Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Proteases, once thought to degrade proteins solely, are also recognized as key signaling molecules central to numerous physiological processes, including bone remodeling. Dysregulated protease contributes to various pathological diseases, including cardiovascular diseases, cancer, inflammation, osteoporosis, and neurological disorders. Protease targeting is now quite far along; some small molecules are already on the market, and others are in development. Despite drugs having been successfully developed to inhibit well-defined proteases, including angiotensin-converting enzyme and HIV protease, designing selective inhibitors for the newly identified protease targets is still difficult owing to problems like poor target selectivity. This review covers principles guiding the discovery of protease drugs with focus on recent approaches, including the use of allosteric sites. In bone remodeling, proteases are involved in the regulation of cell surface properties and extracellular matrix in the degradation process that is fundamental to bone mineral density and quality. In particular, cathepsins, dipeptidyl peptidases, and caspases have become attractive targets for the therapy of osteoporosis. Selective inhibitors are different from other drugs in the way that they selectively inhibit bone resorption processes and do not bear on osteoblast survival factors or bone formation. However, some inhibitors proved to be effective in increasing bone density in osteoporotic patients, but due to side effects, they were withdrawn, highlighting the necessity of selective inhibitors. Newer generations of selective allosteric inhibitors aiming at protease activity would be safer and give an unexplored therapeutic angle to tackle osteoporosis without interfering with other physiological processes.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501368814250212111828
2025-02-14
2025-09-04
Loading full text...

Full text loading...

References

  1. López-OtínC. BondJ.S. Proteases: Multifunctional enzymes in life and disease.J. Biol. Chem.200828345304333043710.1074/jbc.R80003520018650443
    [Google Scholar]
  2. ChapmanH.A. RieseR.J. ShiG.P. Emerging roles for cysteine proteases in human biology.Annu. Rev. Physiol.1997591638810.1146/annurev.physiol.59.1.639074757
    [Google Scholar]
  3. DragM. SalvesenG.S. Emerging principles in protease-based drug discovery.Nat. Rev. Drug Discov.20109969070110.1038/nrd305320811381
    [Google Scholar]
  4. VeltriC.A. Proteases: Nature’s destroyers and the drugs that stop them.Pharm. Pharmacol. Int. J.20152622223010.15406/ppij.2015.02.00044
    [Google Scholar]
  5. CraikC.S. PageM.J. MadisonE.L. Proteases as therapeutics.Biochem. J.2011435111610.1042/BJ2010096521406063
    [Google Scholar]
  6. TurkB. Targeting proteases: Successes, failures and future prospects.Nat. Rev. Drug Discov.20065978579910.1038/nrd209216955069
    [Google Scholar]
  7. EvertsV. DelaisséJ.M. KorperW. BeertsenW. Cysteine proteinases and matrix metalloproteinases play distinct roles in the subosteoclastic resorption zone.J. Bone Miner. Res.19981391420143010.1359/jbmr.1998.13.9.14209738514
    [Google Scholar]
  8. TyndallJ.D.A. NallT. FairlieD.P. JD T Proteases universally recognize beta strands in their active sites.Chem. Rev.20051053973100010.1021/cr040669e15755082
    [Google Scholar]
  9. TramK.K.T. SpencerM.J. MurrayS.S. LeeD.B.N. TidballJ.G. MurrayE.J.B. Identification of calcium-activated neutral protease activity and regulation by parathyroid hormone in mouse osteoblastic cells.Biochem. Mol. Biol. Int.19932959819878508148
    [Google Scholar]
  10. VerronE. BoulerJ.M. Is bisphosphonate therapy compromised by the emergence of adverse bone disorders?Drug Discov. Today201419331231910.1016/j.drudis.2013.08.01023974069
    [Google Scholar]
  11. PerisP. MonegalA. GuañabensN. Bisphosphonates in inflammatory rheumatic diseases.Bone2021146511588710.1016/j.bone.2021.11588733592328
    [Google Scholar]
  12. CuiC. TianX. WeiL. WangY. WangK. FuR. New insights into the role of dipeptidyl peptidase 8 and dipeptidyl peptidase 9 and their inhibitors.Front. Pharmacol.20221313100287110.3389/fphar.2022.100287136172198
    [Google Scholar]
  13. OikonomopoulouK. DiamandisE.P. HollenbergM.D. ChandranV. Proteinases and their receptors in inflammatory arthritis: An overview.Nat. Rev. Rheumatol.201814317018010.1038/nrrheum.2018.1729416136
    [Google Scholar]
  14. RawlingsND. MEROPS: The peptidase database.Nucleic Acids Res.200836Database issueD320D325
    [Google Scholar]
  15. DrakeM.T. ClarkeB.L. OurslerM.J. KhoslaS. CathepsinK. Cathepsin K inhibitors for osteoporosis: Biology, potential clinical utility, and lessons learned.Endocr. Rev.201738432535010.1210/er.2015‑111428651365
    [Google Scholar]
  16. FortelnyN. CoxJ.H. KappelhoffR. StarrA.E. LangeP.F. PavlidisP. OverallC.M. Network analyses reveal pervasive functional regulation between proteases in the human protease web.PLoS Biol.2014125e100186910.1371/journal.pbio.100186924865846
    [Google Scholar]
  17. TroebergL. NagaseH. Proteases involved in cartilage matrix degradation in osteoarthritis.Biochim. Biophys. Acta. Proteins Proteomics20121824113314510.1016/j.bbapap.2011.06.02021777704
    [Google Scholar]
  18. BalaY. DepalleB. DouillardT. MeilleS. ClémentP. FolletH. ChevalierJ. BoivinG. Respective roles of organic and mineral components of human cortical bone matrix in micromechanical behavior: An instrumented indentation study.J. Mech. Behav. Biomed. Mater.2011471473148210.1016/j.jmbbm.2011.05.01721783157
    [Google Scholar]
  19. BoskeyAL RobeyPG The composition of bone.Wiley2018849210.1002/9781119266594.ch11
    [Google Scholar]
  20. UnalM. CreecyA. NymanJ.S. The role of matrix composition in the mechanical behavior of bone.Curr. Osteoporos. Rep.201816320521510.1007/s11914‑018‑0433‑029611037
    [Google Scholar]
  21. MortJ.S. BeaudryF. ThérouxK. EmmottA.A. RichardH. FisherW.D. LeeE.R. PooleA.R. LavertyS. Early cathepsin K degradation of type II collagen in vitro and in vivo in articular cartilage.Osteoarthritis Cartilage20162481461146910.1016/j.joca.2016.03.01627049030
    [Google Scholar]
  22. BonewaldL.F. The amazing osteocyte.J. Bone Miner. Res.201126222923810.1002/jbmr.32021254230
    [Google Scholar]
  23. BoyceB.F. HughesD.E. WrightK.R. XingL. DaiA. Recent advances in bone biology provide insight into the pathogenesis of bone diseases.Lab. Invest.1999792839410068197
    [Google Scholar]
  24. SantosA. BakkerA.D. Zandieh-DoulabiB. de Blieck-HogervorstJ.M.A. Klein-NulendJ. Early activation of the β-catenin pathway in osteocytes is mediated by nitric oxide, phosphatidyl inositol-3 kinase/Akt, and focal adhesion kinase.Biochem. Biophys. Res. Commun.2010391136436910.1016/j.bbrc.2009.11.06419913504
    [Google Scholar]
  25. GravesA.R. CurranP.K. SmithC.L. MindellJ.A. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes.Nature2008453719678879210.1038/nature0690718449189
    [Google Scholar]
  26. ZhaoH. EttalaO. VäänänenH.K. Intracellular membrane trafficking pathways in bone-resorbing osteoclasts revealed by cloning and subcellular localization studies of small GTP-binding rab proteins.Biochem. Biophys. Res. Commun.200229331060106510.1016/S0006‑291X(02)00326‑112051767
    [Google Scholar]
  27. DaiR. WuZ. ChuH.Y. LuJ. LyuA. LiuJ. ZhangG. Cathepsin K: The action in and beyond bone.Front. Cell Dev. Biol.20208June43310.3389/fcell.2020.0043332582709
    [Google Scholar]
  28. DoddsR.A. James i.e. RiemanD. AhernR. HwangS.M. ConnorJ.R. ThompsonS.D. VeberD.F. DrakeF.H. HolmesS. LarkM.W. GowenM. Human osteoclast cathepsin K is processed intracellularly prior to attachment and bone resorption.J. Bone Miner. Res.200116347848610.1359/jbmr.2001.16.3.47811277265
    [Google Scholar]
  29. ShiG.P. ChapmanH.A. BhairiS.M. DeLeeuwC. ReddyV.Y. WeissS.J. Molecular cloning of human cathepsin O, a novel endoproteinase and homologue of rabbit OC2.FEBS Lett.1995357212913410.1016/0014‑5793(94)01349‑67805878
    [Google Scholar]
  30. BrömmeD. OkamotoK. WangB.B. BirocS. Human cathepsin O2, a matrix protein-degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin O2 in Spodoptera frugiperda and characterization of the enzyme.J. Biol. Chem.199627142126213210.1074/jbc.271.4.21268567669
    [Google Scholar]
  31. GelbB.D. ShiG.P. HellerM. WeremowiczS. MortonC. DesnickR.J. ChapmanH.A. Structure and chromosomal assignment of the human cathepsin K gene.Genomics199741225826210.1006/geno.1997.46319143502
    [Google Scholar]
  32. TroenB.R. The regulation of cathepsin K gene expression.Ann. N. Y. Acad. Sci.20061068116517210.1196/annals.1346.01816831915
    [Google Scholar]
  33. RuettgerA. SchuelerS. MollenhauerJ.A. WiederandersB. CathepsinsB. Cathepsins B, K, and L are regulated by a defined collagen type II peptide via activation of classical protein kinase C and p38 MAP kinase in articular chondrocytes.J. Biol. Chem.200828321043105110.1074/jbc.M70491520017991740
    [Google Scholar]
  34. BossardM.J. TomaszekT.A. ThompsonS.K. AmegadzieB.Y. HanningC.R. JonesC. KurdylaJ.T. McNultyD.E. DrakeF.H. GowenM. LevyM.A. Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification.J. Biol. Chem.199627121125171252410.1074/jbc.271.21.125178647860
    [Google Scholar]
  35. MengF. LowellC.A. A β 1 integrin signaling pathway involving Src-family kinases, Cbl and PI-3 kinase is required for macrophage spreading and migration.EMBO J.199817154391440310.1093/emboj/17.15.43919687507
    [Google Scholar]
  36. YamazakiY. ZhaoN. CaulfieldT.R. LiuC.C. BuG. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies.Nat. Rev. Neurol.201915950151810.1038/s41582‑019‑0228‑731367008
    [Google Scholar]
  37. CostaAG CusanoNE SilvaBC CremersS BilezikianJP Cathepsin K: Its skeletal actions and role as a therapeutic target in osteoporosis.Nat Rev Rheumatol201178447456
    [Google Scholar]
  38. XuF. TeitelbaumS.L. Osteoclasts: New insights.Bone Res.201311112610.4248/BR20130100326273491
    [Google Scholar]
  39. LiciniC. Vitale-BrovaroneC. Mattioli-BelmonteM. Collagen and non-collagenous proteins molecular crosstalk in the pathophysiology of osteoporosis.Cytokine Growth Factor Rev.201949596910.1016/j.cytogfr.2019.09.00131543432
    [Google Scholar]
  40. GowenM. LaznerF. DoddsR. KapadiaR. FeildJ. TavariaM. BertoncelloI. DrakeF. ZavarselkS. TellisI. HertzogP. DebouckC. KolaI. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization.J. Bone Miner. Res.199914101654166310.1359/jbmr.1999.14.10.165410491212
    [Google Scholar]
  41. MandelinJ. HukkanenM. LiT.F. KorhonenM. LiljeströmM. SillatT. HanemaaijerR. SaloJ. SantavirtaS. KonttinenY.T. Human osteoblasts produce cathepsin K.Bone200638676977710.1016/j.bone.2005.10.01716337236
    [Google Scholar]
  42. KozawaE. ChengX.W. UrakawaH. AraiE. YamadaY. KitamuraS. SatoK. KuzuyaM. IshiguroN. NishidaY. Increased expression and activation of cathepsin K in human osteoarthritic cartilage and synovial tissues.J. Orthop. Res.201634112713410.1002/jor.2300526241216
    [Google Scholar]
  43. LotinunS. IshiharaY. NaganoK. KivirantaR. CarpentierV.T. NeffL. ParkmanV. IdeN. HuD. DannP. BrooksD. BouxseinM.L. WysolmerskiJ. GoriF. BaronR. Cathepsin K–deficient osteocytes prevent lactation-induced bone loss and parathyroid hormone suppression.J. Clin. Invest.201912983058307110.1172/JCI12293631112135
    [Google Scholar]
  44. SilvaB.C. BilezikianJ.P. Parathyroid hormone: Anabolic and catabolic actions on the skeleton.Curr. Opin. Pharmacol.201522415010.1016/j.coph.2015.03.00525854704
    [Google Scholar]
  45. GelbBD ShiGP ChapmanHA DesnickRJ Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency.Science199627352791236123810.1126/science.273.5279.1236
    [Google Scholar]
  46. PapT Korb-PapA Cartilage damage in osteoarthritis and rheumatoid arthritis—two unequal siblings.Nat Rev Rheumatol2015111010606615
    [Google Scholar]
  47. YamadaH. MoriH. NakanishiY. NishikawaS. HashimotoY. OchiY. TanakaM. KawabataK. Effects of the cathepsin K inhibitor ono-5334 and concomitant use of ono-5334 with methotrexate on collagen-induced arthritis in cynomolgus monkeys.Int. J. Rheumatol.2019201921910.1155/2019/571034030906325
    [Google Scholar]
  48. MiyamotoT. Mechanism underlying post-menopausal osteoporosis: HIF1α is required for osteoclast activation by estrogen deficiency.Keio J. Med.2015643444710.2302/kjm.2015‑0003‑RE26255954
    [Google Scholar]
  49. McClungMR O’DonoghueML PapapoulosSE Odanacatib for the treatment of postmenopausal osteoporosis: Results of the LOFT multicentre, randomised, double-blind, placebo-controlled trial and LOFT Extension study.Lancet Diabetes Endocrinol.2019712899911
    [Google Scholar]
  50. ChapurlatR.D. Odanacatib: A review of its potential in the management of osteoporosis in postmenopausal women.Ther. Adv. Musculoskelet. Dis.20157310310910.1177/1759720X1558090326029271
    [Google Scholar]
  51. StaudtN.D. AicherW.K. KalbacherH. StevanovicS. CarmonaA.K. BogyoM. KleinG. Cathepsin X is secreted by human osteoblasts, digests CXCL-12 and impairs adhesion of hematopoietic stem and progenitor cells to osteoblasts.Haematologica20109591452146010.3324/haematol.2009.01867120494937
    [Google Scholar]
  52. DeraA.A. RanganathL. BarracloughR. VinjamuriS. HamillS. BarracloughD.L. Cathepsin Z as a novel potential biomarker for osteoporosis.Sci. Rep.201991975210.1038/s41598‑019‑46068‑031278293
    [Google Scholar]
  53. LiuM. GossP.E. IngleJ.N. KuboM. FurukawaY. BatzlerA. JenkinsG.D. CarlsonE.E. NakamuraY. SchaidD.J. ChapmanJ.A.W. ShepherdL.E. EllisM.J. KhoslaS. WangL. WeinshilboumR.M. Aromatase inhibitor-associated bone fractures: A case-cohort GWAS and functional genomics.Mol. Endocrinol.201428101740175110.1210/me.2014‑114725148458
    [Google Scholar]
  54. YangW. HanX. CuiM. GuanM. YuQ. YangP. A Mendelian randomization study: Association of cathepsin with osteoarticular muscle diseases.Preprint2024118
    [Google Scholar]
  55. EvertsV. DelaisséJ.M. KorperW. JansenD.C. Tigchelaar-GutterW. SaftigP. BeertsenW. The bone lining cell: Its role in cleaning Howship’s lacunae and initiating bone formation.J. Bone Miner. Res.2002171779010.1359/jbmr.2002.17.1.7711771672
    [Google Scholar]
  56. PoH. LiangH. XuJ. XueM. JacksonC.J. Matrix metalloproteinases in bone development and pathology: Current knowledge and potential clinical utility.Met Med.201631293102
    [Google Scholar]
  57. EvertsV. DelaisséJ.M. KorperW. NiehofA. VaesG. BeertsenW. Degradation of collagen in the bone-resorbing compartment underlying the osteoclast involves both cysteine-proteinases and matrix metalloproteinases.J. Cell. Physiol.1992150222123110.1002/jcp.10415002021734028
    [Google Scholar]
  58. NagaseH. VisseR. MurphyG. Structure and function of matrix metalloproteinases and TIMPs.Cardiovasc. Res.200669356257310.1016/j.cardiores.2005.12.00216405877
    [Google Scholar]
  59. ChecchiV. MaravicT. BelliniP. GeneraliL. ConsoloU. BreschiL. MazzoniA. The role of matrix metalloproteinases in periodontal disease.Int. J. Environ. Res. Public Health20201714492310.3390/ijerph1714492332650590
    [Google Scholar]
  60. PaivaK.B.S. GranjeiroJ.M. Matrix metalloproteinases in bone resorption, remodeling, and repair.Prog. Mol. Biol. Transl. Sci.201714820330310.1016/bs.pmbts.2017.05.00128662823
    [Google Scholar]
  61. CasimiroS. MohammadK.S. PiresR. Tato-CostaJ. AlhoI. TeixeiraR. CarvalhoA. RibeiroS. LiptonA. GuiseT.A. CostaL. RANKL/RANK/MMP-1 molecular triad contributes to the metastatic phenotype of breast and prostate cancer cells in vitro .PLoS One201385e6315310.1371/journal.pone.006315323696795
    [Google Scholar]
  62. LiuX. WuH. ByrneM. JeffreyJ. KraneS. JaenischR. A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling.J. Cell Biol.1995130122723710.1083/jcb.130.1.2277790374
    [Google Scholar]
  63. ChengS. TadaM. HidaY. AsanoT. KuramaeT. TakemotoN. HamadaJ.I. MiyamotoM. HiranoS. KondoS. MoriuchiT. High MMP-1 mRNA expression is a risk factor for disease-free and overall survivals in patients with invasive breast carcinoma.J. Surg. Res.2008146110410910.1016/j.jss.2007.05.03217663001
    [Google Scholar]
  64. LuX. WangQ. HuG. Van PoznakC. FleisherM. ReissM. MassaguéJ. KangY. ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis.Genes Dev.200923161882189410.1101/gad.182480919608765
    [Google Scholar]
  65. PanagakosF.S. KumarS. Differentiation of human osteoblastic cells in culture.Inflammation199519442344310.1007/BF015345777558248
    [Google Scholar]
  66. LehrerS. MontazemA. RamanathanL. Pessin-MinsleyM. PfailJ. StockR.G. KoganR. Bisphosphonate-induced osteonecrosis of the jaws, bone markers, and a hypothesized candidate gene.J. Oral Maxillofac. Surg.200967115916110.1016/j.joms.2008.09.01519070762
    [Google Scholar]
  67. MartignettiJ.A. AqeelA.A. SewairiW.A. BoumahC.E. KambourisM. MayoufS.A. ShethK.V. EidW.A. DowlingO. HarrisJ. GlucksmanM.J. BahabriS. MeyerB.F. DesnickR.J. Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome.Nat. Genet.200128326126510.1038/9010011431697
    [Google Scholar]
  68. MalaponteG. HafsiS. PoleselJ. CastellanoG. SpessottoP. GuarneriC. CanevariS. SignorelliS.S. McCubreyJ.A. LibraM. Tumor microenvironment in diffuse large B-cell lymphoma: Matrixmetalloproteinases activation is mediated by osteopontin overexpression.Biochim. Biophys. Acta Mol. Cell Res.20161863348348910.1016/j.bbamcr.2015.09.01826381542
    [Google Scholar]
  69. NymanJ.S. ReyesM. WangX. Effect of ultrastructural changes on the toughness of bone.Micron2005367-856658210.1016/j.micron.2005.07.00416169742
    [Google Scholar]
  70. LuoX.H. GuoL.J. ShanP.F. XieH. WuX.P. ZhangH. CaoX.Z. YuanL.Q. LiaoE.Y. Relationship of circulating MMP–2, MMP–1, and TIMP–1 levels with bone biochemical markers and bone mineral density in postmenopausal Chinese women.Osteoporos. Int.200617452152610.1007/s00198‑005‑0017‑616365830
    [Google Scholar]
  71. BrauxJ. VelardF. GuillaumeC. BouthorsS. JallotE. NedelecJ.M. Laurent-MaquinD. LaquerrièreP. A new insight into the dissociating effect of strontium on bone resorption and formation.Acta Biomater.2011762593260310.1016/j.actbio.2011.02.01321316494
    [Google Scholar]
  72. FengP. ZhangH. ZhangZ. DaiX. MaoT. FanY. XieX. WenH. YuP. HuY. YanR. The interaction of MMP-2/B7-H3 in human osteoporosis.Clin. Immunol.201616211812410.1016/j.clim.2015.11.00926631755
    [Google Scholar]
  73. BordS. HornerA. HembryR.M. CompstonJ.E. Stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10) expression in developing human bone: potential roles in skeletal development.Bone199823171210.1016/S8756‑3282(98)00064‑79662124
    [Google Scholar]
  74. SchiltzC. MartyC. de VernejoulM.C. GeoffroyV. Inhibition of osteoblastic metalloproteinases in mice prevents bone loss induced by oestrogen deficiency.J. Cell. Biochem.200810451803181710.1002/jcb.2174718384129
    [Google Scholar]
  75. KimY.G. LeeC.K. NahS.S. MunS.H. YooB. MoonH.B. Human CD4+CD25+ regulatory T cells inhibit the differentiation of osteoclasts from peripheral blood mononuclear cells.Biochem. Biophys. Res. Commun.200735741046105210.1016/j.bbrc.2007.04.04217462597
    [Google Scholar]
  76. YangP.T. MengX.H. YangY. XiaoW.G. Inhibition of osteoclast differentiation and matrix metalloproteinase production by CD4+CD25+ T cells in mice.Osteoporos. Int.20132431113111410.1007/s00198‑012‑2014‑x22618267
    [Google Scholar]
  77. LynchC.C. HikosakaA. AcuffH.B. MartinM.D. KawaiN. SinghR.K. Vargo-GogolaT.C. BegtrupJ.L. PetersonT.E. FingletonB. ShiraiT. MatrisianL.M. FutakuchiM. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL.Cancer Cell20057548549610.1016/j.ccr.2005.04.01315894268
    [Google Scholar]
  78. TeronenO. KonttinenY.T. LindqvistC. SaloT. IngmanT. LauhioA. DingY. SantavirtaS. SorsaT. Human neutrophil collagenase MMP-8 in peri-implant sulcus fluid and its inhibition by clodronate.J. Dent. Res.19977691529153710.1177/002203459707600904019294486
    [Google Scholar]
  79. ZhengX. ZhangY. GuoS. ZhangW. WangJ. LinY. Dynamic expression of matrix metalloproteinases 2, 9 and 13 in ovariectomy-induced osteoporosis rats.Exp. Ther. Med.20181631807181310.3892/etm.2018.635630186405
    [Google Scholar]
  80. BarthelemiS. RobinetJ. GarnotelR. AntonicelliF. SchittlyE. HornebeckW. LorimierS. Mechanical forces-induced human osteoblasts differentiation involves MMP-2/MMP-13/MT1-MMP proteolytic cascade.J. Cell. Biochem.2012113376077210.1002/jcb.2340122006368
    [Google Scholar]
  81. ZhangY.H. HeulsmannA. TondraviM.M. MukherjeeA. Abu-AmerY. Tumor necrosis factor-α (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways.J. Biol. Chem.2001276156356810.1074/jbc.M00819820011032840
    [Google Scholar]
  82. LeeS.E. ChungW.J. KwakH.B. ChungC.H. KwackK. LeeZ.H. KimH.H. Tumor necrosis factor-α supports the survival of osteoclasts through the activation of Akt and ERK.J. Biol. Chem.200127652493434934910.1074/jbc.M10364220011675379
    [Google Scholar]
  83. MittalR. PatelA.P. DebsL.H. NguyenD. PatelK. GratiM. MittalJ. YanD. ChapagainP. LiuX.Z. Intricate functions of Matrix Metalloproteinases in physiological and pathological conditions.J. Cell. Physiol.2016231122599262110.1002/jcp.2543027187048
    [Google Scholar]
  84. SunB. SunJ. HanX. LiuH. LiJ. DuJ. FengW. LiuB. CuiJ. GuoJ. AmizukaN. LiM. Immunolocalization of MMP 2, 9 and 13 in prednisolone induced osteoporosis in mice.Histol. Histopathol.201631664765626636416
    [Google Scholar]
  85. ZuckerS. HymowitzM. ConnerC. ZarrabiH.M. HurewitzA.N. MatrisianL. BoydD. NicolsonG. MontanaS. Measurement of matrix metalloproteinases and tissue inhibitors of metalloproteinases in blood and tissues. Clinical and experimental applications.Ann. N. Y. Acad. Sci.1999878121222710.1111/j.1749‑6632.1999.tb07687.x10415733
    [Google Scholar]
  86. LaghezzaA. PiemonteseL. BrunettiL. CaradonnaA. AgamennoneM. Di PizioA. PochettiG. MontanariR. CapelliD. TauroM. LoiodiceF. TortorellaP. Bone-seeking matrix metalloproteinase inhibitors for the treatment of skeletal malignancy.Pharmaceuticals202013611310.3390/ph1306011332492898
    [Google Scholar]
  87. HouP. TroenT. OvejeroM.C. KirkegaardT. AndersenT.L. ByrjalsenI. FerrerasM. SatoT. ShapiroS.D. FogedN.T. DelaisséJ.M. Matrix metalloproteinase-12 (MMP-12) in osteoclasts: New lesson on the involvement of MMPs in bone resorption.Bone2004341374710.1016/j.bone.2003.08.01114751561
    [Google Scholar]
  88. ShoreyS. HeerscheJ.N.M. ManolsonM.F. The relative contribution of cysteine proteinases and matrix metalloproteinases to the resorption process in osteoclasts derived from long bone and scapula.Bone200435490991710.1016/j.bone.2004.06.00215454098
    [Google Scholar]
  89. Guimaraes-StabiliM.R. de MedeirosM.C. RossiD. CamilliA.C. ZanelliC.F. ValentiniS.R. SpolidorioL.C. KirkwoodK.L. RossaC.Jr Silencing matrix metalloproteinase-13 (Mmp-13) reduces inflammatory bone resorption associated with LPS-induced periodontal disease in vivo .Clin. Oral Investig.20212553161317210.1007/s00784‑020‑03644‑333140162
    [Google Scholar]
  90. ShankavaramU.T. LaiW.C. Netzel-ArnettS. ManganP.R. ArdansJ.A. CaterinaN. Stetler-StevensonW.G. Birkedal-HansenH. WahlL.M. Monocyte membrane type 1-matrix metalloproteinase. Prostaglandin-dependent regulation and role in metalloproteinase-2 activation.J. Biol. Chem.200127622190271903210.1074/jbc.M00956220011259424
    [Google Scholar]
  91. Matías-RománS. GálvezB.G. GenísL. Yáñez-MóM. de la RosaG. Sánchez-MateosP. Sánchez-MadridF. ArroyoA.G. Membrane type 1–matrix metalloproteinase is involved in migration of human monocytes and is regulated through their interaction with fibronectin or endothelium.Blood2005105103956396410.1182/blood‑2004‑06‑238215665118
    [Google Scholar]
  92. GonzaloP. GuadamillasM.C. Hernández-RiquerM.V. PollánÁ. Grande-GarcíaA. BartoloméR.A. VasanjiA. AmbrogioC. ChiarleR. TeixidóJ. RisteliJ. ApteS.S. del PozoM.A. ArroyoA.G. MT1-MMP is required for myeloid cell fusion via regulation of Rac1 signaling.Dev. Cell2010181778910.1016/j.devcel.2009.11.01220152179
    [Google Scholar]
  93. PrideauxM. StainesK.A. JonesE.R. RileyG.P. PitsillidesA.A. FarquharsonC. MMP and TIMP temporal gene expression during osteocytogenesis.Gene Expr. Patterns2015181-2293610.1016/j.gep.2015.04.00425982959
    [Google Scholar]
  94. HillP.A. DochertyA.J.P. BottomleyK.M.K. O’ConnellJ.P. MorphyJ.R. ReynoldsJ.J. MeikleM.C. Inhibition of bone resorption in vitro by selective inhibitors of gelatinase and collagenase.Biochem. J.1995308116717510.1042/bj30801677755562
    [Google Scholar]
  95. SelvamuruganN. ShimizuE. LeeM. LiuT. LiH. PartridgeN.C. Identification and characterization of Runx2 phosphorylation sites involved in matrix metalloproteinase-13 promoter activation.FEBS Lett.200958371141114610.1016/j.febslet.2009.02.04019264160
    [Google Scholar]
  96. TeronenO. HeikkiläP. KonttinenY.T. LaitinenM. SaloT. HanemaaijerR. TeronenA. MaisiP. SorsaT. MMP inhibition and downregulation by bisphosphonates.Ann. N. Y. Acad. Sci.1999878145346510.1111/j.1749‑6632.1999.tb07702.x10415748
    [Google Scholar]
  97. ChenY. LiuF. WuK. WuW. WuH. ZhangW. Targeting dipeptidyl peptidase 8 genes inhibits proliferation, migration and invasion by inhibition of cyclin D1 and MMP2MMP9 signal pathway in cervical cancer.J. Gene Med.20182012e305610.1002/jgm.305630225951
    [Google Scholar]
  98. RohanizadehR. DengY. VerronE. Therapeutic actions of curcumin in bone disorders.Bonekey Rep.201651179310.1038/bonekey.2016.2026962450
    [Google Scholar]
  99. PayneJ.B. GolubL.M. Using tetracyclines to treat osteoporotic/osteopenic bone loss: From the basic science laboratory to the clinic.Pharmacol. Res.201163212112910.1016/j.phrs.2010.10.00620937388
    [Google Scholar]
  100. GolubL.M. LeeH.M. Periodontal therapeutics: Current host-modulation agents and future directions.Periodontol. 2000202082118620410.1111/prd.1231531850625
    [Google Scholar]
  101. FrancoG.C.N. KajiyaM. NakanishiT. OhtaK. RosalenP.L. GroppoF.C. ErnstC.W.O. BoyesenJ.L. BartlettJ.D. StashenkoP. TaubmanM.A. KawaiT. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo .Exp. Cell Res.2011317101454146410.1016/j.yexcr.2011.03.01421420951
    [Google Scholar]
  102. TuK.N. LieJ.D. WanC.K.V. CameronM. AustelA.G. NguyenJ.K. VanK. HyunD. Osteoporosis: A review of treatment options.P&T20184329210429386866
    [Google Scholar]
  103. RubinoM.T. AgamennoneM. CampestreC. CampigliaP. CremascoV. FaccioR. LaghezzaA. LoiodiceF. MaggiD. PanzaE. RosselloA. TortorellaP. Biphenyl sulfonylamino methyl bisphosphonic acids as inhibitors of matrix metalloproteinases and bone resorption.ChemMedChem2011671258126810.1002/cmdc.20100054021714093
    [Google Scholar]
  104. KimS.E. ParkK. Recent advances of biphasic calcium phosphate bioceramics for bone tissue regeneration.Adv. Exp. Med. Biol.202012501117718810.1007/978‑981‑15‑3262‑7_1232601945
    [Google Scholar]
  105. KlimecsV. GrishulonoksA. SalmaI. NeimaneL. LocsJ. SaurinaE. SkagersA. Bone loss around dental implants 5 years after implantation of biphasic calcium phosphate (HAp/ β TCP) Granules.J. Healthc. Eng.201820181710.1155/2018/480490230631412
    [Google Scholar]
  106. MorettiA. PaolettaM. LiguoriS. IlardiW. SnichelottoF. ToroG. GimiglianoF. IolasconG. The rationale for the intra-articular administration of clodronate in osteoarthritis.Int. J. Mol. Sci.2021225269310.3390/ijms2205269333799992
    [Google Scholar]
  107. GladingA. LauffenburgerD.A. WellsA. Cutting to the chase: Calpain proteases in cell motility.Trends Cell Biol.2002121465410.1016/S0962‑8924(01)02179‑111854009
    [Google Scholar]
  108. MarziaM. ChiusaroliR. NeffL. KimN.Y. ChishtiA.H. BaronR. HorneW.C. Calpain is required for normal osteoclast function and is down-regulated by calcitonin.J. Biol. Chem.2006281149745975410.1074/jbc.M51351620016461769
    [Google Scholar]
  109. HadjidakisD.J. AndroulakisI. Bone Remodeling.Ann. N. Y. Acad. Sci.20061092138539610.1196/annals.1365.03517308163
    [Google Scholar]
  110. Florencio-SilvaR SassoGRDS Sasso-CerriE SimõesMJ CerriPS Biology of bone tissue: Structure, function, and factors that influence bone cells.Biomed. Res. Int.20152015421746
    [Google Scholar]
  111. McGinnisK.M. GnegyM.E. ParkY.H. MukerjeeN. WangK.K.W. Procaspase-3 and poly(ADP)ribose polymerase (PARP) are calpain substrates.Biochem. Biophys. Res. Commun.19992631949910.1006/bbrc.1999.131510486259
    [Google Scholar]
  112. GollD. ThompsonV.F. LiH. WeiW. CongJ. The calpain system.Physiol. Rev.200383373180110.1152/physrev.00029.200212843408
    [Google Scholar]
  113. MurrayE.J.B. GrisantiM.S. BentleyG.V. MurrayS.S. E64d, a membrane-permeable cysteine protease inhibitor, attenuates the effects of parathyroid hormone on osteoblasts in vitro .Metabolism19974691090109410.1016/S0026‑0495(97)90284‑59284902
    [Google Scholar]
  114. XuJ.Y. JiangY. LiuW. HuangY.G. Calpain inhibitor reduces cancer-induced bone pain possibly through inhibition of osteoclastogenesis in rat cancer-induced bone pain model.Chin. Med. J.201512881102110710.4103/0366‑6999.15510925881607
    [Google Scholar]
  115. SeamanJ.E. JulienO. LeeP.S. RettenmaierT.J. ThomsenN.D. WellsJ.A. Cacidases: Caspases can cleave after aspartate, glutamate and phosphoserine residues.Cell Death Differ.201623101717172610.1038/cdd.2016.6227367566
    [Google Scholar]
  116. Van OpdenboschN. LamkanfiM. Caspases in cell death, inflammation, and disease.Immunity20195061352136410.1016/j.immuni.2019.05.02031216460
    [Google Scholar]
  117. ParrishA.B. FreelC.D. KornbluthS. Cellular mechanisms controlling caspase activation and function.Cold Spring Harb. Perspect. Biol.201356a00867210.1101/cshperspect.a00867223732469
    [Google Scholar]
  118. ShiY. Caspase activation, inhibition, and reactivation: A mechanistic view.Protein Sci.20041381979198710.1110/ps.0478980415273300
    [Google Scholar]
  119. SeokJ.K. KangH.C. ChoY.Y. LeeH.S. LeeJ.Y. Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases.Arch. Pharm. Res.2021441163510.1007/s12272‑021‑01307‑933534121
    [Google Scholar]
  120. ShiJ. ZhaoY. WangK. ShiX. WangY. HuangH. ZhuangY. CaiT. WangF. ShaoF. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death.Nature2015526757566066510.1038/nature1551426375003
    [Google Scholar]
  121. GuoH CallawayJB TingJPY Inflammasomes: Mechanism of action, role in disease, and therapeutics.Nat. Med.201521767768710.1038/nm.3893
    [Google Scholar]
  122. SchroderK. TschoppJ. The Inflammasomes.Cell2010140682183210.1016/j.cell.2010.01.04020303873
    [Google Scholar]
  123. ManganM.S.J. OlhavaE.J. RoushW.R. SeidelH.M. GlickG.D. LatzE. Targeting the NLRP3 inflammasome in inflammatory diseases.Nat. Rev. Drug Discov.201817858860610.1038/nrd.2018.9730026524
    [Google Scholar]
  124. Martín-SánchezF. DiamondC. ZeitlerM. GomezA.I. Baroja-MazoA. BagnallJ. SpillerD. WhiteM. DanielsM.J.D. MortellaroA. PeñalverM. PaszekP. SteringerJ.P. NickelW. BroughD. PelegrínP. Inflammasome-dependent IL-1β release depends upon membrane permeabilisation.Cell Death Differ.20162371219123110.1038/cdd.2015.17626868913
    [Google Scholar]
  125. QuC. BonarS.L. Hickman-BrecksC.L. Abu-AmerS. McGeoughM.D. PeñaC.A. BroderickL. YangC. GrimstonS.K. KadingJ. Abu-AmerY. NovackD.V. HoffmanH.M. CivitelliR. MbalavieleG. NLRP3 mediates osteolysis through inflammation-dependent and -independent mechanisms.FASEB J.20152941269127910.1096/fj.14‑26480425477279
    [Google Scholar]
  126. StrowigT. Henao-MejiaJ. ElinavE. FlavellR. Inflammasomes in health and disease.Nature2012481738127828610.1038/nature1075922258606
    [Google Scholar]
  127. TaoZ. WangJ. WenK. YaoR. DaW. ZhouS. MengY. QiuS. YangK. ZhuY. TaoL. Pyroptosis in osteoblasts: A novel hypothesis underlying the pathogenesis of osteoporosis.Front. Endocrinol.20211154881210.3389/fendo.2020.54881233488513
    [Google Scholar]
  128. XuL. ShenL. YuX. LiP. WangQ. LiC. Effects of irisin on osteoblast apoptosis and osteoporosis in postmenopausal osteoporosis rats through upregulating Nrf2 and inhibiting NLRP3 inflammasome.Exp. Ther. Med.20201921084109032010273
    [Google Scholar]
  129. XuL. ZhangL. WangZ. LiC. LiS. LiL. FanQ. ZhengL. Melatonin suppresses estrogen deficiency-induced osteoporosis and promotes osteoblastogenesis by inactivating the NLRP3 inflammasome.Calcif. Tissue Int.2018103440041010.1007/s00223‑018‑0428‑y29804160
    [Google Scholar]
  130. NauckM.A. MeierJ.J. Incretin hormones: Their role in health and disease.Diabetes Obes. Metab.201820S1Suppl. 152110.1111/dom.1312929364588
    [Google Scholar]
  131. YavropoulouM. YovosJ. Incretins and bone: Evolving concepts in nutrient-dependent regulation of bone turnover.Hormones201312221422310.14310/horm.2002.140523933690
    [Google Scholar]
  132. NissenA. ChristensenM. KnopF.K. VilsbøllT. HolstJ.J. HartmannB. Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans.J. Clin. Endocrinol. Metab.20149911E2325E232910.1210/jc.2014‑254725144635
    [Google Scholar]
  133. GlorieL. D’HaeseP.C. VerhulstA. Boning up on DPP4, DPP4 substrates, and DPP4-adipokine interactions: Logical reasoning and known facts about bone related effects of DPP4 inhibitors.Bone201692374910.1016/j.bone.2016.08.00927535784
    [Google Scholar]
  134. WangC. XiaoF. QuX. Sitagliptin, an anti-diabetic drug, suppresses estrogen deficiency-induced osteoporosis in vivo and inhibits RANKL-induced osteoclast formation and bone resorption in vitro .Front. Pharmacol.20178407
    [Google Scholar]
  135. SbaragliniM.L. MolinuevoM.S. SedlinskyC. SchurmanL. McCarthyA.D. Saxagliptin affects long-bone microarchitecture and decreases the osteogenic potential of bone marrow stromal cells.Eur. J. Pharmacol.2014727181410.1016/j.ejphar.2014.01.02824485890
    [Google Scholar]
  136. YangJ. HuangC. WuS. XuY. CaiT. ChaiS. YangZ. SunF. ZhanS. The effects of dipeptidyl peptidase-4 inhibitors on bone fracture among patients with type 2 diabetes mellitus: A network meta-analysis of randomized controlled trials.PLoS One20171212e018753710.1371/journal.pone.018753729206832
    [Google Scholar]
  137. ChenQ. LiuT. ZhouH. PengH. YanC. Risk of fractures associated with dipeptidyl peptidase-4 inhibitor treatment: A systematic review and meta-analysis of randomized controlled trials.Diabetes Ther.20191051879189210.1007/s13300‑019‑0668‑531347093
    [Google Scholar]
  138. KyleK.A. WillettT.L. BaggioL.L. DruckerD.J. GrynpasM.D. Differential effects of PPAR-γ activation versus chemical or genetic reduction of DPP-4 activity on bone quality in mice.Endocrinology2011152245746710.1210/en.2010‑109821177828
    [Google Scholar]
  139. HegazyS.K. Evaluation of the anti-osteoporotic effects of metformin and sitagliptin in postmenopausal diabetic women.J. Bone Miner. Metab.201533220721210.1007/s00774‑014‑0581‑y24633493
    [Google Scholar]
  140. ViannaA.G.D. de LacerdaC.S. PechmannL.M. PoleselM.G. MarinoE.C. BorbaV.Z.C. BarretoF.C. Vildagliptin has the same safety profile as a sulfonylurea on bone metabolism and bone mineral density in post-menopausal women with type 2 diabetes: A randomized controlled trial.Diabetol. Metab. Syndr.2017913510.1186/s13098‑017‑0232‑228515791
    [Google Scholar]
  141. CharoenphandhuN. SuntornsaratoonP. Sa-NguanmooP. TanajakP. TeerapornpuntakitJ. AeimlapaR. ChattipakornN. ChattipakornS. Dipeptidyl peptidase-4 inhibitor, vildagliptin, improves trabecular bone mineral density and microstructure in obese, insulin-resistant, pre-diabetic rats.Can. J. Diabetes201842554555210.1016/j.jcjd.2018.01.00629606326
    [Google Scholar]
  142. IshidaM. ShenW.R. KimuraK. KishikawaA. ShimaK. OgawaS. QiJ. OhoriF. NoguchiT. MarahlehA. KitauraH. DPP-4 inhibitor impedes lipopolysaccharide-induced osteoclast formation and bone resorption in vivo .Biomed. Pharmacother.201910924225310.1016/j.biopha.2018.10.05230396082
    [Google Scholar]
  143. KandaJ. FurukawaM. IzumoN. ShimakuraT. YamamotoN. TakahashiH.E. WakabayashiH. Effects of the linagliptin, dipeptidyl peptidase-4 inhibitor, on bone fragility induced by type 2 diabetes mellitus in obese mice.Drug Discov. Ther.202014521822510.5582/ddt.2020.0307333116039
    [Google Scholar]
  144. DongC. YangH. WangY. YanX. LiD. CaoZ. NingY. ZhangC. Anagliptin stimulates osteoblastic cell differentiation and mineralization.Biomed. Pharmacother.202012910979610.1016/j.biopha.2019.10979632559615
    [Google Scholar]
  145. HaJ. LimY. KimM.K. KwonH.S. SongK.H. KoS.H. KangM.I. MoonS.D. BaekK.H. Comparison of the effects of various antidiabetic medication on bone mineral density in patients with type 2 diabetes mellitus.Endocrinol. Metab.202136489590310.3803/EnM.2021.102634365776
    [Google Scholar]
  146. ShaoH. WuR. CaoL. GuH. ChaiF. Trelagliptin stimulates osteoblastic differentiation by increasing runt-related transcription factor 2 (RUNX2): A therapeutic implication in osteoporosis.Bioengineered202112196096810.1080/21655979.2021.190063333734011
    [Google Scholar]
  147. Torrecillas-BaenaB. Camacho-CardenosaM. Quesada-GómezJ.M. Moreno-MorenoP. DoradoG. Gálvez-MorenoM.Á. Casado-DíazA. Non-specific inhibition of dipeptidyl peptidases 8/9 by dipeptidyl peptidase 4 inhibitors negatively affects mesenchymal stem cell differentiation.J. Clin. Med.20231214463210.3390/jcm1214463237510747
    [Google Scholar]
  148. AhmadS.S. AhmedF. AlamM.M. AhmadS. KhanM.A. Unravelling the role of dipeptidyl peptidases-8/9 (DPP-8/9) in inflammatory osteoporosis: A comprehensive study investigating chrysin as a potential anti-osteoporotic agent.J. Pharm. Pharmacol.202499rgae10910.1093/jpp/rgae10939231440
    [Google Scholar]
  149. HollidayL.S. Vacuolar H+-ATPases (V-ATPases) as therapeutic targets: A brief review and recent developments.Biotarget201711810.21037/biotarget.2017.12.0130957075
    [Google Scholar]
  150. NiikuraK. TakeshitaN. TakanoM. A vacuolar ATPase inhibitor, FR167356, prevents bone resorption in ovariectomized rats with high potency and specificity: Potential for clinical application.J. Bone Miner. Res.20052091579158810.1359/JBMR.05051716059630
    [Google Scholar]
  151. LiangR. WeigandI. LippertJ. KircherS. AltieriB. SteinhauerS. HantelC. RostS. RosenwaldA. KroissM. FassnachtM. SbieraS. RonchiC.L. Targeted gene expression profile reveals CDK4 as therapeutic target for selected patients with adrenocortical carcinoma.Front. Endocrinol. 202011421910.3389/fendo.2020.0021932373071
    [Google Scholar]
  152. LaiW.F.T. ChangC.H. TangY. BronsonR. TungC.H. Early diagnosis of osteoarthritis using cathepsin B sensitive near-infrared fluorescent probes.Osteoarthritis Cartilage200412323924410.1016/j.joca.2003.11.00514972341
    [Google Scholar]
  153. Ru J-Y, Wang Y-F. Osteocyte apoptosis: The roles and key molecular mechanisms in resorption-related bone diseases.Cell Death Dis.202011846
    [Google Scholar]
  154. DuongL.T. Therapeutic inhibition of cathepsin K—reducing bone resorption while maintaining bone formation.Bonekey Rep.2012156710.1038/bonekey.2012.6723951460
    [Google Scholar]
  155. RngerT.M. AdamiS. BenhamouC.L. CzerwiskiE. FarreronsJ. KendlerD.L. MindeholmL. RealdiG. RouxC. SmithV. Morphea-like skin reactions in patients treated with the cathepsin K inhibitor balicatib.J. Am. Acad. Dermatol.2012663e89e9610.1016/j.jaad.2010.11.03321571394
    [Google Scholar]
  156. OchiY. YamadaH. MoriH. KawadaN. KayasugaR. NakanishiY. TanakaM. ImagawaA. OhmotoK. KawabataK. ONO-5334, a cathepsin K inhibitor, improves bone strength by preferentially increasing cortical bone mass in ovariectomized rats.J. Bone Miner. Metab.201432664565210.1007/s00774‑013‑0542‑x24317478
    [Google Scholar]
  157. TanakaM. HashimotoY. HasegawaC. DeaconS. EastellR. Antiresorptive effect of a cathepsin K inhibitor ONO-5334 and its relationship to BMD increase in a phase II trial for postmenopausal osteoporosis.BMC Musculoskelet. Disord.201718126710.1186/s12891‑017‑1625‑y28629344
    [Google Scholar]
  158. EastellR. NagaseS. SmallM. BoonenS. SpectorT. OhyamaM. KuwayamaT. DeaconS. Effect of ONO-5334 on bone mineral density and biochemical markers of bone turnover in postmenopausal osteoporosis: 2-year results from the OCEAN study.J. Bone Miner. Res.201429245846610.1002/jbmr.204723873670
    [Google Scholar]
  159. BoneH.G. McClungM.R. RouxC. ReckerR.R. EismanJ.A. VerbruggenN. HustadC.M. DaSilvaC. SantoraA.C. InceB.A. Odanacatib, a cathepsin-K inhibitor for osteoporosis: A two-year study in postmenopausal women with low bone density.J. Bone Miner. Res.201025593794710.1359/jbmr.09103519874198
    [Google Scholar]
  160. HemmingsF.J. FarhanM. RowlandJ. BankenL. JainR. Tolerability and pharmacokinetics of the collagenase-selective inhibitor Trocade™ in patients with rheumatoid arthritis.Rheumatology200140553754310.1093/rheumatology/40.5.53711371662
    [Google Scholar]
  161. BrandtK.D. MazzucaS.A. KatzB.P. LaneK.A. BuckwalterK.A. YocumD.E. WolfeF. SchnitzerT.J. MorelandL.W. ManziS. BradleyJ.D. SharmaL. OddisC.V. HugenbergS.T. HeckL.W. Effects of doxycycline on progression of osteoarthritis: Results of a randomized, placebo- controlled, double-blind trial.Arthritis Rheum.20055272015202510.1002/art.2112215986343
    [Google Scholar]
  162. MarchettiC. SwartzwelterB. GamboniF. NeffC.P. RichterK. AzamT. CartaS. TengesdalI. NemkovT. D’AlessandroA. HenryC. JonesG.S. GoodrichS.A. St LaurentJ.P. JonesT.M. ScribnerC.L. BarrowR.B. AltmanR.D. SkourasD.B. GattornoM. GrauV. JanciauskieneS. RubartelliA. JoostenL.A.B. DinarelloC.A. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation.Proc. Natl. Acad. Sci. USA20181157E1530E153910.1073/pnas.171609511529378952
    [Google Scholar]
  163. Wertz i.e. DixitV.M. Signaling to NF-kappaB: Regulation by ubiquitination.Cold Spring Harb. Perspect. Biol.201023a00335010.1101/cshperspect.a00335020300215
    [Google Scholar]
  164. KhedgikarV. KushwahaP. GautamJ. VermaA. ChangkijaB. KumarA. SharmaS. NagarG.K. SinghD. TrivediP.K. SangwanN.S. MishraP.R. TrivediR. Withaferin A: A proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone.Cell Death Dis.201348e77810.1038/cddis.2013.29423969857
    [Google Scholar]
  165. AccardiF. ToscaniD. BolzoniM. Dalla PalmaB. AversaF. GiulianiN. Mechanism of action of bortezomib and the new proteasome inhibitors on myeloma cells and the bone microenvironment: Impact on myeloma-induced alterations of bone remodeling.BioMed Res. Int.2015201511310.1155/2015/17245826579531
    [Google Scholar]
  166. TerposE. Ntanasis-StathopoulosI. KatodritouE. KyrtsonisM.C. DoukaV. SpanoudakisE. PapatheodorouA. Eleutherakis-PapaiakovouE. KanelliasN. GavriatopoulouM. MakrasP. KastritisE. DimopoulosM.A. Carfilzomib improves bone metabolism in patients with advanced relapsed/refractory multiple myeloma: Results of the CarMMa study.Cancers 2021136125710.3390/cancers1306125733809268
    [Google Scholar]
  167. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  168. DoogueM.P. PolasekT.M. The ABCD of clinical pharmacokinetics.Ther. Adv. Drug Saf.2013415710.1177/204209861246933525083246
    [Google Scholar]
  169. TurkB. TurkD. TurkV. Protease signalling: The cutting edge.EMBO J.20123171630164310.1038/emboj.2012.4222367392
    [Google Scholar]
  170. KumarS. DareL. Vasko-MoserJ.A. James i.e. BlakeS.M. RickardD.J. HwangS.M. TomaszekT. YamashitaD.S. MarquisR.W. OhH. JeongJ.U. VeberD.F. GowenM. LarkM.W. StroupG. A highly potent inhibitor of cathepsin K (relacatib) reduces biomarkers of bone resorption both in vitro and in an acute model of elevated bone turnover in vivo in monkeys.Bone200740112213110.1016/j.bone.2006.07.01516962401
    [Google Scholar]
  171. JeromeC. MissbachM. GamseR. Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys.Osteoporos. Int.201223133934910.1007/s00198‑011‑1593‑221380636
    [Google Scholar]
  172. StroupG.B. LarkM.W. VeberD.F. BhattacharyyaA. BlakeS. DareL.C. ErhardK.F. HoffmanS.J. James i.e. MarquisR.W. RuY. Vasko-MoserJ.A. SmithB.R. TomaszekT. GowenM. Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate.J. Bone Miner. Res.200116101739174610.1359/jbmr.2001.16.10.173911585335
    [Google Scholar]
  173. KatunumaN. MatsuiA. InubushiT. MurataE. KakegawaH. OhbaY. TurkD. TurkV. TadaY. AsaoT. Structure-based development of pyridoxal propionate derivatives as specific inhibitors of cathepsin K in vitro and in vivo .Biochem. Biophys. Res. Commun.2000267385085410.1006/bbrc.1999.195310673380
    [Google Scholar]
  174. BrewsterM. LewisJ.E. WilsonK.L. GreenhamA.K. BottomleyK.M.K. Ro 32-3555, an orally active collagenase selective inhibitor, prevents structural damage in the STR/ORT mouse model of osteoarthritis.Arthritis Rheum.19984191639164410.1002/1529‑0131(199809)41:9<1639::AID‑ART15>3.0.CO;2‑09751097
    [Google Scholar]
  175. BoxerM.B. QuinnA.M. ShenM. JadhavA. LeisterW. SimeonovA. AuldD.S. ThomasC.J. A highly potent and selective caspase 1 inhibitor that utilizes a key 3-cyanopropanoic acid moiety.ChemMedChem20105573073810.1002/cmdc.20090053120229566
    [Google Scholar]
  176. WannamakerW. DaviesR. NamchukM. (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inh.J. Pharmacol. Exp. Ther.2007321250951610.1124/jpet.106.11134417289835
    [Google Scholar]
  177. LiuW. GuoW. WuJ. LuoQ. TaoF. GuY. ShenY. LiJ. TanR. XuQ. SunY. A novel benzo[d]imidazole derivate prevents the development of dextran sulfate sodium-induced murine experimental colitis via inhibition of NLRP3 inflammasome.Biochem. Pharmacol.201385101504151210.1016/j.bcp.2013.03.00823506741
    [Google Scholar]
  178. MaveyraudL. MoureyL. Protein X-ray crystallography and drug discovery.Molecules2020255103010.3390/molecules2505103032106588
    [Google Scholar]
  179. ChangY. HawkinsB.A. DuJ.J. GroundwaterP.W. HibbsD.E. LaiF. A guide to in silico drug design.Pharmaceutics20221514910.3390/pharmaceutics1501004936678678
    [Google Scholar]
  180. AebersoldR. MannM. Mass spectrometry-based proteomics.Nature2003422692819820710.1038/nature0151112634793
    [Google Scholar]
  181. LiY. ZhangC. LiG. DengG. ZhangH. SunY. AnF. Protease-triggered bioresponsive drug delivery for the targeted theranostics of malignancy.Acta Pharm. Sin. B20211182220224210.1016/j.apsb.2021.01.01734522585
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501368814250212111828
Loading
/content/journals/cdt/10.2174/0113894501368814250212111828
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test