Skip to content
2000
Volume 26, Issue 13
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Poor solubility remains a significant obstacle in drug administration, adversely affecting the bioavailability and therapeutic efficacy of many drugs. It is also recognized as a primary factor contributing to issues with bioavailability, such as poor, inconsistent, limited, and highly variable bioavailability of marketed products. It is estimated that 40% of marketed drugs face bioavailability challenges primarily due to poor water solubility, and about 90% of pharmacological compounds exhibit poor water solubility in their early development stages. Addressing this issue is crucial for improving drug performance, efficacy, and patient outcomes. This review provides an overview of the challenges associated with poorly soluble drugs, including low bioavailability, limited dissolution rates, inconsistent absorption, decreased patient compliance, formulation difficulties, and associated costs and time constraints. Numerous strategies have been now investigated to tackle the issue of poor solubility. This review offers an updated overview of commonly used macro and nano drug delivery systems, including micelles, nanoemulsions, dendrimers, liposomes, lipid-based delivery systems, microemulsions, cosolvents, polymeric micelle preparation, drug nanocrystals, solid dispersion methods, crystal engineering techniques, and microneedle-based systems. Additionally, the review examines advanced techniques like cyclodextrin-based delivery systems, co-solvency and co-crystallization approaches, polymeric micelles, spray drying, co-precipitation, and amorphous solid dispersion. The role of computational modeling and formulation prediction is also addressed. Recent advancements in protein-based approaches, 3D printing, mesoporous silica nanoparticles, supramolecular delivery systems, magnetic nanoparticles, nanostructured lipid carriers, and lipid-based nanoparticles are highlighted as novel solutions for enhancing the solubility of poorly soluble drugs. The review concludes with predictions for the future, emphasizing the potential for further innovation in drug delivery methods to overcome the challenges associated with poorly soluble drugs.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501375776250713110838
2025-07-21
2025-12-08
Loading full text...

Full text loading...

References

  1. Fathi-KarkanS. Amiri RamshehN. ArkabanH. Narooie-NooriF. SargaziS. MirinejadS. RoostaeeM. SargaziS. BaraniM. Malahat ShadmanS. AlthomaliR.H. RahmanM.M. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases.Int. J. Pharm.202465812422610.1016/j.ijpharm.2024.12422638744414
    [Google Scholar]
  2. DiL. FishP.V. ManoT. Bridging solubility between drug discovery and development.Drug Discov. Today2012179-1048649510.1016/j.drudis.2011.11.00722138563
    [Google Scholar]
  3. KalepuS. NekkantiV. Insoluble drug delivery strategies: Review of recent advances and business prospects.Acta Pharm. Sin. B20155544245310.1016/j.apsb.2015.07.00326579474
    [Google Scholar]
  4. KhanK.U. MinhasM.U. BadshahS.F. SuhailM. AhmadA. IjazS. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs.Life Sci.202229112030110.1016/j.lfs.2022.12030134999114
    [Google Scholar]
  5. LiuY. LiangY. YuhongJ. XinP. HanJ.L. DuY. YuX. ZhuR. ZhangM. ChenW. MaY. Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs.Drug Des. Devel. Ther.2024181469149510.2147/DDDT.S44749638707615
    [Google Scholar]
  6. MillikenR.L. QuintenT. AndersenS.K. LamprouD.A. Application of 3D printing in early phase development of pharmaceutical solid dosage forms.Int. J. Pharm.202465312390210.1016/j.ijpharm.2024.12390238360287
    [Google Scholar]
  7. Manzari-TavakoliA. BabajaniA. TavakoliM.M. SafaeinejadF. JafariA. Integrating natural compounds and nanoparticle-based drug delivery systems: A novel strategy for enhanced efficacy and selectivity in cancer therapy.Cancer Med.2024135e701010.1002/cam4.701038491817
    [Google Scholar]
  8. KumariL. ChoudhariY. PatelP. GuptaG.D. SinghD. RosenholmJ.M. BansalK.K. KurmiB.D. Advancement in solubilization approaches: A step towards bioavailability enhancement of poorly soluble drugs.Life2023135109910.3390/life1305109937240744
    [Google Scholar]
  9. EzikeT.C. OkpalaU.S. OnojaU.L. NwikeC.P. EzeakoE.C. OkparaO.J. OkoroaforC.C. EzeS.C. KaluO.L. OdohE.C. NwadikeU.G. OgbodoJ.O. UmehB.U. OssaiE.C. NwangumaB.C. Advances in drug delivery systems, challenges and future directions.Heliyon202396e1748810.1016/j.heliyon.2023.e1748837416680
    [Google Scholar]
  10. CardosoP.H.N. AraújoE.S. An approach to 3D printing techniques, polymer materials, and their applications in the production of drug delivery systems.Compounds2024417110510.3390/compounds4010004
    [Google Scholar]
  11. IslamP. SchalyS. AbosalhaA.K. BoyajianJ. TharejaR. AhmadW. Shum-TimD. PrakashS. Nanotechnology in development of next generation of stent and related medical devices: Current and future aspects.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2024162e194110.1002/wnan.194138528392
    [Google Scholar]
  12. RathiP.B. KaleM. SoleymaniJ. JouybanA. Solubility of etoricoxib in aqueous solutions of glycerin, methanol, polyethylene glycols 200, 400, 600, and propylene glycol at 298.2 K.J. Chem. Eng. Data201863232133010.1021/acs.jced.7b00709
    [Google Scholar]
  13. JainS. PatelN. LinS. Solubility and dissolution enhancement strategies: Current understanding and recent trends.Drug Dev. Ind. Pharm.201541687588710.3109/03639045.2014.97102725342479
    [Google Scholar]
  14. JoshiJ. NainwalN. SaharanV.A. JYOTI JOSHI NIDHI NAINWAL VIKAS ANAND SAHARAN Review on hydrotropy: A potential approach for the solubility enhancement of poorly soluble drug.Asian J. Pharm. Clin. Res.201912192610.22159/ajpcr.2019.v12i10.34811
    [Google Scholar]
  15. KhanA.D. TabishM. KaushikR. SaxenaV. KesharwaniP. GuptaS. AlamM.N. SharmaV. Hydrotropy: Recent advancements in enhancement of drug solubility and formulation development.Int. J. Drug Deliv. Technol.202111392693610.25258/ijddt.11.3.47
    [Google Scholar]
  16. SamineniR. ChimakurthyJ. KonidalaS. Emerging role of biopharmaceutical classification and biopharmaceutical drug disposition system in dosage form development: A systematic review.Turk. J. Pharm. Sci.202219670671310.4274/tjps.galenos.2021.7355436544401
    [Google Scholar]
  17. NyambaI. SombiéC.B. YabréM. Zimé-DiawaraH. YaméogoJ. OuédraogoS. LechanteurA. SemdéR. EvrardB. Pharmaceutical approaches for enhancing solubility and oral bioavailability of poorly soluble drugs.Eur. J. Pharm. Biopharm.202420411451310.1016/j.ejpb.2024.11451339313163
    [Google Scholar]
  18. CharyP.S. ShaikhS. BhavanaV. RajanaN. VasaveR. MehraN.K. Emerging role of nanocrystals in pharmaceutical applications: A review of regulatory aspects and drug development process.Appl. Mater. Today20244010233410.1016/j.apmt.2024.102334
    [Google Scholar]
  19. BorgaonkarV.B. JainC.M. JaiswalA.R. IracheP. YelaneA.H. TattuH.P. A review on solubility enhancement technique for pharmaceutical drugs.GSCBPS202426223925310.30574/gscbps.2024.26.2.0069
    [Google Scholar]
  20. Losada-BarreiroS. CelikS. Sezgin-BayindirZ. Bravo-FernándezS. Bravo-DíazC. Carrier systems for advanced drug delivery: Improving drug solubility/bioavailability and administration routes.Pharmaceutics202416785210.3390/pharmaceutics1607085239065549
    [Google Scholar]
  21. PuY.E. MengerR. TongZ. GaebeleT. Development of an enhanced formulation to minimize pharmacokinetic variabilities of a weakly basic drug compound.Pharm. Dev. Technol.202227440641310.1080/10837450.2022.207020635502986
    [Google Scholar]
  22. Abou-TalebH.A. ShomanM.E. MakramT.S. Abdel-AleemJ.A. AbdelkaderH. Exploration of the safety and solubilization, dissolution, analgesic effects of common basic excipients on the NSAID drug ketoprofen.Pharmaceutics202315271310.3390/pharmaceutics1502071336840035
    [Google Scholar]
  23. PandiP. BulusuR. KommineniN. KhanW. SinghM. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products.Int. J. Pharm.202058611956010.1016/j.ijpharm.2020.11956032565285
    [Google Scholar]
  24. Sarabia-VallejoÁ. CajaM.M. OlivesA.I. MartínM.A. MenéndezJ.C. Cyclodextrin inclusion complexes for improved drug bioavailability and activity: Synthetic and analytical aspects.Pharmaceutics2023159234510.3390/pharmaceutics1509234537765313
    [Google Scholar]
  25. Karimi-JafariM. PadrelaL. WalkerG.M. CrokerD.M. Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications.Cryst. Growth Des.201818106370638710.1021/acs.cgd.8b00933
    [Google Scholar]
  26. FaustinoC. PinheiroL. Lipid systems for the delivery of amphotericin B in antifungal therapy.Pharmaceutics20201212910.3390/pharmaceutics1201002931906268
    [Google Scholar]
  27. LiuD. YoussefM.M. GraceJ.A. SinclairM. Relative carcinogenicity of tacrolimus vs after solid organ transplantation and its implications for liver transplant care.World J. Hepatol.202416465066010.4254/wjh.v16.i4.65038689747
    [Google Scholar]
  28. RahimiH.R. NedaeiniaR. Sepehri ShamlooA. NikdoustS. Kazemi OskueeR. Novel delivery system for natural products: Nano-curcumin formulations.Avicenna J. Phytomed.20166438339827516979
    [Google Scholar]
  29. DesaiN.P. TrieuV. HwangL.Y. WuR. Soon-ShiongP. GradisharW.J. Improved effectiveness of nanoparticle albumin-bound (nab) paclitaxel versus polysorbate-based docetaxel in multiple xenografts as a function of HER2 and SPARC status.Anticancer Drugs200819989990910.1097/CAD.0b013e32830f904618766004
    [Google Scholar]
  30. QiC.W. Mohd NordinU.U. MahmoodS. KarusanN.R. KhalidR. NordinN. FornagueraC. AhmadN. Gout management using nanocarrier systems: A review.ACS Appl. Nano Mater.2024799816984610.1021/acsanm.3c06079
    [Google Scholar]
  31. DashS.K. BenivalD. JindalA.B. Formulation strategies to overcome amphotericin B induced toxicity.Mol. Pharm.202421115392541210.1021/acs.molpharmaceut.4c0048539373243
    [Google Scholar]
  32. FerreiraM.D. DuarteJ. VeigaF. Paiva-SantosA.C. PiresP.C. Nanosystems for brain targeting of antipsychotic drugs: An update on the most promising nanocarriers for increased bioavailability and therapeutic efficacy.Pharmaceutics202315267810.3390/pharmaceutics1502067836840000
    [Google Scholar]
  33. TayahD.Y. EidA.M. Development of miconazole nitrate nanoparticles loaded in nanoemulgel to improve its antifungal activity.Saudi Pharm. J.202331452653410.1016/j.jsps.2023.02.00537063448
    [Google Scholar]
  34. PatelA. PatelM. YangX. MitraA. Recent advances in protein and Peptide drug delivery: A special emphasis on polymeric nanoparticles.Protein Pept. Lett.201421111102112010.2174/092986652166614080711424025106908
    [Google Scholar]
  35. Batke-HastingsS. CarmanT.L. Sublingual administration of warfarin: A novel form of delivery.Vasc. Med.200813212312610.1177/1358863x0708773018593801
    [Google Scholar]
  36. KrishnaprabhuS. DasJ.M. Reevaluating the epinephrine myth: A comprehensive review.Indian J. Pharmacol.202456320621310.4103/ijp.ijp_308_2339078185
    [Google Scholar]
  37. PlatonV.M. DragoiB. MarinL. Erythromycin formulations a journey to advanced drug delivery.Pharmaceutics20221410218010.3390/pharmaceutics1410218036297615
    [Google Scholar]
  38. OnishiH. SakataO. MasudaK. MachidaY. Novel mucoadhesive oral patch containing diazepam.Drug Dev. Ind. Pharm.200531760761310.1080/0363904050021607116207607
    [Google Scholar]
  39. LinS.Y. Thermoresponsive gating membranes embedded with liquid crystal(s) for pulsatile transdermal drug delivery: An overview and perspectives.J. Control. Release202031945047410.1016/j.jconrel.2019.12.04631901369
    [Google Scholar]
  40. AmatoM. SantonocitoS. PolizziA. TartagliaG.M. RonsivalleV. ViglianisiG. GrippaudoC. IsolaG. Local delivery and controlled release drugs systems: A new approach for the clinical treatment of periodontitis therapy.Pharmaceutics2023154131210.3390/pharmaceutics1504131237111796
    [Google Scholar]
  41. PandeyM. ChoudhuryH. YiC.X. MunC.W. PhingG.K. RouG.X. SinghB.J.K.A.P.A.J. JheeA.N.A. ChinL.K. KesharwaniP. GorainB. HussainZ. Recent updates on novel approaches in insulin drug delivery: A review of challenges and pharmaceutical implications.Curr. Drug Targets201819151782180010.2174/138945011966618052309210029792143
    [Google Scholar]
  42. KumarM. HillesA.R. AlmurisiS.H. BhatiaA. MahmoodS. Micro and nano-carriers-based pulmonary drug delivery system: Their current updates, challenges, and limitations – A review.JCIS Open20231210009510.1016/j.jciso.2023.100095
    [Google Scholar]
  43. QuanJ.N. ChengY. ZhouJ.Y. MengL.I. WangZ.M. LiuN. ZhaoZ.M. ZhangH. ZhengA.P. Effect of type of carrier material on the in vitro properties of solid dispersions of progesterone.Acta Pharm. Sin. B2024583735742
    [Google Scholar]
  44. SureshR. NavanandhiniJ. ChandraS. KumarN.S. Solid dispresion strategies for improved amlodipine besylate performance: Preparation and assessment.Int. J. Pharm. Res202412436537610.61096/ijphr.v12.iss4.2024.365‑376
    [Google Scholar]
  45. RusdinA. Mohd GazzaliA. Ain ThomasN. MegantaraS. AulifaD.L. BudimanA. MuchtaridiM. Advancing drug delivery paradigms: Polyvinyl pyrolidone (PVP)-based amorphous solid dispersion for enhanced physicochemical properties and therapeutic efficacy.Polymers202416228610.3390/polym1602028638276694
    [Google Scholar]
  46. ShabatinaT.I. GromovaY.A. VernayaO.I. SolovievA.V. ShabatinA.V. MorosovY.N. AstashovaI.V. MelnikovM.Y. Pharmaceutical nanoparticles formation and their physico-chemical and biomedical properties.Pharmaceuticals202417558710.3390/ph1705058738794157
    [Google Scholar]
  47. BazaeiM. HonarvarB. EsfandiariN. SajadianS.A. Arab AboosadiZ. Preparation of Erlotinib hydrochloride nanoparticles (anti- cancer drug) by RESS-C method and investigating the effective parameters.Sci. Rep.20241411495510.1038/s41598‑024‑64477‑838942802
    [Google Scholar]
  48. PreetiS. SambhakarS. MalikR. BhatiaS. HarrasiA.A. SaharanR. AggarwalG. KumarS. SehrawatR. RaniC. Lipid horizons: Recent advances and future prospects in LBDDS for oral administration of antihypertensive agents.Int. J. Hypertens.20242024115410.1155/2024/243014738410720
    [Google Scholar]
  49. AlsafarZ.F. Formulation, characterization, and evaluation of ticagrelor-loaded nano micelles enhance intestinal absorption.Bahrain Med. Bull.202345213911401
    [Google Scholar]
  50. GuliaR. SinghS. AroraS. SharmaN. Recent advancements in solubilization and Gastroretentive techniques for Oral Drug Delivery of Proton Pump inhibitors: A comprehensive review.Chem. Biol. Lett2023103546
    [Google Scholar]
  51. ModiD. JonnalagaddaS. CampbellG.A. DalwadiG. Enhancing oil solubility of BCS class II drug phenytoin through hydrophobic ion pairing to enable high drug load in injectable nanoemulsion to prevent precipitation at physiological pH with a potential to prevent phlebitis.J. Pharm. Sci.202311292427244310.1016/j.xphs.2023.03.01236958691
    [Google Scholar]
  52. BharateS.S. Modulation of biopharmaceutical properties of drugs using sulfonate counterions: A critical analysis of FDA-approved pharmaceutical salts.J. Drug Deliv. Sci. Technol.20216610291310.1016/j.jddst.2021.102913
    [Google Scholar]
  53. AlhamhoomY. KumaraswamyT. KumarA. NanjappaS.H. PrakashS.S. RahamathullaM. ThajudeenK.Y. AhmedM.M. ShivanandappaT.B. Formulation and evaluation of ph-modulated amorphous solid dispersion-based orodispersible tablets of cefdinir.Pharmaceutics202416786610.3390/pharmaceutics1607086639065563
    [Google Scholar]
  54. RadevaL. YordanovY. SpassovaI. KovachevaD. TibiI.P.E. ZaharievaM.M. KalevaM. NajdenskiH. PetrovP.D. TzankovaV. YonchevaK. Incorporation of resveratrol-hydroxypropyl-β-cyclodextrin complexes into hydrogel formulation for wound treatment.Gels202410534610.3390/gels1005034638786263
    [Google Scholar]
  55. JarakI. RamosS. CaldeiraB. DominguesC. VeigaF. FigueirasA. The many faces of cyclodextrins within self-assembling polymer nanovehicles: From inclusion complexes to valuable structural and functional elements.Int. J. Mol. Sci.20242517951610.3390/ijms2517951639273469
    [Google Scholar]
  56. PramodaG. ShuklaR. Application of nanotechnology based therapy against malaria.Nanostructured Drug Delivery Systems in Infectious Disease TreatmentAcademic Press202410312210.1016/B978‑0‑443‑13337‑4.00020‑3
    [Google Scholar]
  57. EshbekovaN. SowndaryaA. ThangaduraiT.D. LeeY.I. Recent advancements in Raman instrumentation and capabilities for pharmaceutical and biomedical applications.Appl. Spectrosc. Rev.202459679884910.1080/05704928.2024.2355193
    [Google Scholar]
  58. PardhiV.P. PathakA. JainK. Solid dispersions of bedaquiline fumarate to improve its pharmaceutical attributes: A comparative study between PEG and PVP.J. Drug Deliv. Sci. Technol.20249410546110.1016/j.jddst.2024.105461
    [Google Scholar]
  59. MaoF. ShiW. ZhaoH. LiW. JouybanA. AcreeW.E.Jr Comprehensive solubility study and inter-molecular interactions on fenbendazole dissolved in some aqueous aprotic and protic co-solvent solutions.J. Chem. Thermodyn.202419110723110.1016/j.jct.2023.107231
    [Google Scholar]
  60. ChaudharyA. ShambhakarS. Nanotechnology in drug delivery: Overcoming poor solubility challenges through nanoformulations.Curr. Nanomed.202414320021110.2174/0124681873276732231207051324
    [Google Scholar]
  61. PatilN. YadavA. JainD.K. Exploring the versatility of chewable tablets: A comprehensive analysis.Int. J. Pharm. Drug Des.20241210.62896/mg0v6x34
    [Google Scholar]
  62. WendongY. XingxingY. XianzeX. QiaomeiF. YujunS. ShanshanZ. ZhengS. HairuX. Nanoformulation-assisted microneedle transdermal drug delivery system: An innovative platform enhancing rheumatoid arthritis treatment.Biomed. Pharmacother.202417811721910.1016/j.biopha.2024.11721939084080
    [Google Scholar]
  63. SoutoE.B. CanoA. Martins-GomesC. CoutinhoT.E. ZielińskaA. SilvaA.M. Microemulsions and nanoemulsions in skin drug delivery.Bioengineering20229415810.3390/bioengineering904015835447718
    [Google Scholar]
  64. El MessaoudiN. CiğeroğluZ. ŞenolZ.M. Kazan-KayaE.S. FernineY. GubernatS. LopicicZ. Green synthesis of CuFe2O4 nanoparticles from bioresource extracts and their applications in different areas: A review.Biomass Convers. Biorefin.2024159912010.1007/s13399‑023‑05264‑9
    [Google Scholar]
  65. LengyelM. Kállai-SzabóN. AntalV. LakiA.J. AntalI. Microparticles, microspheres, and microcapsules for advanced drug delivery.Sci. Pharm.20198732010.3390/scipharm87030020
    [Google Scholar]
  66. GoelS. SachdevaM. AgarwalV. Nanosuspension technology: Recent patents on drug delivery and their characterizations.Recent Pat. Drug Deliv. Formul.20191329110410.2174/187221131366619061415161531203813
    [Google Scholar]
  67. GandhiS. ShastriD.H. Lipid-Based Nanoparticles as drug delivery system for modern therapeutics.Pharm. Nanotechnol.20241310.2174/012211738533737924091605325939400024
    [Google Scholar]
  68. TrivediJ.S. YueZ. Solubilization using cosolvent approach.Water-Insoluble Drug Formulation3rd edCRC Press2018133
    [Google Scholar]
  69. KosianD. WillisteinM. WeßbecherR. EggersC. MayO. BollM. Highly selective whole-cell 25-hydroxyvitamin D 3 synthesis using molybdenum-dependent C25-steroid dehydrogenase and cyclodextrin recycling.Microb. Cell Fact.20242313010.1186/s12934‑024‑02303‑638245746
    [Google Scholar]
  70. XueM. KangX. WangY. GaoB. Comparison of aluminum formate and traditional aluminum coagulants in structure, hydrolysates, coagulation behavior, and its corrosion resistance advantage.Separ. Purif. Tech.202433512606510.1016/j.seppur.2023.126065
    [Google Scholar]
  71. MunnangiS.R. YoussefA.A.A. NaralaN. LakkalaP. NaralaS. VemulaS.K. RepkaM. Drug complexes: Perspective from academic research and pharmaceutical market.Pharm. Res.20234061519154010.1007/s11095‑023‑03517‑w37138135
    [Google Scholar]
  72. LohZ.H. SamantaA.K. Sia HengP.W. Overview of milling techniques for improving the solubility of poorly water-soluble drugs.Asian J. Pharm. Sci.201510425527410.1016/j.ajps.2014.12.006
    [Google Scholar]
  73. RanQ. WangM. KuangW. OuyangJ. HanD. GaoZ. GongJ. Advances of combinative nanocrystal preparation technology for improving the insoluble drug solubility and bioavailability.Crystals2022129120010.3390/cryst12091200
    [Google Scholar]
  74. AdaliM.B. BarresiA.A. BoccardoG. PisanoR. Spray freeze drying as a solution to continuous manufacturing of pharmaceutical products in bulk.Processes20208670910.3390/pr8060709
    [Google Scholar]
  75. SharmaU. SarohaK. A review of hydrotropic solubilization techniques for enhancing the bioavailability of poorly soluble drugs.Int. J. Toxicol.2024431637110.1177/1091581823121641437999970
    [Google Scholar]
  76. ChhabraN. AroraM. GargD. SamotaM.K. Spray freeze drying - A synergistic drying technology and its applications in the food industry to preserve bioactive compounds.Food Control202415511009910.1016/j.foodcont.2023.110099
    [Google Scholar]
  77. OgbuA.D. IweK.A. OzoweW. IkevujeA.H. Conceptual integration of seismic attributes and well log data for pore pressure prediction.GJETA2024200111813010.30574/gjeta.2024.20.1.0125
    [Google Scholar]
  78. KhalbasA.H. AlbayatiT.M. AliN.S. SalihI.K. Drug loading methods and kinetic release models using of mesoporous silica nanoparticles as a drug delivery system: A review.S. Afr. J. Chem. Eng.20245026128010.1016/j.sajce.2024.08.013
    [Google Scholar]
  79. BhalaniD.V. NutanB. KumarA. Singh ChandelA.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics.Biomedicines2022109205510.3390/biomedicines1009205536140156
    [Google Scholar]
  80. LouZ. MuC. CorpsteinC.D. LiT. in vivo deposition of poorly soluble drugs.Adv. Drug Deliv. Rev.202421111535810.1016/j.addr.2024.11535838851590
    [Google Scholar]
  81. ZhanA. NiuD. LiK. LiJ. Characterization of some sucrose-based deep eutectic solvents and their effect on the solubility of piroxicam.J. Mol. Liq.202337712155610.1016/j.molliq.2023.121556
    [Google Scholar]
  82. Kumar SarellaP.N. VegiS. Kumari VendiV. Kumar VipparthiA. ValluriS. Exploring aquasomes: A promising frontier in nanotechnology-based drug delivery.Asian J. Pharm. Res.202414215316110.52711/2231‑5691.2024.00026
    [Google Scholar]
  83. ShuklaM.K. TiwariH. VermaR. DongW.L. AzizovS. KumarB. PandeyS. KumarD. Role and recent advancements of ionic liquids in drug delivery systems.Pharmaceutics202315270210.3390/pharmaceutics1502070236840024
    [Google Scholar]
  84. Da SilvaF.L.O. MarquesM.B.D.F. KatoK.C. CarneiroG. Nanonization techniques to overcome poor water-solubility with drugs.Expert Opin. Drug Discov.202015785386410.1080/17460441.2020.175059132290727
    [Google Scholar]
  85. TsiaxerliA. VardakaE. MoutroupidisC. TaylorK.M.G. KachrimanisK. MalamatariM. Updates on the conversion of nanosuspensions to solid oral dosage forms.Yao Wu Shi Pin Fen Xi202432439841110.38212/2224‑6614.352539752860
    [Google Scholar]
  86. KaurG. PanigrahiC. AgarwalS. KhuntiaA. SahooM. Recent trends and advancements in nanoemulsions: Production methods, functional properties, applications in food sector, safety and toxicological effects.Food Physics2024110002410.1016/j.foodp.2024.100024
    [Google Scholar]
  87. SenS. GantaB. RachelV.N. GogikarS.K. SinghV. SontiR. DikundwarA.G. Mapping advantages and challenges in analytical development for fixed-dose combination products: A review.J. Pharm. Sci.202411382028204310.1016/j.xphs.2024.04.02538697403
    [Google Scholar]
  88. KumarR. ThakurA.K. ChaudhariP. BanerjeeN. Particle size reduction techniques of pharmaceutical compounds for the enhancement of their dissolution rate and bioavailability.J. Pharm. Innov.202217233335210.1007/s12247‑020‑09530‑5
    [Google Scholar]
  89. ChengY. ZhongC. YanS. ChenC. GaoX. Structure modification: A successful tool for prodrug design.Future Med. Chem.202315437939310.4155/fmc‑2022‑030936946236
    [Google Scholar]
  90. QuF. GengR. LiuY. ZhuJ. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment.Theranostics20221273372340610.7150/thno.6999935547773
    [Google Scholar]
  91. AshiqueS. SandhuN.K. ChawlaV. ChawlaP.A. Targeted drug delivery: Trends and perspectives.Curr. Drug Deliv.202118101435145510.2174/156720181866621060916130134151759
    [Google Scholar]
  92. LiuZ. ShiY. LiuC. Emerging trends in drug-device combination for advanced disease diagnosis and therapy.Nano Today20235010185310.1016/j.nantod.2023.101853
    [Google Scholar]
  93. EssienE.S. JacksonT.C. OlorunsolaE.O. OlorunsolaE.O. Development and evaluation of encapsulated self-emulsifying drug delivery system of hydrochlorothiazide.Nigerian Journal of Pharmaceutical Research2024201233010.4314/njpr.v20i1.3
    [Google Scholar]
  94. GaoW. BighamA. GhomiM. ZarrabiA. RabieeN. SaebM.R. Nuri ErtasY. GoelA. SharifiE. AshrafizadehM. SethiG. TambuwalaM.M. WangY. GhaffarlouM. JiaoT. Micelle-engineered nanoplatforms for precision oncology.Chem. Eng. J.202449515343810.1016/j.cej.2024.153438
    [Google Scholar]
  95. LiX. HongX. ShuaiS. HanX. LiC. ZhangH. WangZ. RenM. JinL. ZhengA. A review of hot melt extrusion technology: Advantages, applications, key factors and future prospects.J. Drug Deliv. Sci. Technol.20249810588410.1016/j.jddst.2024.105884
    [Google Scholar]
  96. NingthoujamS.S. NathR. SarkerS.D. NaharL. NathD. TalukdarA.D. Prediction of medicinal properties using mathematical models and computation, and selection of plant materials.Comput. Phytochem.202419112310.1016/B978‑0‑443‑16102‑5.00011‑0
    [Google Scholar]
  97. PrakashS. Nano-based drug delivery system for therapeutics: A comprehensive review.Biomed. Phys. Eng. Express20239505200210.1088/2057‑1976/acedb237549657
    [Google Scholar]
  98. JoshiK. ChandraA. JainK. TalegaonkarS. Nanocrystalization: An emerging technology to enhance the bioavailability of poorly soluble drugs.Pharm. Nanotechnol.20197425927810.2174/221173850766619040518252430961518
    [Google Scholar]
  99. YingchoncharoenP. KalinowskiD.S. RichardsonD.R. Lipid based drug delivery systems in cancer therapy: What is available and what is yet to come.Pharmacol. Rev.201668370178710.1124/pr.115.01207027363439
    [Google Scholar]
  100. GbianD.L. OmriA. Lipid-based drug delivery systems for diseases managements.Biomedicines2022109213710.3390/biomedicines1009213736140237
    [Google Scholar]
  101. ChavdaV.P. AcharyaD. HalaV. DawareS. VoraL.K. Sunscreens: A comprehensive review with the application of nanotechnology.J. Drug Deliv. Sci. Technol.20238610472010.1016/j.jddst.2023.104720
    [Google Scholar]
  102. BarenholzY.C. Doxil®—The first FDA-approved nano-drug: From an idea to a product.Handbook of Harnessing Biomaterials in Nanomedicine.Jenny Stanford Publishing202146352810.1201/9781003125259‑16
    [Google Scholar]
  103. ChouH. LinH. LiuJ.M. A tale of the two PEGylated liposomal doxorubicins.OncoTargets Ther.201581719172026203262
    [Google Scholar]
  104. NieY. FuG. LengY. Nuclear delivery of nanoparticle-based drug delivery systems by nuclear localization signals.Cells20231212163710.3390/cells1212163737371107
    [Google Scholar]
  105. LuoY. SunM. TanL. LiT. MinL. Nano-based drug delivery systems: Potential developments in the therapy of metastatic osteosarcoma—a narrative review.Pharmaceutics20231512271710.3390/pharmaceutics1512271738140058
    [Google Scholar]
  106. GrüneL. BunjesH. Solubility of poorly soluble drugs in phosphatidylcholine-based drug delivery systems: Comparison of the loading capacity in the bulk formulation and its dispersed state.Pharmaceuticals202417340010.3390/ph1703040038543186
    [Google Scholar]
  107. RochaB. de MoraisL.A. VianaM.C. CarneiroG. Promising strategies for improving oral bioavailability of poor water-soluble drugs.Expert Opin. Drug Discov.202318661562710.1080/17460441.2023.221180137157841
    [Google Scholar]
  108. DonnellyR.F. SinghT.R.R. WoolfsonA.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety.Drug Deliv.201017418720710.3109/1071754100366779820297904
    [Google Scholar]
  109. ChengT. TaiZ. ShenM. LiY. YuJ. WangJ. ZhuQ. ChenZ. Advance and challenges in the treatment of skin diseases with the transdermal drug delivery system.Pharmaceutics2023158216510.3390/pharmaceutics1508216537631379
    [Google Scholar]
  110. FitrianiE.W. AvantiC. RosanaY. SuriniS. Nanostructured lipid carriers: A prospective dermal drug delivery system for natural active ingredients.Pharmacia20247111510.3897/pharmacia.71.e115849
    [Google Scholar]
  111. TewabeA. AbateA. TamrieM. SeyfuA. Abdela SirajE. Targeted drug delivery—from magic bullet to nanomedicine: Principles, challenges, and future perspectives.J. Multidiscip. Healthc.2021141711172410.2147/JMDH.S31396834267523
    [Google Scholar]
  112. SalawiA. Self-emulsifying drug delivery systems: A novel approach to deliver drugs.Drug Deliv.20222911811182310.1080/10717544.2022.208372435666090
    [Google Scholar]
  113. JainA. BhardwajK. BansalM. Polymeric micelles as drug delivery system: Recent advances, approaches, applications and patents.Curr. Drug Saf.202419216317110.2174/157488631866623060512043337282644
    [Google Scholar]
  114. Maynard-BensonA. AlekischM. WallA. BilliotE.J. BilliotF.H. MorrisK.F. Characterization of micelle formation by the single amino acid-based surfactants undecanoic L-isoleucine and undecanoic L-norleucine in the presence of diamine counterions with varying chain lengths.Colloids Interfaces2023722810.3390/colloids7020028
    [Google Scholar]
  115. MajumderN. G DasN. DasS.K. Polymeric micelles for anticancer drug delivery.Ther. Deliv.2020111061363510.4155/tde‑2020‑000832933425
    [Google Scholar]
  116. Kupikowska-StobbaB. DomagałaJ. KasprzakM.M. Critical review of techniques for food emulsion characterization.Appl. Sci.2024143106910.3390/app14031069
    [Google Scholar]
  117. CostaC. MedronhoB. FilipeA. MiraI. LindmanB. EdlundH. NorgrenM. Emulsion formation and stabilization by biomolecules: The leading role of cellulose.Polymers20191110157010.3390/polym1110157031561633
    [Google Scholar]
  118. ZhuY. ChenT. CuiZ. Multiple Pickering emulsions stabilized by the same particles with different extent of hydrophobization in situ. Front Chem.20221095093210.3389/fchem.2022.95093236059875
    [Google Scholar]
  119. EsimO. BakirhanN.K. SarperM. SavaserA. OzkanS.A. OzkanY. Influence of emulsifiers on the formation and in vitro anticancer activity of epirubicin loaded PLGA nanoparticles.J. Drug Deliv. Sci. Technol.20206010202710.1016/j.jddst.2020.102027
    [Google Scholar]
  120. MeirinhoS. RodriguesM. SantosA.O. FalcãoA. AlvesG. Self-emulsifying drug delivery systems: An alternative approach to improve brain bioavailability of poorly water-soluble drugs through intranasal administration.Pharmaceutics2022147148710.3390/pharmaceutics1407148735890385
    [Google Scholar]
  121. SeoE.B. du PlessisL.H. ViljoenJ.M. Solidification of self-emulsifying drug delivery systems as a novel approach to the management of uncomplicated malaria.Pharmaceuticals202215212010.3390/ph1502012035215233
    [Google Scholar]
  122. PandyaM. ChatterjeeB. GantiS. Self-emulsifying drug delivery system for oral anticancer therapy: Constraints and recent development.Curr. Pharm. Des.202228312538255310.2174/0366622060614344335670356
    [Google Scholar]
  123. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  124. LamichhaneN. UdayakumarT. D’SouzaW. SimoneC.II RaghavanS. PolfJ. MahmoodJ. Liposomes: Clinical applications and potential for image-guided drug delivery.Molecules201823228810.3390/molecules2302028829385755
    [Google Scholar]
  125. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  126. HuM. LiX. YouZ. CaiR. ChenC. Physiological barriers and strategies of lipid-based nanoparticles for nucleic acid drug delivery.Adv. Mater.20243622230326610.1002/adma.20230326637792475
    [Google Scholar]
  127. ApostolouM. FatokunA.A. AssiS. KhanI. Targeted lipid-based drug delivery systems for lung cancer therapy.Appl. Sci.20241415675910.3390/app14156759
    [Google Scholar]
  128. PaolinoD. d’AvanzoN. CanatoE. CirioloL. GrigolettoA. CristianoM.C. MancusoA. CeliaC. PasutG. FrestaM. Improved anti-breast cancer activity by doxorubicin-loaded super stealth liposomes.Biomater. Sci.202412153933394610.1039/D4BM00478G38940612
    [Google Scholar]
  129. HaftcheshmehS.M. JaafariM.R. MashreghiM. MehrabianA. AlavizadehS.H. ZamaniP. ZarqiJ. DarvishiM.H. GheybiF. Liposomal doxorubicin targeting mitochondria: A novel formulation to enhance anti-tumor effects of Doxil® in vitro and in vivo .J. Drug Deliv. Sci. Technol.20216210235110.1016/j.jddst.2021.102351
    [Google Scholar]
  130. KraussA.C. GaoX. LiL. ManningM.L. PatelP. FuW. JanoriaK.G. GieserG. BatemanD.A. PrzepiorkaD. ShenY.L. ShordS.S. ShethC.M. BanerjeeA. LiuJ. GoldbergK.B. FarrellA.T. BlumenthalG.M. PazdurR. FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia.Clin. Cancer Res.20192592685269010.1158/1078‑0432.CCR‑18‑299030541745
    [Google Scholar]
  131. TiwariC. TomerJ. KumarD. Liposomal drug delivery: Progress, clinical outlook, and ongoing challenges. recent advances in drug delivery and formulation.Recent Pat. Drug Deliv. Formul.2024183157169
    [Google Scholar]
  132. de JongW.H. BormP.J. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine20083213314910.2147/IJN.S59618686775
    [Google Scholar]
  133. RizviS.A.A. SalehA.M. Applications of nanoparticle systems in drug delivery technology.Saudi Pharm. J.2018261647010.1016/j.jsps.2017.10.01229379334
    [Google Scholar]
  134. GelperinaS. KisichK. IsemanM.D. HeifetsL. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis.Am. J. Respir. Crit. Care Med.2005172121487149010.1164/rccm.200504‑613PP16151040
    [Google Scholar]
  135. GoldbergM. LangerR. JiaX. Nanostructured materials for applications in drug delivery and tissue engineering.J. Biomater. Sci. Polym. Ed.200718324126810.1163/15685620777999693117471764
    [Google Scholar]
  136. SinghR. LillardJ.W.Jr Nanoparticle-based targeted drug delivery.Exp. Mol. Pathol.200986321522310.1016/j.yexmp.2008.12.00419186176
    [Google Scholar]
  137. DesaiN. Challenges in development of nanoparticle-based therapeutics.AAPS J.201214228229510.1208/s12248‑012‑9339‑422407288
    [Google Scholar]
  138. AdepuS. RamakrishnaS. Controlled drug delivery systems: Current status and future directions.Molecules20212619590510.3390/molecules2619590534641447
    [Google Scholar]
  139. YunY.H. LeeB.K. ParkK. Controlled drug delivery: Historical perspective for the next generation.J. Control. Release20152192710.1016/j.jconrel.2015.10.00526456749
    [Google Scholar]
  140. TranP. PyoY.C. KimD.H. LeeS.E. KimJ.K. ParkJ.S. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs.Pharmaceutics201911313210.3390/pharmaceutics1103013230893899
    [Google Scholar]
  141. LamrabetN. HessF. LeidigP. MarxA. KippingT. Exploring 3D printing in drug development: Assessing the potential of advanced melt drop deposition technology for solubility enhancement by creation of amorphous solid dispersions.Pharmaceutics20241612150110.3390/pharmaceutics1612150139771481
    [Google Scholar]
  142. UedaK. MosesonD.E. TaylorL.S. Amorphous solubility advantage: Theoretical considerations, experimental methods, and contemporary relevance.J. Pharm. Sci.20241141183910.1016/j.xphs.2024.08.02939222748
    [Google Scholar]
  143. PatilH. VemulaS.K. NaralaS. LakkalaP. MunnangiS.R. NaralaN. JaraM.O. WilliamsR.O.III TerefeH. RepkaM.A. Hot-melt extrusion: From theory to application in pharmaceutical formulation—where are we now?AAPS PharmSciTech20242523710.1208/s12249‑024‑02749‑238355916
    [Google Scholar]
  144. SarafI. JakasanovskiO. StanićT. KraljE. PetekB. WilliamsJ.D. DmytroN. GeorgG. BerndW. KlausZ. PerhavecP. German IlićI. PaudelA. KushwahV. Investigation of the influence of copovidone properties and hot-melt extrusion process on level of impurities, in vitro release, and stability of an amorphous solid dispersion product.Mol. Pharm.202421115703571510.1021/acs.molpharmaceut.4c0070739265053
    [Google Scholar]
  145. TambeS. JainD. AgarwalY. AminP. Hot-melt extrusion: Highlighting recent advances in pharmaceutical applications.J. Drug Deliv. Sci. Technol.20216310245210.1016/j.jddst.2021.102452
    [Google Scholar]
  146. MunnangiS.R. YoussefA.A.A. NaralaN. LakkalaP. VemulaS.K. AlluriR. ZhangF. RepkaM.A. Continuous manufacturing of solvent-free cyclodextrin inclusion complexes for enhanced drug solubility via hot-melt extrusion: A quality by design approach.Pharmaceutics2023159220310.3390/pharmaceutics1509220337765172
    [Google Scholar]
  147. FandaA.K. JadhavA. NarukaP.S. RanaD. BenivalD. Systematic development of hot melt extrusion-based amorphous solid dispersion: Integrating quality by design and in silico modeling.J. Pharm. Innov.20241933510.1007/s12247‑024‑09843‑9
    [Google Scholar]
  148. SosnikA. SeremetaK.P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers.Adv. Colloid Interface Sci.2015223405410.1016/j.cis.2015.05.00326043877
    [Google Scholar]
  149. MareczekL. MuellerL.K. HalstenbergL. GeigerT.M. WalzM. ZhengM. HauschF. Use of poly(vinyl alcohol) in spray-dried dispersions: Enhancing solubility and stability of proteolysis targeting chimeras.Pharmaceutics202416792410.3390/pharmaceutics1607092439065621
    [Google Scholar]
  150. DhondaleM.R. NambiarA.G. SinghM. MaliA.R. AgrawalA.K. ShastriN.R. KumarP. KumarD. Current trends in API co-processing: Spherical crystallization and co-precipitation techniques.J. Pharm. Sci.202311282010202810.1016/j.xphs.2023.02.00536780986
    [Google Scholar]
  151. ReinhartK.O. VermeireL.T. PennC.J. LekbergY. Experimental evidence that poor soil phosphorus (P) solubility typical of drylands due to calcium co-precipitation favors autonomous plant P acquisition over collaboration with mycorrhizal fungi.Soil Biol. Biochem.202419910960510.1016/j.soilbio.2024.109605
    [Google Scholar]
  152. ShirkeS.H. ShewaleS.B. KulkarniA.S. AloorkarN.H. Solid dispersion: A novel approach for poorly water soluble drugs.Int. J. Curr. Pharm. Res.20157418
    [Google Scholar]
  153. PisayM. PadyaS. MutalikS. KoteshwaraK.B. Stability challenges of amorphous solid dispersions of drugs: A critical review on mechanistic aspects.Crit. Rev. Ther. Drug Carrier Syst.2024413459410.1615/CritRevTherDrugCarrierSyst.202303987738037820
    [Google Scholar]
  154. BapatP. PaulS. TsengY.C. TaylorL.S. Interplay of drug–polymer interactions and release performance for hpmcas-based amorphous solid dispersions.Mol. Pharm.20242131466147810.1021/acs.molpharmaceut.3c0110638346390
    [Google Scholar]
  155. PăduraruD.N. NiculescuA.G. BolocanA. AndronicO. GrumezescuA.M. BîrlăR. An updated overview of cyclodextrin-based drug delivery systems for cancer therapy.Pharmaceutics2022148174810.3390/pharmaceutics1408174836015374
    [Google Scholar]
  156. TianB. HuaS. LiuJ. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review.Carbohydr. Polym.202023211580510.1016/j.carbpol.2019.11580531952603
    [Google Scholar]
  157. SantosA.C. CostaD. FerreiraL. GuerraC. Pereira-SilvaM. PereiraI. PeixotoD. FerreiraN.R. VeigaF. Cyclodextrin-based delivery systems for in vivo -tested anticancer therapies.Drug Deliv. Transl. Res.2021111497110.1007/s13346‑020‑00778‑532441011
    [Google Scholar]
  158. LiuH. GuoS. WeiS. LiuJ. TianB. Pharmacokinetics and pharmacodynamics of cyclodextrin-based oral drug delivery formulations for disease therapy.Carbohydr. Polym.202432912176310.1016/j.carbpol.2023.12176338286540
    [Google Scholar]
  159. ManeP.T. WakureB.S. WakteP.S. Cyclodextrin based nanosponges: A multidimensional drug delivery system and its biomedical applications.Curr. Drug Deliv.202118101467149310.2174/156720181866621042309125033902410
    [Google Scholar]
  160. AlwattarJ. MehannaM. Engineered porous beta-cyclodextrin-loaded raloxifene framework with potential anticancer activity: Physicochemical characterization, drug release, and cytotoxicity studies.Int. J. Nanomedicine202419115611157610.2147/IJN.S46957039539969
    [Google Scholar]
  161. FathallaZ. ShomanM.E. BarakatH.S. Al FateaseA. AlamriA.H. AbdelkaderH. Cyclodextrins and amino acids enhance solubility and tolerability of retinoic acid/tretinoin: Molecular docking, physicochemical, cytotoxicity, scratch assay, and topical gel formulations investigation.Pharmaceutics202416785310.3390/pharmaceutics1607085339065550
    [Google Scholar]
  162. Raheem ThayyilA. JuturuT. NayakS. KamathS. Pharmaceutical co-crystallization: Regulatory aspects, design, characterization, and applications.Adv. Pharm. Bull.202010220321210.34172/apb.2020.02432373488
    [Google Scholar]
  163. CharumaneeS. OkonogiS. SirithunyalugJ. WolschannP. ViernsteinH. Effect of cyclodextrin types and co-solvent on solubility of a poorly water soluble drug.Sci. Pharm.201684469470410.3390/scipharm8404069427763573
    [Google Scholar]
  164. SinghK. SinghP.A. FrankA. AroraS. SharmaR. BajwaN. Solubility, the main concern for poorly water-soluble drugs: Techniques and alternatives.Lett. Drug Des. Discov.202421122248226010.2174/1570180820666230807163632
    [Google Scholar]
  165. YadavK. SachanA.K. KumarS. DubeyA. Techniques for increasing solubility: A review of conventional and new strategies.Asian J. Pharm. Res. Dev.202210214415310.22270/ajprd.v10i2.1054
    [Google Scholar]
  166. ChavoshyF. MakhmalzadeB.S. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders.J. Adv. Pharm. Technol. Res.2018912810.4103/japtr.JAPTR_314_1729441317
    [Google Scholar]
  167. GhezziM. PescinaS. PadulaC. SantiP. Del FaveroE. CantùL. NicoliS. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.03133652113
    [Google Scholar]
  168. ChisA.A. DobreaC. MorgovanC. ArseniuA.M. RusL.L. ButucaA. JuncanA.M. TotanM. Vonica-TincuA.L. CormosG. MunteanA.C. MuresanM.L. GligorF.G. FrumA. Applications and limitations of dendrimers in biomedicine.Molecules20202517398210.3390/molecules2517398232882920
    [Google Scholar]
  169. LuharM. ViradiyaR. Panjabi PatelG. Nanotechnology in ocular drug delivery: The potential of polymeric micelles as a drug delivery vehicle.J. Ocul. Pharmacol. Ther.2025412546410.1089/jop.2024.006039263975
    [Google Scholar]
  170. AlvenS. AderibigbeB.A. The therapeutic efficacy of dendrimer and micelle formulations for breast cancer treatment.Pharmaceutics20201212121210.3390/pharmaceutics1212121233333778
    [Google Scholar]
  171. WakaskarR.R. General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes.J. Drug Target.201826431131810.1080/1061186X.2017.136700628797169
    [Google Scholar]
  172. MorrisonT.M. PathmanathanP. AdwanM. MargerrisonE. Advancing regulatory science with computational modeling for medical devices at the FDA’s Office of Science and Engineering Laboratories.Front. Med.2018524110.3389/fmed.2018.0024130356350
    [Google Scholar]
  173. KhalidH. KazemiP. Perez-GandarillasL. MichrafyA. SzlękJ. JachowiczR. MendykA. Computational intelligence models to predict porosity of tablets using minimum features.Drug Des. Devel. Ther.20171119320210.2147/DDDT.S11943228138223
    [Google Scholar]
  174. GaikwadV.L. BhatiaN.M. DesaiS.A. BhatiaM.S. Quantitative structure property relationship modeling of excipient properties for prediction of formulation characteristics.Carbohydr. Polym.201615159359910.1016/j.carbpol.2016.05.11427474604
    [Google Scholar]
  175. ManzariM.T. ShamayY. KiguchiH. RosenN. ScaltritiM. HellerD.A. Targeted drug delivery strategies for precision medicines.Nat. Rev. Mater.20216435137010.1038/s41578‑020‑00269‑634950512
    [Google Scholar]
  176. CardosoR.V. PereiraP.R. FreitasC.S. PaschoalinV.M.F. Trends in drug delivery systems for natural bioactive molecules to treat health disorders: The importance of nano-liposomes.Pharmaceutics20221412280810.3390/pharmaceutics1412280836559301
    [Google Scholar]
  177. LaffleurF. KeckeisV. Advances in drug delivery systems: Work in progress still needed?Int. J. Pharm.202059011991210.1016/j.ijpharm.2020.11991232971178
    [Google Scholar]
  178. BhartiC. GulatiN. NagaichU. PalA.K. Mesoporous silica nanoparticles in target drug delivery system: A review.Int. J. Pharm. Investig.20155312413310.4103/2230‑973X.16084426258053
    [Google Scholar]
  179. PardeikeJ. HommossA. MüllerR.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products.Int. J. Pharm.20093661-217018410.1016/j.ijpharm.2008.10.00318992314
    [Google Scholar]
  180. LancelotA. SierraT. SerranoJ.L. Nanostructured liquid-crystalline particles for drug delivery.Expert Opin. Drug Deliv.201411454756410.1517/17425247.2014.88455624490701
    [Google Scholar]
  181. ChenC.C. TsaiT.H. HuangZ.R. FangJ.Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics.Eur. J. Pharm. Biopharm.201074347448210.1016/j.ejpb.2009.12.00820060469
    [Google Scholar]
  182. TrzeciakK. Chotera-OudaA. Bak-SypienI.I. PotrzebowskiM.J. Mesoporous silica particles as drug delivery systems—the state of the art in loading methods and the recent progress in analytical techniques for monitoring these processes.Pharmaceutics202113795010.3390/pharmaceutics1307095034202794
    [Google Scholar]
  183. SinghD. McMillanJ.M. LiuX.M. VishwasraoH.M. KabanovA.V. Sokolsky-PapkovM. GendelmanH.E. Formulation design facilitates magnetic nanoparticle delivery to diseased cells and tissues.Nanomedicine20149346948510.2217/nnm.14.424646020
    [Google Scholar]
  184. WeisanyW. YousefiS. SoufianiS.P. PashangD. McClementsD.J. GhasemlouM. Mesoporous silica nanoparticles: A versatile platform for encapsulation and delivery of essential oils for food applications.Adv. Colloid Interface Sci.202432510311610.1016/j.cis.2024.10311638430728
    [Google Scholar]
  185. MircioiuC. VoicuV. AnutaV. TudoseA. CeliaC. PaolinoD. FrestaM. SanduloviciR. MircioiuI. Mathematical modeling of release kinetics from supramolecular drug delivery systems.Pharmaceutics201911314010.3390/pharmaceutics1103014030901930
    [Google Scholar]
  186. SajiV.S. Recent updates on supramolecular-based drug delivery–macrocycles and supramolecular gels.Chem. Rec.2022227e20220005310.1002/tcr.20220005335510981
    [Google Scholar]
  187. GengW.C. JiangZ.T. ChenS.L. GuoD.S. Supramolecular interaction in the action of drug delivery systems.Chem. Sci.202415217811782310.1039/D3SC04585D38817563
    [Google Scholar]
  188. HermeneanA. DossiE. HamiltonA. TrottaM.C. RussoM. LepreC.C. SajtosC. RusznyákÁ. VáradiJ. BácskayI. BudaiI. D’AmicoM. FenyvesiF. Chrysin directing an enhanced solubility through the formation of a supramolecular cyclodextrin–calixarene drug delivery system: A potential strategy in antifibrotic diabetes therapeutics.Pharmaceuticals202417110710.3390/ph1701010738256940
    [Google Scholar]
  189. RahmaniR. GharanfoliM. GholaminM. DarroudiM. ChamaniJ. SadriK. HashemzadehA. Plant-mediated synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) using aloe vera and flaxseed extracts and evaluation of their cellular toxicities.Ceram. Int.20204633051305810.1016/j.ceramint.2019.10.005
    [Google Scholar]
  190. KushP. KumarP. SinghR. KaushikA. Aspects of high-performance and bio-acceptable magnetic nanoparticles for biomedical application.Asian J. Pharm. Sci.202116670473710.1016/j.ajps.2021.05.00535027950
    [Google Scholar]
  191. LudwigF. HeimE. MäuseleinS. EberbeckD. SchillingM. Magnetorelaxometry of magnetic nanoparticles with fluxgate magnetometers for the analysis of biological targets.J. Magn. Magn. Mater.2005293169069510.1016/j.jmmm.2005.02.045
    [Google Scholar]
  192. PeriyathambiP. HemalathaT. Development of water-soluble curcumin grafted magnetic nanoparticles for enhancing bioavailability, fluorescence, and magnetic resonance imaging activity.Mater. Lett.202129412976310.1016/j.matlet.2021.129763
    [Google Scholar]
  193. BourangS. NoruzpourM. AziziS. YaghoubiH. EbrahimiH.A. Synthesis and in vitro characterization of PCL-PEG-HA/FeCo magnetic nanoparticles encapsulating curcumin and 5-FU.Nanomed. J.202411215517110.22038/nmj.2024.76219.1857
    [Google Scholar]
  194. DissanayakeT. BandaraN. Protein-based encapsulation systems for codelivery of bioactive compounds: Recent studies and potential applications.Curr. Opin. Food Sci.20245710118110.1016/j.cofs.2024.101181
    [Google Scholar]
  195. KarabulutG. GoksenG. KhaneghahA.M. Plant-based protein modification strategies towards challenges.J. Agric. Res.20241510101710.1016/j.jafr.2024.101017
    [Google Scholar]
  196. AnandA. GautamP. OjhaS. Application of nanotechnology for herbal medicine development: A review.Lett. Drug Des. Discov.20242181325133310.2174/1570180820666230308105723
    [Google Scholar]
  197. JoB.H. Improved solubility and stability of a thermostable carbonic anhydrase via fusion with marine-derived intrinsically disordered solubility enhancers.Int. J. Mol. Sci.2024252113910.3390/ijms2502113938256209
    [Google Scholar]
  198. AlhnanM.A. OkwuosaT.C. SadiaM. WanK.W. AhmedW. ArafatB. Emergence of 3D printed dosage forms: Opportunities and challenges.Pharm. Res.20163381817183210.1007/s11095‑016‑1933‑127194002
    [Google Scholar]
  199. StansburyJ.W. IdacavageM.J. 3D printing with polymers: Challenges among expanding options and opportunities.Dent. Mater.2016321546410.1016/j.dental.2015.09.01826494268
    [Google Scholar]
  200. SandlerN. PreisM. Printed drug-delivery systems for improved patient treatment.Trends Pharmacol. Sci.201637121070108010.1016/j.tips.2016.10.00227992318
    [Google Scholar]
  201. NgoT.D. KashaniA. ImbalzanoG. NguyenK.T.Q. HuiD. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges.Compos., Part B Eng.201814317219610.1016/j.compositesb.2018.02.012
    [Google Scholar]
  202. RocheA. Sanchez-BallesterN.M. BatailleB. DelannoyV. SoulairolI. Fused Deposition Modelling 3D printing and solubility improvement of BCS II and IV active ingredients – A narrative review.J. Control. Release202436550752010.1016/j.jconrel.2023.11.04138036003
    [Google Scholar]
  203. KulkarniV.R. SahaT. Raj GiriB. LuA. DasS.C. ManiruzzamanM. Recent advancements in pharmaceutical 3D printing industry.J. Drug Deliv. Sci. Technol.202410010607210.1016/j.jddst.2024.106072
    [Google Scholar]
  204. DomstaV. SeidlitzA. 3D-printing of drug-eluting implants: An overview of the current developments described in the literature.Molecules20212613406610.3390/molecules2613406634279405
    [Google Scholar]
  205. FigueirasA. DominguesC. JarakI. SantosA.I. ParraA. PaisA. Alvarez-LorenzoC. ConcheiroA. KabanovA. CabralH. VeigaF. New advances in biomedical application of polymeric micelles.Pharmaceutics2022148170010.3390/pharmaceutics1408170036015325
    [Google Scholar]
  206. TawfikS.M. AzizovS. ElmasryM.R. SharipovM. LeeY.I. Recent advances in nanomicelles delivery systems.Nanomaterials20201117010.3390/nano1101007033396938
    [Google Scholar]
  207. DhimanN. AwasthiR. SharmaB. KharkwalH. KulkarniG.T. Lipid nanoparticles as carriers for bioactive delivery.Front Chem.2021958011810.3389/fchem.2021.58011833981670
    [Google Scholar]
  208. PanditA. ZeugolisD.I. Twenty-five years of nano-bio-materials: Have we revolutionized healthcare?Nanomedicine201611998598710.2217/nnm.16.4227092982
    [Google Scholar]
  209. HaiderS. Nanoparticles: The future of drug delivery.J. Young Investig.2020381
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501375776250713110838
Loading
/content/journals/cdt/10.2174/0113894501375776250713110838
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test