent and related medical devices: Current and future aspects. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024 16 2 e1941 10.1002/wnan.1941 38528392
    [Google Scholar]
  12. Rathi P.B. Kale M. Soleymani J. Jouyban A. Solubility of etoricoxib in aqueous solutions of glycerin, methanol, polyethylene glycols 200, 400, 600, and propylene glycol at 298.2 K. J. Chem. Eng. Data 2018 63 2 321 330 10.1021/acs.jced.7b00709
    [Google Scholar]
  13. Jain S. Patel N. Lin S. Solubility and dissolution enhancement strategies: Current understanding and recent trends. Drug Dev. Ind. Pharm. 2015 41 6 875 887 10.3109/03639045.2014.971027 25342479
    [Google Scholar]
  14. Joshi J. Nainwal N. Saharan V.A. JYOTI JOSHI NIDHI NAINWAL VIKAS ANAND SAHARAN Review on hydrotropy: A potential approach for the solubility enhancement of poorly soluble drug. Asian J. Pharm. Clin. Res. 2019 12 19 26 10.22159/ajpcr.2019.v12i10.34811
    [Google Scholar]
  15. Khan A.D. Tabish M. Kaushik R. Saxena V. Kesharwani P. Gupta S. Alam M.N. Sharma V. Hydrotropy: Recent advancements in enhancement of drug solubility and formulation development. Int. J. Drug Deliv. Technol. 2021 11 3 926 936 10.25258/ijddt.11.3.47
    [Google Scholar]
  16. Samineni R. Chimakurthy J. Konidala S. Emerging role of biopharmaceutical classification and biopharmaceutical drug disposition system in dosage form development: A systematic review. Turk. J. Pharm. Sci. 2022 19 6 706 713 10.4274/tjps.galenos.2021.73554 36544401
    [Google Scholar]
  17. Nyamba I. Sombié C.B. Yabré M. Zimé-Diawara H. Yaméogo J. Ouédraogo S. Lechanteur A. Semdé R. Evrard B. Pharmaceutical approaches for enhancing solubility and oral bioavailability of poorly soluble drugs. Eur. J. Pharm. Biopharm. 2024 204 114513 10.1016/j.ejpb.2024.114513 39313163
    [Google Scholar]
  18. Chary P.S. Shaikh S. Bhavana V. Rajana N. Vasave R. Mehra N.K. Emerging role of nanocrystals in pharmaceutical applications: A review of regulatory aspects and drug development process. Appl. Mater. Today 2024 40 102334 10.1016/j.apmt.2024.102334
    [Google Scholar]
  19. Borgaonkar V.B. Jain C.M. Jaiswal A.R. Irache P. Yelane A.H. Tattu H.P. A review on solubility enhancement technique for pharmaceutical drugs. GSCBPS 2024 26 2 239 253 10.30574/gscbps.2024.26.2.0069
    [Google Scholar]
  20. Losada-Barreiro S. Celik S. Sezgin-Bayindir Z. Bravo-Fernández S. Bravo-Díaz C. Carrier systems for advanced drug delivery: Improving drug solubility/bioavailability and administration routes. Pharmaceutics 2024 16 7 852 10.3390/pharmaceutics16070852 39065549
    [Google Scholar]
  21. Pu Y.E. Menger R. Tong Z. Gaebele T. Development of an enhanced formulation to minimize pharmacokinetic variabilities of a weakly basic drug compound. Pharm. Dev. Technol. 2022 27 4 406 413 10.1080/10837450.2022.2070206 35502986
    [Google Scholar]
  22. Abou-Taleb H.A. Shoman M.E. Makram T.S. Abdel-Aleem J.A. Abdelkader H. Exploration of the safety and solubilization, dissolution, analgesic effects of common basic excipients on the NSAID drug ketoprofen. Pharmaceutics 2023 15 2 713 10.3390/pharmaceutics15020713 36840035
    [Google Scholar]
  23. Pandi P. Bulusu R. Kommineni N. Khan W. Singh M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int. J. Pharm. 2020 586 119560 10.1016/j.ijpharm.2020.119560 32565285
    [Google Scholar]
  24. Sarabia-Vallejo Á. Caja M.M. Olives A.I. Martín M.A. Menéndez J.C. Cyclodextrin inclusion complexes for improved drug bioavailability and activity: Synthetic and analytical aspects. Pharmaceutics 2023 15 9 2345 10.3390/pharmaceutics15092345 37765313
    [Google Scholar]
  25. Karimi-Jafari M. Padrela L. Walker G.M. Croker D.M. Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications. Cryst. Growth Des. 2018 18 10 6370 6387 10.1021/acs.cgd.8b00933
    [Google Scholar]
  26. Faustino C. Pinheiro L. Lipid systems for the delivery of amphotericin B in antifungal therapy. Pharmaceutics 2020 12 1 29 10.3390/pharmaceutics12010029 31906268
    [Google Scholar]
  27. Liu D. Youssef M.M. Grace J.A. Sinclair M. Relative carcinogenicity of tacrolimus vs after solid organ transplantation and its implications for liver transplant care. World J. Hepatol. 2024 16 4 650 660 10.4254/wjh.v16.i4.650 38689747
    [Google Scholar]
  28. Rahimi H.R. Nedaeinia R. Sepehri Shamloo A. Nikdoust S. Kazemi Oskuee R. Novel delivery system for natural products: Nano-curcumin formulations. Avicenna J. Phytomed. 2016 6 4 383 398 27516979
    [Google Scholar]
  29. Desai N.P. Trieu V. Hwang L.Y. Wu R. Soon-Shiong P. Gradishar W.J. Improved effectiveness of nanoparticle albumin-bound (nab) paclitaxel versus polysorbate-based docetaxel in multiple xenografts as a function of HER2 and SPARC status. Anticancer Drugs 2008 19 9 899 909 10.1097/CAD.0b013e32830f9046 18766004
    [Google Scholar]
  30. Qi C.W. Mohd Nordin U.U. Mahmood S. Karusan N.R. Khalid R. Nordin N. Fornaguera C. Ahmad N. Gout management using nanocarrier systems: A review. ACS Appl. Nano Mater. 2024 7 9 9816 9846 10.1021/acsanm.3c06079
    [Google Scholar]
  31. Dash S.K. Benival D. Jindal A.B. Formulation strategies to overcome amphotericin B induced toxicity. Mol. Pharm. 2024 21 11 5392 5412 10.1021/acs.molpharmaceut.4c00485 39373243
    [Google Scholar]
  32. Ferreira M.D. Duarte J. Veiga F. Paiva-Santos A.C. Pires P.C. Nanosystems for brain targeting of antipsychotic drugs: An update on the most promising nanocarriers for increased bioavailability and therapeutic efficacy. Pharmaceutics 2023 15 2 678 10.3390/pharmaceutics15020678 36840000
    [Google Scholar]
  33. Tayah D.Y. Eid A.M. Development of miconazole nitrate nanoparticles loaded in nanoemulgel to improve its antifungal activity. Saudi Pharm. J. 2023 31 4 526 534 10.1016/j.jsps.2023.02.005 37063448
    [Google Scholar]
  34. Patel A. Patel M. Yang X. Mitra A. Recent advances in protein and Peptide drug delivery: A special emphasis on polymeric nanoparticles. Protein Pept. Lett. 2014 21 11 1102 1120 10.2174/0929866521666140807114240 25106908
    [Google Scholar]
  35. Batke-Hastings S. Carman T.L. Sublingual administration of warfarin: A novel form of delivery. Vasc. Med. 2008 13 2 123 126 10.1177/1358863x07087730 18593801
    [Google Scholar]
  36. Krishnaprabhu S. Das J.M. Reevaluating the epinephrine myth: A comprehensive review. Indian J. Pharmacol. 2024 56 3 206 213 10.4103/ijp.ijp_308_23 39078185
    [Google Scholar]
  37. Platon V.M. Dragoi B. Marin L. Erythromycin formulations a journey to advanced drug delivery. Pharmaceutics 2022 14 10 2180 10.3390/pharmaceutics14102180 36297615
    [Google Scholar]
  38. Onishi H. Sakata O. Masuda K. Machida Y. Novel mucoadhesive oral patch containing diazepam. Drug Dev. Ind. Pharm. 2005 31 7 607 613 10.1080/03639040500216071 16207607
    [Google Scholar]
  39. Lin S.Y. Thermoresponsive gating membranes embedded with liquid crystal(s) for pulsatile transdermal drug delivery: An overview and perspectives. J. Control. Release 2020 319 450 474 10.1016/j.jconrel.2019.12.046 31901369
    [Google Scholar]
  40. Amato M. Santonocito S. Polizzi A. Tartaglia G.M. Ronsivalle V. Viglianisi G. Grippaudo C. Isola G. Local delivery and controlled release drugs systems: A new approach for the clinical treatment of periodontitis therapy. Pharmaceutics 2023 15 4 1312 10.3390/pharmaceutics15041312 37111796
    [Google Scholar]
  41. Pandey M. Choudhury H. Yi C.X. Mun C.W. Phing G.K. Rou G.X. Singh B.J.K.A.P.A.J. Jhee A.N.A. Chin L.K. Kesharwani P. Gorain B. Hussain Z. Recent updates on novel approaches in insulin drug delivery: A review of challenges and pharmaceutical implications. Curr. Drug Targets 2018 19 15 1782 1800 10.2174/1389450119666180523092100 29792143
    [Google Scholar]
  42. Kumar M. Hilles A.R. Almurisi S.H. Bhatia A. Mahmood S. Micro and nano-carriers-based pulmonary drug delivery system: Their current updates, challenges, and limitations – A review. JCIS Open 2023 12 100095 10.1016/j.jciso.2023.100095
    [Google Scholar]
  43. Quan J.N. Cheng Y. Zhou J.Y. Meng L.I. Wang Z.M. Liu N. Zhao Z.M. Zhang H. Zheng A.P. Effect of type of carrier material on the in vitro properties of solid dispersions of progesterone. Acta Pharm. Sin. B 2024 58 3 735 742
    [Google Scholar]
  44. Suresh R. Navanandhini J. Chandra S. Kumar N.S. Solid dispresion strategies for improved amlodipine besylate performance: Preparation and assessment. Int. J. Pharm. Res 2024 12 4 365 376 10.61096/ijphr.v12.iss4.2024.365‑376
    [Google Scholar]
  45. Rusdin A. Mohd Gazzali A. Ain Thomas N. Megantara S. Aulifa D.L. Budiman A. Muchtaridi M. Advancing drug delivery paradigms: Polyvinyl pyrolidone (PVP)-based amorphous solid dispersion for enhanced physicochemical properties and therapeutic efficacy. Polymers 2024 16 2 286 10.3390/polym16020286 38276694
    [Google Scholar]
  46. Shabatina T.I. Gromova Y.A. Vernaya O.I. Soloviev A.V. Shabatin A.V. Morosov Y.N. Astashova I.V. Melnikov M.Y. Pharmaceutical nanoparticles formation and their physico-chemical and biomedical properties. Pharmaceuticals 2024 17 5 587 10.3390/ph17050587 38794157
    [Google Scholar]
  47. Bazaei M. Honarvar B. Esfandiari N. Sajadian S.A. Arab Aboosadi Z. Preparation of Erlotinib hydrochloride nanoparticles (anti- cancer drug) by RESS-C method and investigating the effective parameters. Sci. Rep. 2024 14 1 14955 10.1038/s41598‑024‑64477‑8 38942802
    [Google Scholar]
  48. Preeti S. Sambhakar S. Malik R. Bhatia S. Harrasi A.A. Saharan R. Aggarwal G. Kumar S. Sehrawat R. Rani C. Lipid horizons: Recent advances and future prospects in LBDDS for oral administration of antihypertensive agents. Int. J. Hypertens. 2024 2024 1 1 54 10.1155/2024/2430147 38410720
    [Google Scholar]
  49. Alsafar Z.F. Formulation, characterization, and evaluation of ticagrelor-loaded nano micelles enhance intestinal absorption. Bahrain Med. Bull. 2023 45 2 1391 1401
    [Google Scholar]
  50. Gulia R. Singh S. Arora S. Sharma N. Recent advancements in solubilization and Gastroretentive techniques for Oral Drug Delivery of Proton Pump inhibitors: A comprehensive review. Chem. Biol. Lett 2023 10 3 546
    [Google Scholar]
  51. Modi D. Jonnalagadda S. Campbell G.A. Dalwadi G. Enhancing oil solubility of BCS class II drug phenytoin through hydrophobic ion pairing to enable high drug load in injectable nanoemulsion to prevent precipitation at physiological pH with a potential to prevent phlebitis. J. Pharm. Sci. 2023 112 9 2427 2443 10.1016/j.xphs.2023.03.012 36958691
    [Google Scholar]
  52. Bharate S.S. Modulation of biopharmaceutical properties of drugs using sulfonate counterions: A critical analysis of FDA-approved pharmaceutical salts. J. Drug Deliv. Sci. Technol. 2021 66 102913 10.1016/j.jddst.2021.102913
    [Google Scholar]
  53. Alhamhoom Y. Kumaraswamy T. Kumar A. Nanjappa S.H. Prakash S.S. Rahamathulla M. Thajudeen K.Y. Ahmed M.M. Shivanandappa T.B. Formulation and evaluation of ph-modulated amorphous solid dispersion-based orodispersible tablets of cefdinir. Pharmaceutics 2024 16 7 866 10.3390/pharmaceutics16070866 39065563
    [Google Scholar]
  54. Radeva L. Yordanov Y. Spassova I. Kovacheva D. Tibi I.P.E. Zaharieva M.M. Kaleva M. Najdenski H. Petrov P.D. Tzankova V. Yoncheva K. Incorporation of resveratrol-hydroxypropyl-β-cyclodextrin complexes into hydrogel formulation for wound treatment. Gels 2024 10 5 346 10.3390/gels10050346 38786263
    [Google Scholar]
  55. Jarak I. Ramos S. Caldeira B. Domingues C. Veiga F. Figueiras A. The many faces of cyclodextrins within self-assembling polymer nanovehicles: From inclusion complexes to valuable structural and functional elements. Int. J. Mol. Sci. 2024 25 17 9516 10.3390/ijms25179516 39273469
    [Google Scholar]
  56. Pramoda G. Shukla R. Application of nanotechnology based therapy against malaria. Nanostructured Drug Delivery Systems in Infectious Disease Treatment Academic Press 2024 103 122 10.1016/B978‑0‑443‑13337‑4.00020‑3
    [Google Scholar]
  57. Eshbekova N. Sowndarya A. Thangadurai T.D. Lee Y.I. Recent advancements in Raman instrumentation and capabilities for pharmaceutical and biomedical applications. Appl. Spectrosc. Rev. 2024 59 6 798 849 10.1080/05704928.2024.2355193
    [Google Scholar]
  58. Pardhi V.P. Pathak A. Jain K. Solid dispersions of bedaquiline fumarate to improve its pharmaceutical attributes: A comparative study between PEG and PVP. J. Drug Deliv. Sci. Technol. 2024 94 105461 10.1016/j.jddst.2024.105461
    [Google Scholar]
  59. Mao F. Shi W. Zhao H. Li W. Jouyban A. Acree W.E. Jr Comprehensive solubility study and inter-molecular interactions on fenbendazole dissolved in some aqueous aprotic and protic co-solvent solutions. J. Chem. Thermodyn. 2024 191 107231 10.1016/j.jct.2023.107231
    [Google Scholar]
  60. Chaudhary A. Shambhakar S. Nanotechnology in drug delivery: Overcoming poor solubility challenges through nanoformulations. Curr. Nanomed. 2024 14 3 200 211 10.2174/0124681873276732231207051324
    [Google Scholar]
  61. Patil N. Yadav A. Jain D.K. Exploring the versatility of chewable tablets: A comprehensive analysis. Int. J. Pharm. Drug Des. 2024 1 2 10.62896/mg0v6x34
    [Google Scholar]
  62. Wendong Y. Xingxing Y. Xianze X. Qiaomei F. Yujun S. Shanshan Z. Zheng S. Hairu X. Nanoformulation-assisted microneedle transdermal drug delivery system: An innovative platform enhancing rheumatoid arthritis treatment. Biomed. Pharmacother. 2024 178 117219 10.1016/j.biopha.2024.117219 39084080
    [Google Scholar]
  63. Souto E.B. Cano A. Martins-Gomes C. Coutinho T.E. Zielińska A. Silva A.M. Microemulsions and nanoemulsions in skin drug delivery. Bioengineering 2022 9 4 158 10.3390/bioengineering9040158 35447718
    [Google Scholar]
  64. El Messaoudi N. Ciğeroğlu Z. Şenol Z.M. Kazan-Kaya E.S. Fernine Y. Gubernat S. Lopicic Z. Green synthesis of CuFe2O4 nanoparticles from bioresource extracts and their applications in different areas: A review. Biomass Convers. Biorefin. 2024 15 99 120 10.1007/s13399‑023‑05264‑9
    [Google Scholar]
  65. Lengyel M. Kállai-Szabó N. Antal V. Laki A.J. Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci. Pharm. 2019 87 3 20 10.3390/scipharm87030020
    [Google Scholar]
  66. Goel S. Sachdeva M. Agarwal V. Nanosuspension technology: Recent patents on drug delivery and their characterizations. Recent Pat. Drug Deliv. Formul. 2019 13 2 91 104 10.2174/1872211313666190614151615 31203813
    [Google Scholar]
  67. Gandhi S. Shastri D.H. Lipid-Based Nanoparticles as drug delivery system for modern therapeutics. Pharm. Nanotechnol. 2024 13 10.2174/0122117385337379240916053259 39400024
    [Google Scholar]
  68. Trivedi J.S. Yue Z. Solubilization using cosolvent approach. Water-Insoluble Drug Formulation 3rd ed CRC Press 2018 1 33
    [Google Scholar]
  69. Kosian D. Willistein M. Weßbecher R. Eggers C. May O. Boll M. Highly selective whole-cell 25-hydroxyvitamin D 3 synthesis using molybdenum-dependent C25-steroid dehydrogenase and cyclodextrin recycling. Microb. Cell Fact. 2024 23 1 30 10.1186/s12934‑024‑02303‑6 38245746
    [Google Scholar]
  70. Xue M. Kang X. Wang Y. Gao B. Comparison of aluminum formate and traditional aluminum coagulants in structure, hydrolysates, coagulation behavior, and its corrosion resistance advantage. Separ. Purif. Tech. 2024 335 126065 10.1016/j.seppur.2023.126065
    [Google Scholar]
  71. Munnangi S.R. Youssef A.A.A. Narala N. Lakkala P. Narala S. Vemula S.K. Repka M. Drug complexes: Perspective from academic research and pharmaceutical market. Pharm. Res. 2023 40 6 1519 1540 10.1007/s11095‑023‑03517‑w 37138135
    [Google Scholar]
  72. Loh Z.H. Samanta A.K. Sia Heng P.W. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J. Pharm. Sci. 2015 10 4 255 274 10.1016/j.ajps.2014.12.006
    [Google Scholar]
  73. Ran Q. Wang M. Kuang W. Ouyang J. Han D. Gao Z. Gong J. Advances of combinative nanocrystal preparation technology for improving the insoluble drug solubility and bioavailability. Crystals 2022 12 9 1200 10.3390/cryst12091200
    [Google Scholar]
  74. Adali M.B. Barresi A.A. Boccardo G. Pisano R. Spray freeze drying as a solution to continuous manufacturing of pharmaceutical products in bulk. Processes 2020 8 6 709 10.3390/pr8060709
    [Google Scholar]
  75. Sharma U. Saroha K. A review of hydrotropic solubilization techniques for enhancing the bioavailability of poorly soluble drugs. Int. J. Toxicol. 2024 43 1 63 71 10.1177/10915818231216414 37999970
    [Google Scholar]
  76. Chhabra N. Arora M. Garg D. Samota M.K. Spray freeze drying - A synergistic drying technology and its applications in the food industry to preserve bioactive compounds. Food Control 2024 155 110099 10.1016/j.foodcont.2023.110099
    [Google Scholar]
  77. Ogbu A.D. Iwe K.A. Ozowe W. Ikevuje A.H. Conceptual integration of seismic attributes and well log data for pore pressure prediction. GJETA 2024 20 01 118 130 10.30574/gjeta.2024.20.1.0125
    [Google Scholar]
  78. Khalbas A.H. Albayati T.M. Ali N.S. Salih I.K. Drug loading methods and kinetic release models using of mesoporous silica nanoparticles as a drug delivery system: A review. S. Afr. J. Chem. Eng. 2024 50 261 280 10.1016/j.sajce.2024.08.013
    [Google Scholar]
  79. Bhalani D.V. Nutan B. Kumar A. Singh Chandel A.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines 2022 10 9 2055 10.3390/biomedicines10092055 36140156
    [Google Scholar]
  80. Lou Z. Mu C. Corpstein C.D. Li T. in vivodeposition of poorly soluble drugs. Adv. Drug Deliv. Rev. 2024 211 115358 10.1016/j.addr.2024.115358 38851590
    [Google Scholar]
  81. Zhan A. Niu D. Li K. Li J. Characterization of some sucrose-based deep eutectic solvents and their effect on the solubility of piroxicam. J. Mol. Liq. 2023 377 121556 10.1016/j.molliq.2023.121556
    [Google Scholar]
  82. Kumar Sarella P.N. Vegi S. Kumari Vendi V. Kumar Vipparthi A. Valluri S. Exploring aquasomes: A promising frontier in nanotechnology-based drug delivery. Asian J. Pharm. Res. 2024 14 2 153 161 10.52711/2231‑5691.2024.00026
    [Google Scholar]
  83. Shukla M.K. Tiwari H. Verma R. Dong W.L. Azizov S. Kumar B. Pandey S. Kumar D. Role and recent advancements of ionic liquids in drug delivery systems. Pharmaceutics 2023 15 2 702 10.3390/pharmaceutics15020702 36840024
    [Google Scholar]
  84. Da Silva F.L.O. Marques M.B.D.F. Kato K.C. Carneiro G. Nanonization techniques to overcome poor water-solubility with drugs. Expert Opin. Drug Discov. 2020 15 7 853 864 10.1080/17460441.2020.1750591 32290727
    [Google Scholar]
  85. Tsiaxerli A. Vardaka E. Moutroupidis C. Taylor K.M.G. Kachrimanis K. Malamatari M. Updates on the conversion of nanosuspensions to solid oral dosage forms. Yao Wu Shi Pin Fen Xi 2024 32 4 398 411 10.38212/2224‑6614.3525 39752860
    [Google Scholar]
  86. Kaur G. Panigrahi C. Agarwal S. Khuntia A. Sahoo M. Recent trends and advancements in nanoemulsions: Production methods, functional properties, applications in food sector, safety and toxicological effects. Food Physics 2024 1 100024 10.1016/j.foodp.2024.100024
    [Google Scholar]
  87. Sen S. Ganta B. Rachel V.N. Gogikar S.K. Singh V. Sonti R. Dikundwar A.G. Mapping advantages and challenges in analytical development for fixed-dose combination products: A review. J. Pharm. Sci. 2024 113 8 2028 2043 10.1016/j.xphs.2024.04.025 38697403
    [Google Scholar]
  88. Kumar R. Thakur A.K. Chaudhari P. Banerjee N. Particle size reduction techniques of pharmaceutical compounds for the enhancement of their dissolution rate and bioavailability. J. Pharm. Innov. 2022 17 2 333 352 10.1007/s12247‑020‑09530‑5
    [Google Scholar]
  89. Cheng Y. Zhong C. Yan S. Chen C. Gao X. Structure modification: A successful tool for prodrug design. Future Med. Chem. 2023 15 4 379 393 10.4155/fmc‑2022‑0309 36946236
    [Google Scholar]
  90. Qu F. Geng R. Liu Y. Zhu J. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment. Theranostics 2022 12 7 3372 3406 10.7150/thno.69999 35547773
    [Google Scholar]
  91. Ashique S. Sandhu N.K. Chawla V. Chawla P.A. Targeted drug delivery: Trends and perspectives. Curr. Drug Deliv. 2021 18 10 1435 1455 10.2174/1567201818666210609161301 34151759
    [Google Scholar]
  92. Liu Z. Shi Y. Liu C. Emerging trends in drug-device combination for advanced disease diagnosis and therapy. Nano Today 2023 50 101853 10.1016/j.nantod.2023.101853
    [Google Scholar]
  93. Essien E.S. Jackson T.C. Olorunsola E.O. Olorunsola E.O. Development and evaluation of encapsulated self-emulsifying drug delivery system of hydrochlorothiazide. Nigerian Journal of Pharmaceutical Research 2024 20 1 23 30 10.4314/njpr.v20i1.3
    [Google Scholar]
  94. Gao W. Bigham A. Ghomi M. Zarrabi A. Rabiee N. Saeb M.R. Nuri Ertas Y. Goel A. Sharifi E. Ashrafizadeh M. Sethi G. Tambuwala M.M. Wang Y. Ghaffarlou M. Jiao T. Micelle-engineered nanoplatforms for precision oncology. Chem. Eng. J. 2024 495 153438 10.1016/j.cej.2024.153438
    [Google Scholar]
  95. Li X. Hong X. Shuai S. Han X. Li C. Zhang H. Wang Z. Ren M. Jin L. Zheng A. A review of hot melt extrusion technology: Advantages, applications, key factors and future prospects. J. Drug Deliv. Sci. Technol. 2024 98 105884 10.1016/j.jddst.2024.105884
    [Google Scholar]
  96. Ningthoujam S.S. Nath R. Sarker S.D. Nahar L. Nath D. Talukdar A.D. Prediction of medicinal properties using mathematical models and computation, and selection of plant materials. Comput. Phytochem. 2024 1 91 123 10.1016/B978‑0‑443‑16102‑5.00011‑0
    [Google Scholar]
  97. Prakash S. Nano-based drug delivery system for therapeutics: A comprehensive review. Biomed. Phys. Eng. Express 2023 9 5 052002 10.1088/2057‑1976/acedb2 37549657
    [Google Scholar]
  98. Joshi K. Chandra A. Jain K. Talegaonkar S. Nanocrystalization: An emerging technology to enhance the bioavailability of poorly soluble drugs. Pharm. Nanotechnol. 2019 7 4 259 278 10.2174/2211738507666190405182524 30961518
    [Google Scholar]
  99. Yingchoncharoen P. Kalinowski D.S. Richardson D.R. Lipid based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol. Rev. 2016 68 3 701 787 10.1124/pr.115.012070 27363439
    [Google Scholar]
  100. Gbian D.L. Omri A. Lipid-based drug delivery systems for diseases managements. Biomedicines 2022 10 9 2137 10.3390/biomedicines10092137 36140237
    [Google Scholar]
  101. Chavda V.P. Acharya D. Hala V. Daware S. Vora L.K. Sunscreens: A comprehensive review with the application of nanotechnology. J. Drug Deliv. Sci. Technol. 2023 86 104720 10.1016/j.jddst.2023.104720
    [Google Scholar]
  102. Barenholz Y.C. Doxil®—The first FDA-approved nano-drug: From an idea to a product. Handbook of Harnessing Biomaterials in Nanomedicine. Jenny Stanford Publishing 2021 463 528 10.1201/9781003125259‑16
    [Google Scholar]
  103. Chou H. Lin H. Liu J.M. A tale of the two PEGylated liposomal doxorubicins. OncoTargets Ther. 2015 8 1719 1720 26203262
    [Google Scholar]
  104. Nie Y. Fu G. Leng Y. Nuclear delivery of nanoparticle-based drug delivery systems by nuclear localization signals. Cells 2023 12 12 1637 10.3390/cells12121637 37371107
    [Google Scholar]
  105. Luo Y. Sun M. Tan L. Li T. Min L. Nano-based drug delivery systems: Potential developments in the therapy of metastatic osteosarcoma—a narrative review. Pharmaceutics 2023 15 12 2717 10.3390/pharmaceutics15122717 38140058
    [Google Scholar]
  106. Grüne L. Bunjes H. Solubility of poorly soluble drugs in phosphatidylcholine-based drug delivery systems: Comparison of the loading capacity in the bulk formulation and its dispersed state. Pharmaceuticals 2024 17 3 400 10.3390/ph17030400 38543186
    [Google Scholar]
  107. Rocha B. de Morais L.A. Viana M.C. Carneiro G. Promising strategies for improving oral bioavailability of poor water-soluble drugs. Expert Opin. Drug Discov. 2023 18 6 615 627 10.1080/17460441.2023.2211801 37157841
    [Google Scholar]
  108. Donnelly R.F. Singh T.R.R. Woolfson A.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv. 2010 17 4 187 207 10.3109/10717541003667798 20297904
    [Google Scholar]
  109. Cheng T. Tai Z. Shen M. Li Y. Yu J. Wang J. Zhu Q. Chen Z. Advance and challenges in the treatment of skin diseases with the transdermal drug delivery system. Pharmaceutics 2023 15 8 2165 10.3390/pharmaceutics15082165 37631379
    [Google Scholar]
  110. Fitriani E.W. Avanti C. Rosana Y. Surini S. Nanostructured lipid carriers: A prospective dermal drug delivery system for natural active ingredients. Pharmacia 2024 71 1 15 10.3897/pharmacia.71.e115849
    [Google Scholar]
  111. Tewabe A. Abate A. Tamrie M. Seyfu A. Abdela Siraj E. Targeted drug delivery—from magic bullet to nanomedicine: Principles, challenges, and future perspectives. J. Multidiscip. Healthc. 2021 14 1711 1724 10.2147/JMDH.S313968 34267523
    [Google Scholar]
  112. Salawi A. Self-emulsifying drug delivery systems: A novel approach to deliver drugs. Drug Deliv. 2022 29 1 1811 1823 10.1080/10717544.2022.2083724 35666090
    [Google Scholar]
  113. Jain A. Bhardwaj K. Bansal M. Polymeric micelles as drug delivery system: Recent advances, approaches, applications and patents. Curr. Drug Saf. 2024 19 2 163 171 10.2174/1574886318666230605120433 37282644
    [Google Scholar]
  114. Maynard-Benson A. Alekisch M. Wall A. Billiot E.J. Billiot F.H. Morris K.F. Characterization of micelle formation by the single amino acid-based surfactants undecanoic L-isoleucine and undecanoic L-norleucine in the presence of diamine counterions with varying chain lengths. Colloids Interfaces 2023 7 2 28 10.3390/colloids7020028
    [Google Scholar]
  115. Majumder N. G Das N. Das S.K. Polymeric micelles for anticancer drug delivery. Ther. Deliv. 2020 11 10 613 635 10.4155/tde‑2020‑0008 32933425
    [Google Scholar]
  116. Kupikowska-Stobba B. Domagała J. Kasprzak M.M. Critical review of techniques for food emulsion characterization. Appl. Sci. 2024 14 3 1069 10.3390/app14031069
    [Google Scholar]
  117. Costa C. Medronho B. Filipe A. Mira I. Lindman B. Edlund H. Norgren M. Emulsion formation and stabilization by biomolecules: The leading role of cellulose. Polymers 2019 11 10 1570 10.3390/polym11101570 31561633
    [Google Scholar]
  118. Zhu Y. Chen T. Cui Z. Multiple Pickering emulsions stabilized by the same particles with different extent of hydrophobization in situ. Front Chem. 2022 10 950932 10.3389/fchem.2022.950932 36059875
    [Google Scholar]
  119. Esim O. Bakirhan N.K. Sarper M. Savaser A. Ozkan S.A. Ozkan Y. Influence of emulsifiers on the formation and in vitro anticancer activity of epirubicin loaded PLGA nanoparticles. J. Drug Deliv. Sci. Technol. 2020 60 102027 10.1016/j.jddst.2020.102027
    [Google Scholar]
  120. Meirinho S. Rodrigues M. Santos A.O. Falcão A. Alves G. Self-emulsifying drug delivery systems: An alternative approach to improve brain bioavailability of poorly water-soluble drugs through intranasal administration. Pharmaceutics 2022 14 7 1487 10.3390/pharmaceutics14071487 35890385
    [Google Scholar]
  121. Seo E.B. du Plessis L.H. Viljoen J.M. Solidification of self-emulsifying drug delivery systems as a novel approach to the management of uncomplicated malaria. Pharmaceuticals 2022 15 2 120 10.3390/ph15020120 35215233
    [Google Scholar]
  122. Pandya M. Chatterjee B. Ganti S. Self-emulsifying drug delivery system for oral anticancer therapy: Constraints and recent development. Curr. Pharm. Des. 2022 28 31 2538 2553 10.2174/03666220606143443 35670356
    [Google Scholar]
  123. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  124. Lamichhane N. Udayakumar T. D’Souza W. Simone C. II Raghavan S. Polf J. Mahmood J. Liposomes: Clinical applications and potential for image-guided drug delivery. Molecules 2018 23 2 288 10.3390/molecules23020288 29385755
    [Google Scholar]
  125. Yao Y. Zhou Y. Liu L. Xu Y. Chen Q. Wang Y. Wu S. Deng Y. Zhang J. Shao A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020 7 193 10.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  126. Hu M. Li X. You Z. Cai R. Chen C. Physiological barriers and strategies of lipid-based nanoparticles for nucleic acid drug delivery. Adv. Mater. 2024 36 22 2303266 10.1002/adma.202303266 37792475
    [Google Scholar]
  127. Apostolou M. Fatokun A.A. Assi S. Khan I. Targeted lipid-based drug delivery systems for lung cancer therapy. Appl. Sci. 2024 14 15 6759 10.3390/app14156759
    [Google Scholar]
  128. Paolino D. d’Avanzo N. Canato E. Ciriolo L. Grigoletto A. Cristiano M.C. Mancuso A. Celia C. Pasut G. Fresta M. Improved anti-breast cancer activity by doxorubicin-loaded super stealth liposomes. Biomater. Sci. 2024 12 15 3933 3946 10.1039/D4BM00478G 38940612
    [Google Scholar]
  129. Haftcheshmeh S.M. Jaafari M.R. Mashreghi M. Mehrabian A. Alavizadeh S.H. Zamani P. Zarqi J. Darvishi M.H. Gheybi F. Liposomal doxorubicin targeting mitochondria: A novel formulation to enhance anti-tumor effects of Doxil® In vitro and in vivo. J. Drug Deliv. Sci. Technol. 2021 62 102351 10.1016/j.jddst.2021.102351
    [Google Scholar]
  130. Krauss A.C. Gao X. Li L. Manning M.L. Patel P. Fu W. Janoria K.G. Gieser G. Bateman D.A. Przepiorka D. Shen Y.L. Shord S.S. Sheth C.M. Banerjee A. Liu J. Goldberg K.B. Farrell A.T. Blumenthal G.M. Pazdur R. FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin. Cancer Res. 2019 25 9 2685 2690 10.1158/1078‑0432.CCR‑18‑2990 30541745
    [Google Scholar]
  131. Tiwari C. Tomer J. Kumar D. Liposomal drug delivery: Progress, clinical outlook, and ongoing challenges. recent advances in drug delivery and formulation. Recent Pat. Drug Deliv. Formul. 2024 18 3 157 169
    [Google Scholar]
  132. de Jong W.H. Borm P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 2008 3 2 133 149 10.2147/IJN.S596 18686775
    [Google Scholar]
  133. Rizvi S.A.A. Saleh A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 2018 26 1 64 70 10.1016/j.jsps.2017.10.012 29379334
    [Google Scholar]
  134. Gelperina S. Kisich K. Iseman M.D. Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med. 2005 172 12 1487 1490 10.1164/rccm.200504‑613PP 16151040
    [Google Scholar]
  135. Goldberg M. Langer R. Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed. 2007 18 3 241 268 10.1163/156856207779996931 17471764
    [Google Scholar]
  136. Singh R. Lillard J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009 86 3 215 223 10.1016/j.yexmp.2008.12.004 19186176
    [Google Scholar]
  137. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012 14 2 282 295 10.1208/s12248‑012‑9339‑4 22407288
    [Google Scholar]
  138. Adepu S. Ramakrishna S. Controlled drug delivery systems: Current status and future directions. Molecules 2021 26 19 5905 10.3390/molecules26195905 34641447
    [Google Scholar]
  139. Yun Y.H. Lee B.K. Park K. Controlled drug delivery: Historical perspective for the next generation. J. Control. Release 2015 219 2 7 10.1016/j.jconrel.2015.10.005 26456749
    [Google Scholar]
  140. Tran P. Pyo Y.C. Kim D.H. Lee S.E. Kim J.K. Park J.S. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics 2019 11 3 132 10.3390/pharmaceutics11030132 30893899
    [Google Scholar]
  141. Lamrabet N. Hess F. Leidig P. Marx A. Kipping T. Exploring 3D printing in drug development: Assessing the potential of advanced melt drop deposition technology for solubility enhancement by creation of amorphous solid dispersions. Pharmaceutics 2024 16 12 1501 10.3390/pharmaceutics16121501 39771481
    [Google Scholar]
  142. Ueda K. Moseson D.E. Taylor L.S. Amorphous solubility advantage: Theoretical considerations, experimental methods, and contemporary relevance. J. Pharm. Sci. 2024 114 1 18 39 10.1016/j.xphs.2024.08.029 39222748
    [Google Scholar]
  143. Patil H. Vemula S.K. Narala S. Lakkala P. Munnangi S.R. Narala N. Jara M.O. Williams R.O. III Terefe H. Repka M.A. Hot-melt extrusion: From theory to application in pharmaceutical formulation—where are we now? AAPS PharmSciTech 2024 25 2 37 10.1208/s12249‑024‑02749‑2 38355916
    [Google Scholar]
  144. Saraf I. Jakasanovski O. Stanić T. Kralj E. Petek B. Williams J.D. Dmytro N. Georg G. Bernd W. Klaus Z. Perhavec P. German Ilić I. Paudel A. Kushwah V. Investigation of the influence of copovidone properties and hot-melt extrusion process on level of impurities, in vitro release, and stability of an amorphous solid dispersion product. Mol. Pharm. 2024 21 11 5703 5715 10.1021/acs.molpharmaceut.4c00707 39265053
    [Google Scholar]
  145. Tambe S. Jain D. Agarwal Y. Amin P. Hot-melt extrusion: Highlighting recent advances in pharmaceutical applications. J. Drug Deliv. Sci. Technol. 2021 63 102452 10.1016/j.jddst.2021.102452
    [Google Scholar]
  146. Munnangi S.R. Youssef A.A.A. Narala N. Lakkala P. Vemula S.K. Alluri R. Zhang F. Repka M.A. Continuous manufacturing of solvent-free cyclodextrin inclusion complexes for enhanced drug solubility via hot-melt extrusion: A quality by design approach. Pharmaceutics 2023 15 9 2203 10.3390/pharmaceutics15092203 37765172
    [Google Scholar]
  147. Fanda A.K. Jadhav A. Naruka P.S. Rana D. Benival D. Systematic development of hot melt extrusion-based amorphous solid dispersion: Integrating quality by design and in silico modeling. J. Pharm. Innov. 2024 19 3 35 10.1007/s12247‑024‑09843‑9
    [Google Scholar]
  148. Sosnik A. Seremeta K.P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 2015 223 40 54 10.1016/j.cis.2015.05.003 26043877
    [Google Scholar]
  149. Mareczek L. Mueller L.K. Halstenberg L. Geiger T.M. Walz M. Zheng M. Hausch F. Use of poly(vinyl alcohol) in spray-dried dispersions: Enhancing solubility and stability of proteolysis targeting chimeras. Pharmaceutics 2024 16 7 924 10.3390/pharmaceutics16070924 39065621
    [Google Scholar]
  150. Dhondale M.R. Nambiar A.G. Singh M. Mali A.R. Agrawal A.K. Shastri N.R. Kumar P. Kumar D. Current trends in API co-processing: Spherical crystallization and co-precipitation techniques. J. Pharm. Sci. 2023 112 8 2010 2028 10.1016/j.xphs.2023.02.005 36780986
    [Google Scholar]
  151. Reinhart K.O. Vermeire L.T. Penn C.J. Lekberg Y. Experimental evidence that poor soil phosphorus (P) solubility typical of drylands due to calcium co-precipitation favors autonomous plant P acquisition over collaboration with mycorrhizal fungi. Soil Biol. Biochem. 2024 199 109605 10.1016/j.soilbio.2024.109605
    [Google Scholar]
  152. Shirke S.H. Shewale S.B. Kulkarni A.S. Aloorkar N.H. Solid dispersion: A novel approach for poorly water soluble drugs. Int. J. Curr. Pharm. Res. 2015 7 4 1 8
    [Google Scholar]
  153. Pisay M. Padya S. Mutalik S. Koteshwara K.B. Stability challenges of amorphous solid dispersions of drugs: A critical review on mechanistic aspects. Crit. Rev. Ther. Drug Carrier Syst. 2024 41 3 45 94 10.1615/CritRevTherDrugCarrierSyst.2023039877 38037820
    [Google Scholar]
  154. Bapat P. Paul S. Tseng Y.C. Taylor L.S. Interplay of drug–polymer interactions and release performance for hpmcas-based amorphous solid dispersions. Mol. Pharm. 2024 21 3 1466 1478 10.1021/acs.molpharmaceut.3c01106 38346390
    [Google Scholar]
  155. Păduraru D.N. Niculescu A.G. Bolocan A. Andronic O. Grumezescu A.M. Bîrlă R. An updated overview of cyclodextrin-based drug delivery systems for cancer therapy. Pharmaceutics 2022 14 8 1748 10.3390/pharmaceutics14081748 36015374
    [Google Scholar]
  156. Tian B. Hua S. Liu J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr. Polym. 2020 232 115805 10.1016/j.carbpol.2019.115805 31952603
    [Google Scholar]
  157. Santos A.C. Costa D. Ferreira L. Guerra C. Pereira-Silva M. Pereira I. Peixoto D. Ferreira N.R. Veiga F. Cyclodextrin-based delivery systems for in vivo -tested anticancer therapies. Drug Deliv. Transl. Res. 2021 11 1 49 71 10.1007/s13346‑020‑00778‑5 32441011
    [Google Scholar]
  158. Liu H. Guo S. Wei S. Liu J. Tian B. Pharmacokinetics and pharmacodynamics of cyclodextrin-based oral drug delivery formulations for disease therapy. Carbohydr. Polym. 2024 329 121763 10.1016/j.carbpol.2023.121763 38286540
    [Google Scholar]
  159. Mane P.T. Wakure B.S. Wakte P.S. Cyclodextrin based nanosponges: A multidimensional drug delivery system and its biomedical applications. Curr. Drug Deliv. 2021 18 10 1467 1493 10.2174/1567201818666210423091250 33902410
    [Google Scholar]
  160. Alwattar J. Mehanna M. Engineered porous beta-cyclodextrin-loaded raloxifene framework with potential anticancer activity: Physicochemical characterization, drug release, and cytotoxicity studies. Int. J. Nanomedicine 2024 19 11561 11576 10.2147/IJN.S469570 39539969
    [Google Scholar]
  161. Fathalla Z. Shoman M.E. Barakat H.S. Al Fatease A. Alamri A.H. Abdelkader H. Cyclodextrins and amino acids enhance solubility and tolerability of retinoic acid/tretinoin: Molecular docking, physicochemical, cytotoxicity, scratch assay, and topical gel formulations investigation. Pharmaceutics 2024 16 7 853 10.3390/pharmaceutics16070853 39065550
    [Google Scholar]
  162. Raheem Thayyil A. Juturu T. Nayak S. Kamath S. Pharmaceutical co-crystallization: Regulatory aspects, design, characterization, and applications. Adv. Pharm. Bull. 2020 10 2 203 212 10.34172/apb.2020.024 32373488
    [Google Scholar]
  163. Charumanee S. Okonogi S. Sirithunyalug J. Wolschann P. Viernstein H. Effect of cyclodextrin types and co-solvent on solubility of a poorly water soluble drug. Sci. Pharm. 2016 84 4 694 704 10.3390/scipharm84040694 27763573
    [Google Scholar]
  164. Singh K. Singh P.A. Frank A. Arora S. Sharma R. Bajwa N. Solubility, the main concern for poorly water-soluble drugs: Techniques and alternatives. Lett. Drug Des. Discov. 2024 21 12 2248 2260 10.2174/1570180820666230807163632
    [Google Scholar]
  165. Yadav K. Sachan A.K. Kumar S. Dubey A. Techniques for increasing solubility: A review of conventional and new strategies. Asian J. Pharm. Res. Dev. 2022 10 2 144 153 10.22270/ajprd.v10i2.1054
    [Google Scholar]
  166. Chavoshy F. Makhmalzade B.S. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J. Adv. Pharm. Technol. Res. 2018 9 1 2 8 10.4103/japtr.JAPTR_314_17 29441317
    [Google Scholar]
  167. Ghezzi M. Pescina S. Padula C. Santi P. Del Favero E. Cantù L. Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 2021 332 312 336 10.1016/j.jconrel.2021.02.031 33652113
    [Google Scholar]
  168. Chis A.A. Dobrea C. Morgovan C. Arseniu A.M. Rus L.L. Butuca A. Juncan A.M. Totan M. Vonica-Tincu A.L. Cormos G. Muntean A.C. Muresan M.L. Gligor F.G. Frum A. Applications and limitations of dendrimers in biomedicine. Molecules 2020 25 17 3982 10.3390/molecules25173982 32882920
    [Google Scholar]
  169. Luhar M. Viradiya R. Panjabi Patel G. Nanotechnology in ocular drug delivery: The potential of polymeric micelles as a drug delivery vehicle. J. Ocul. Pharmacol. Ther. 2025 41 2 54 64 10.1089/jop.2024.0060 39263975
    [Google Scholar]
  170. Alven S. Aderibigbe B.A. The therapeutic efficacy of dendrimer and micelle formulations for breast cancer treatment. Pharmaceutics 2020 12 12 1212 10.3390/pharmaceutics12121212 33333778
    [Google Scholar]
  171. Wakaskar R.R. General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. J. Drug Target. 2018 26 4 311 318 10.1080/1061186X.2017.1367006 28797169
    [Google Scholar]
  172. Morrison T.M. Pathmanathan P. Adwan M. Margerrison E. Advancing regulatory science with computational modeling for medical devices at the FDA’s Office of Science and Engineering Laboratories. Front. Med. 2018 5 241 10.3389/fmed.2018.00241 30356350
    [Google Scholar]
  173. Khalid H. Kazemi P. Perez-Gandarillas L. Michrafy A. Szlęk J. Jachowicz R. Mendyk A. Computational intelligence models to predict porosity of tablets using minimum features. Drug Des. Devel. Ther. 2017 11 193 202 10.2147/DDDT.S119432 28138223
    [Google Scholar]
  174. Gaikwad V.L. Bhatia N.M. Desai S.A. Bhatia M.S. Quantitative structure property relationship modeling of excipient properties for prediction of formulation characteristics. Carbohydr. Polym. 2016 151 593 599 10.1016/j.carbpol.2016.05.114 27474604
    [Google Scholar]
  175. Manzari M.T. Shamay Y. Kiguchi H. Rosen N. Scaltriti M. Heller D.A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021 6 4 351 370 10.1038/s41578‑020‑00269‑6 34950512
    [Google Scholar]
  176. Cardoso R.V. Pereira P.R. Freitas C.S. Paschoalin V.M.F. Trends in drug delivery systems for natural bioactive molecules to treat health disorders: The importance of nano-liposomes. Pharmaceutics 2022 14 12 2808 10.3390/pharmaceutics14122808 36559301
    [Google Scholar]
  177. Laffleur F. Keckeis V. Advances in drug delivery systems: Work in progress still needed? Int. J. Pharm. 2020 590 119912 10.1016/j.ijpharm.2020.119912 32971178
    [Google Scholar]
  178. Bharti C. Gulati N. Nagaich U. Pal A.K. Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Investig. 2015 5 3 124 133 10.4103/2230‑973X.160844 26258053
    [Google Scholar]
  179. Pardeike J. Hommoss A. Müller R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2009 366 1-2 170 184 10.1016/j.ijpharm.2008.10.003 18992314
    [Google Scholar]
  180. Lancelot A. Sierra T. Serrano J.L. Nanostructured liquid-crystalline particles for drug delivery. Expert Opin. Drug Deliv. 2014 11 4 547 564 10.1517/17425247.2014.884556 24490701
    [Google Scholar]
  181. Chen C.C. Tsai T.H. Huang Z.R. Fang J.Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics. Eur. J. Pharm. Biopharm. 2010 74 3 474 482 10.1016/j.ejpb.2009.12.008 20060469
    [Google Scholar]
  182. Trzeciak K. Chotera-Ouda A. Bak-Sypien I.I. Potrzebowski M.J. Mesoporous silica particles as drug delivery systems—the state of the art in loading methods and the recent progress in analytical techniques for monitoring these processes. Pharmaceutics 2021 13 7 950 10.3390/pharmaceutics13070950 34202794
    [Google Scholar]
  183. Singh D. McMillan J.M. Liu X.M. Vishwasrao H.M. Kabanov A.V. Sokolsky-Papkov M. Gendelman H.E. Formulation design facilitates magnetic nanoparticle delivery to diseased cells and tissues. Nanomedicine 2014 9 3 469 485 10.2217/nnm.14.4 24646020
    [Google Scholar]
  184. Weisany W. Yousefi S. Soufiani S.P. Pashang D. McClements D.J. Ghasemlou M. Mesoporous silica nanoparticles: A versatile platform for encapsulation and delivery of essential oils for food applications. Adv. Colloid Interface Sci. 2024 325 103116 10.1016/j.cis.2024.103116 38430728
    [Google Scholar]
  185. Mircioiu C. Voicu V. Anuta V. Tudose A. Celia C. Paolino D. Fresta M. Sandulovici R. Mircioiu I. Mathematical modeling of release kinetics from supramolecular drug delivery systems. Pharmaceutics 2019 11 3 140 10.3390/pharmaceutics11030140 30901930
    [Google Scholar]
  186. Saji V.S. Recent updates on supramolecular-based drug delivery–macrocycles and supramolecular gels. Chem. Rec. 2022 22 7 e202200053 10.1002/tcr.202200053 35510981
    [Google Scholar]
  187. Geng W.C. Jiang Z.T. Chen S.L. Guo D.S. Supramolecular interaction in the action of drug delivery systems. Chem. Sci. 2024 15 21 7811 7823 10.1039/D3SC04585D 38817563
    [Google Scholar]
  188. Hermenean A. Dossi E. Hamilton A. Trotta M.C. Russo M. Lepre C.C. Sajtos C. Rusznyák Á. Váradi J. Bácskay I. Budai I. D’Amico M. Fenyvesi F. Chrysin directing an enhanced solubility through the formation of a supramolecular cyclodextrin–calixarene drug delivery system: A potential strategy in antifibrotic diabetes therapeutics. Pharmaceuticals 2024 17 1 107 10.3390/ph17010107 38256940
    [Google Scholar]
  189. Rahmani R. Gharanfoli M. Gholamin M. Darroudi M. Chamani J. Sadri K. Hashemzadeh A. Plant-mediated synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) using aloe vera and flaxseed extracts and evaluation of their cellular toxicities. Ceram. Int. 2020 46 3 3051 3058 10.1016/j.ceramint.2019.10.005
    [Google Scholar]
  190. Kush P. Kumar P. Singh R. Kaushik A. Aspects of high-performance and bio-acceptable magnetic nanoparticles for biomedical application. Asian J. Pharm. Sci. 2021 16 6 704 737 10.1016/j.ajps.2021.05.005 35027950
    [Google Scholar]
  191. Ludwig F. Heim E. Mäuselein S. Eberbeck D. Schilling M. Magnetorelaxometry of magnetic nanoparticles with fluxgate magnetometers for the analysis of biological targets. J. Magn. Magn. Mater. 2005 293 1 690 695 10.1016/j.jmmm.2005.02.045
    [Google Scholar]
  192. Periyathambi P. Hemalatha T. Development of water-soluble curcumin grafted magnetic nanoparticles for enhancing bioavailability, fluorescence, and magnetic resonance imaging activity. Mater. Lett. 2021 294 129763 10.1016/j.matlet.2021.129763
    [Google Scholar]
  193. Bourang S. Noruzpour M. Azizi S. Yaghoubi H. Ebrahimi H.A. Synthesis and in vitro characterization of PCL-PEG-HA/FeCo magnetic nanoparticles encapsulating curcumin and 5-FU. Nanomed. J. 2024 11 2 155 171 10.22038/nmj.2024.76219.1857
    [Google Scholar]
  194. Dissanayake T. Bandara N. Protein-based encapsulation systems for codelivery of bioactive compounds: Recent studies and potential applications. Curr. Opin. Food Sci. 2024 57 101181 10.1016/j.cofs.2024.101181
    [Google Scholar]
  195. Karabulut G. Goksen G. Khaneghah A.M. Plant-based protein modification strategies towards challenges. J. Agric. Res. 2024 15 101017 10.1016/j.jafr.2024.101017
    [Google Scholar]
  196. Anand A. Gautam P. Ojha S. Application of nanotechnology for herbal medicine development: A review. Lett. Drug Des. Discov. 2024 21 8 1325 1333 10.2174/1570180820666230308105723
    [Google Scholar]
  197. Jo B.H. Improved solubility and stability of a thermostable carbonic anhydrase via fusion with marine-derived intrinsically disordered solubility enhancers. Int. J. Mol. Sci. 2024 25 2 1139 10.3390/ijms25021139 38256209
    [Google Scholar]
  198. Alhnan M.A. Okwuosa T.C. Sadia M. Wan K.W. Ahmed W. Arafat B. Emergence of 3D printed dosage forms: Opportunities and challenges. Pharm. Res. 2016 33 8 1817 1832 10.1007/s11095‑016‑1933‑1 27194002
    [Google Scholar]
  199. Stansbury J.W. Idacavage M.J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 2016 32 1 54 64 10.1016/j.dental.2015.09.018 26494268
    [Google Scholar]
  200. Sandler N. Preis M. Printed drug-delivery systems for improved patient treatment. Trends Pharmacol. Sci. 2016 37 12 1070 1080 10.1016/j.tips.2016.10.002 27992318
    [Google Scholar]
  201. Ngo T.D. Kashani A. Imbalzano G. Nguyen K.T.Q. Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos., Part B Eng. 2018 143 172 196 10.1016/j.compositesb.2018.02.012
    [Google Scholar]
  202. Roche A. Sanchez-Ballester N.M. Bataille B. Delannoy V. Soulairol I. Fused Deposition Modelling 3D printing and solubility improvement of BCS II and IV active ingredients – A narrative review. J. Control. Release 2024 365 507 520 10.1016/j.jconrel.2023.11.041 38036003
    [Google Scholar]
  203. Kulkarni V.R. Saha T. Raj Giri B. Lu A. Das S.C. Maniruzzaman M. Recent advancements in pharmaceutical 3D printing industry. J. Drug Deliv. Sci. Technol. 2024 100 106072 10.1016/j.jddst.2024.106072
    [Google Scholar]
  204. Domsta V. Seidlitz A. 3D-printing of drug-eluting implants: An overview of the current developments described in the literature. Molecules 2021 26 13 4066 10.3390/molecules26134066 34279405
    [Google Scholar]
  205. Figueiras A. Domingues C. Jarak I. Santos A.I. Parra A. Pais A. Alvarez-Lorenzo C. Concheiro A. Kabanov A. Cabral H. Veiga F. New advances in biomedical application of polymeric micelles. Pharmaceutics 2022 14 8 1700 10.3390/pharmaceutics14081700 36015325
    [Google Scholar]
  206. Tawfik S.M. Azizov S. Elmasry M.R. Sharipov M. Lee Y.I. Recent advances in nanomicelles delivery systems. Nanomaterials 2020 11 1 70 10.3390/nano11010070 33396938
    [Google Scholar]
  207. Dhiman N. Awasthi R. Sharma B. Kharkwal H. Kulkarni G.T. Lipid nanoparticles as carriers for bioactive delivery. Front Chem. 2021 9 580118 10.3389/fchem.2021.580118 33981670
    [Google Scholar]
  208. Pandit A. Zeugolis D.I. Twenty-five years of nano-bio-materials: Have we revolutionized healthcare? Nanomedicine 2016 11 9 985 987 10.2217/nnm.16.42 27092982
    [Google Scholar]
  209. Haider S. Nanoparticles: The future of drug delivery. J. Young Investig. 2020 38 1
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501375776250713110838
Loading
/content/journals/cdt/10.2174/0113894501375776250713110838
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test