Skip to content
2000
image of Mechanistic Approach to Ferroptosis in Cancer and Neurological Diseases

Abstract

Ferroptosis is a form of oxidative, iron-dependent, non-apoptotic cell death characterized by the accumulation of lipid peroxides and the depletion of glutathione. Ferroptosis plays a significant role in human cancer and is essential in neurological disorders, including neurodegeneration, stroke, and neurotrauma. One of the key challenges in cancer research is how to effectively kill cancer cells while leaving healthy cells intact. Cancer cells often have defects in cell death executioner mechanisms, which is one of the main reasons for therapy resistance. To enable growth, cancer cells exhibit an increased iron demand compared with normal, non-cancer cells. This iron dependency can make cancer cells more vulnerable to iron-catalyzed necrosis, referred to as ferroptosis. It is a newly identified regulated form of cell death, which is thought to play a major role in neurodegenerative diseases. The mechanisms of ferroptosis in several neurological disorders are discussed in detail in this article. It also provides an overview of emerging medications that target ferroptosis in the treatment of neurological disorders. It also highlights the variations and connections between the different cell death pathways implicated in neurological disorders. Clarifying the function of ferroptosis in the brain will help us better understand the mechanisms behind neurological disorders and offer possible strategies for both acute and long-term neurological illness prevention and therapy. Consequently, we provide an overview and brief description of the main pathways involved in ferroptosis in this review, focusing on its regulation and its dual roles as a tumor suppressor and an oncogenic process in various human malignancies. The identification of FDA-approved drugs as ferroptosis inducers has raised high expectations for ferroptosis as a promising new approach to killing therapy-resistant cancers.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501358981251124065950
2026-01-26
2026-01-31
Loading full text...

Full text loading...

References

  1. Xie Y. Hou W. Song X. Ferroptosis: Process and function. Cell Death Differ. 2016 23 3 369 379 10.1038/cdd.2015.158 26794443
    [Google Scholar]
  2. Galluzzi L. Vitale I. Aaronson S.A. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018 25 3 486 541 10.1038/s41418‑017‑0012‑4 29362479
    [Google Scholar]
  3. Friedmann Angeli J.P. Schneider M. Proneth B. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 2014 16 12 1180 1191 10.1038/ncb3064 25402683
    [Google Scholar]
  4. Wu Z. Geng Y. Lu X. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc. Natl. Acad. Sci. USA 2019 116 8 2996 3005 10.1073/pnas.1819728116 30718432
    [Google Scholar]
  5. Liang C. Zhang X. Yang M. Dong X. Recent progress in ferroptosis inducers for cancer therapy. Adv. Mater. 2019 31 51 1904197 10.1002/adma.201904197 31595562
    [Google Scholar]
  6. Skouta R. Dixon S.J. Wang J. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J. Am. Chem. Soc. 2014 136 12 4551 4556 10.1021/ja411006a 24592866
    [Google Scholar]
  7. Jiang L. Kon N. Li T. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015 520 7545 57 62 10.1038/nature14344 25799988
    [Google Scholar]
  8. Yang WS SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014 156 1-2 317 331 10.1016/j.cell.2013.12.010 24439385
    [Google Scholar]
  9. Dixon S.J. Lemberg K.M. Lamprecht M.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012 149 5 1060 1072 10.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  10. David S. Ryan F. Jhelum P. Kroner A. Ferroptosis in neurological disease. Neuroscientist 2023 29 5 591 615 10.1177/10738584221100183 35678019
    [Google Scholar]
  11. Shaw A.T. Winslow M.M. Magendantz M. Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. Proc. Natl. Acad. Sci. USA 2011 108 21 8773 8778 10.1073/pnas.1105941108 21555567
    [Google Scholar]
  12. Xu T. Ding W. Ji X. Molecular mechanisms of ferroptosis and its role in cancer therapy. J. Cell. Mol. Med. 2019 23 8 4900 4912 10.1111/jcmm.14511 31232522
    [Google Scholar]
  13. Li X. He S. Ma B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer 2020 19 1 12 10.1186/s12943‑020‑1138‑4 31969156
    [Google Scholar]
  14. Lossi L. The concept of intrinsic versus extrinsic apoptosis. Biochem. J. 2022 479 3 357 384 10.1042/BCJ20210854 35147165
    [Google Scholar]
  15. Della Torre L. Nebbioso A. Stunnenberg H.G. Martens J.H.A. Carafa V. Altucci L. The role of necroptosis: Biological relevance and its involvement in cancer. Cancers 2021 13 4 684 10.3390/cancers13040684 33567618
    [Google Scholar]
  16. Noguchi M. Hirata N. Tanaka T. Suizu F. Nakajima H. Chiorini J.A. Autophagy as a modulator of cell death machinery. Cell Death Dis. 2020 11 7 517 10.1038/s41419‑020‑2724‑5 32641772
    [Google Scholar]
  17. Yan G. Elbadawi M. Efferth T. Multiple cell death modalities and their key features.(Review) World Acad. Sci. J. 2020 2 2 39 48 10.3892/wasj.2020.40
    [Google Scholar]
  18. Shi Z.Z. Tao H. Fan Z.W. Song S.J. Bai J. Prognostic and immunological role of key genes of ferroptosis in pan-cancer. Front. Cell Dev. Biol. 2021 9 748925 10.3389/fcell.2021.748925 34722530
    [Google Scholar]
  19. Yamamoto H. Zhang S. Mizushima N. Autophagy genes in biology and disease. Nat. Rev. Genet. 2023 24 6 382 400 10.1038/s41576‑022‑00562‑w 36635405
    [Google Scholar]
  20. Bragina E.Y. Gomboeva D.E. Saik O.V. Apoptosis genes as a key to identification of inverse comorbidity of huntington’s disease and cancer. Int. J. Mol. Sci. 2023 24 11 9385 10.3390/ijms24119385 37298337
    [Google Scholar]
  21. Wang D. Tang L. Zhang Y. Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis. 2022 13 6 544 10.1038/s41419‑022‑04927‑1 35688814
    [Google Scholar]
  22. Cao W. Li J. Yang K. Cao D. An overview of autophagy: Mechanism, regulation and research progress. Bull. Cancer 2021 108 3 304 322 10.1016/j.bulcan.2020.11.004 33423775
    [Google Scholar]
  23. Koren E. Fuchs Y. Modes of regulated cell death in cancer. Cancer Discov. 2021 11 2 245 265 10.1158/2159‑8290.CD‑20‑0789 33462123
    [Google Scholar]
  24. Reichert C.O. de Freitas F.A. Sampaio-Silva J. Ferroptosis mechanisms involved in neurodegenerative diseases. Int. J. Mol. Sci. 2020 21 22 8765 10.3390/ijms21228765 33233496
    [Google Scholar]
  25. Stockwell B.R. Jiang X. Gu W. Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol. 2020 30 6 478 490 10.1016/j.tcb.2020.02.009 32413317
    [Google Scholar]
  26. Ursini F. Maiorino M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic. Biol. Med. 2020 152 175 185 10.1016/j.freeradbiomed.2020.02.027 32165281
    [Google Scholar]
  27. Liu J. Kang R. Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 2022 289 22 7038 7050 10.1111/febs.16059 34092035
    [Google Scholar]
  28. Do Q. Zhang R. Hooper G. Xu L. Differential contributions of distinct free radical peroxidation mechanisms to the induction of ferroptosis. JACS Au 2023 3 4 1100 1117 10.1021/jacsau.2c00681 37124288
    [Google Scholar]
  29. Rochette L. Dogon G. Rigal E. Zeller M. Cottin Y. Vergely C. Lipid peroxidation and iron metabolism: Two cornerstones in the homeostasis control of ferroptosis. Int. J. Mol. Sci. 2022 24 1 449 10.3390/ijms24010449 36613888
    [Google Scholar]
  30. Li Z. Lange M. Dixon S.J. Olzmann J.A. Lipid quality control and ferroptosis: From concept to mechanism. Annu. Rev. Biochem. 2023 ••• 93 37963395
    [Google Scholar]
  31. Do Q. Xu L. How do different lipid peroxidation mechanisms contribute to ferroptosis? Cell Rep. Phys. Sci. 2023 4 12 101683 10.1016/j.xcrp.2023.101683 38322411
    [Google Scholar]
  32. Bayır H. Dixon S.J. Tyurina Y.Y. Kellum J.A. Kagan V.E. Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat. Rev. Nephrol. 2023 19 5 315 336 10.1038/s41581‑023‑00689‑x 36922653
    [Google Scholar]
  33. Bayır H. Anthonymuthu T.S. Tyurina Y.Y. Achieving life through death: Redox biology of lipid peroxidation in ferroptosis. Cell Chem. Biol. 2020 27 4 387 408 10.1016/j.chembiol.2020.03.014 32275865
    [Google Scholar]
  34. Zhang S. Xin W. Anderson G.J. Double-edge sword roles of iron in driving energy production versus instigating ferroptosis. Cell Death Dis. 2022 13 1 40 10.1038/s41419‑021‑04490‑1 35013137
    [Google Scholar]
  35. Chen X. Kang R. Kroemer G. Tang D. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 2021 18 5 280 296 10.1038/s41571‑020‑00462‑0 33514910
    [Google Scholar]
  36. Zuo Y.B. Zhang Y.F. Zhang R. Ferroptosis in cancer progression: Role of noncoding RNAs. Int. J. Biol. Sci. 2022 18 5 1829 1843 10.7150/ijbs.66917 35342359
    [Google Scholar]
  37. Valashedi M.R. Bamshad C. Najafi-Ghalehlou N. Non-coding RNAs in ferroptotic cancer cell death pathway: Meet the new masters. Hum. Cell 2022 35 4 972 994 10.1007/s13577‑022‑00699‑0 35415781
    [Google Scholar]
  38. Qi R. Bai Y. Wei Y. Liu N. Shi B. The role of non-coding RNAs in ferroptosis regulation. J. Trace Elem. Med. Biol. 2022 70 126911 10.1016/j.jtemb.2021.126911 34952295
    [Google Scholar]
  39. Zhi Y. Gao L. Wang B. Ren W. Liang K.X. Zhi K. Ferroptosis holds novel promise in treatment of cancer mediated by non-coding RNAs. Front. Cell Dev. Biol. 2021 9 686906 10.3389/fcell.2021.686906 34235152
    [Google Scholar]
  40. Deng B. Xiang J. Liang Z. Luo L. Identification and validation of a ferroptosis-related gene to predict survival outcomes and the immune microenvironment in lung adenocarcinoma. Cancer Cell Int. 2022 22 1 292 10.1186/s12935‑022‑02699‑4 36153508
    [Google Scholar]
  41. Gai C. Liu C. Wu X. MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Dis. 2020 11 9 751 10.1038/s41419‑020‑02939‑3 32929075
    [Google Scholar]
  42. Hou Y. Cai S. Yu S. Lin H. Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer. Acta Biochim. Biophys. Sin. 2021 53 3 333 341 10.1093/abbs/gmaa180 33522578
    [Google Scholar]
  43. He G.N. Bao N.R. Wang S. Xi M. Zhang T.H. Chen F.S. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des. Devel. Ther. 2021 15 3965 3978 10.2147/DDDT.S332847 34566408
    [Google Scholar]
  44. Zheng J. Zhou Z. Qiu Y. A prognostic ferroptosis-related lncRNAs signature associated with immune landscape and radiotherapy response in glioma. Front. Cell Dev. Biol. 2021 9 675555 10.3389/fcell.2021.675555 34095147
    [Google Scholar]
  45. Zhang S. Sun J. Gu M. Wang G. Wang X. Circular RNA: A promising new star for the diagnosis and treatment of colorectal cancer. Cancer Med. 2021 10 24 8725 8740 10.1002/cam4.4398 34796685
    [Google Scholar]
  46. Wang Z. Chen X. Liu N. A nuclear long non-coding RNA LINC00618 accelerates ferroptosis in a manner dependent upon apoptosis. Mol. Ther. 2021 29 1 263 274 10.1016/j.ymthe.2020.09.024 33002417
    [Google Scholar]
  47. Zhang X. Du L. Qiao Y. Ferroptosis is governed by differential regulation of transcription in liver cancer. Redox Biol. 2019 24 101211 10.1016/j.redox.2019.101211 31108460
    [Google Scholar]
  48. Tang D. Chen X. Kang R. Kroemer G. Ferroptosis: Molecular mechanisms and health implications. Cell Res. 2021 31 2 107 125 10.1038/s41422‑020‑00441‑1 33268902
    [Google Scholar]
  49. Wang Y. Qiu S. Wang H. Transcriptional repression of ferritin light chain increases ferroptosis sensitivity in lung adenocarcinoma. Front. Cell Dev. Biol. 2021 9 719187 10.3389/fcell.2021.719187 34765600
    [Google Scholar]
  50. Kang R. Kroemer G. Tang D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic. Biol. Med. 2019 133 162 168 10.1016/j.freeradbiomed.2018.05.074 29800655
    [Google Scholar]
  51. Lei G. Zhuang L. Gan B. The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions. Cancer Cell 2024 42 4 513 534 10.1016/j.ccell.2024.03.011 38593779
    [Google Scholar]
  52. Gnanapradeepan K. Basu S. Barnoud T. Budina-Kolomets A. Kung C.P. Murphy M.E. The p53 tumour suppressor is involved in the control of metabolism and ferroptosis. Front. Endocrinol. 2018 9 124 10.3389/fendo.2018.00124
    [Google Scholar]
  53. Yuan H. Li X. Zhang X. Kang R. Tang D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun. 2016 478 3 1338 1343 10.1016/j.bbrc.2016.08.124 27565726
    [Google Scholar]
  54. Ma Y. Han F. Min J. Lin W. Energy metabolism as a regulator of ferroptosis. Cell Cycle 2020 19 22 2960 2962 10.1080/15384101.2020.1838781 33112197
    [Google Scholar]
  55. Xia X. Fan X. Zhao M. Zhu P. The relationship between ferroptosis and tumours: A novel landscape for therapeutic approach. Curr. Gene Ther. 2019 19 2 117 124 10.2174/1566523219666190628152137 31264548
    [Google Scholar]
  56. Zhou A. Fang T. Chen K. Xu Y. Chen Z. Ning X. Biomimetic activator of sonodynamic ferroptosis amplifies inherent peroxidation for improving the treatment of breast cancer. Small 2022 18 12 2106568 10.1002/smll.202106568 35092152
    [Google Scholar]
  57. Bartolacci C. Andreani C. El-Gammal Y. Scaglioni P.P. Lipid metabolism regulates oxidative stress and ferroptosis in RAS-driven cancers: A perspective on cancer progression and therapy. Front. Mol. Biosci. 2021 8 706650 10.3389/fmolb.2021.706650 34485382
    [Google Scholar]
  58. Liu X. Hai Y. Dong J. Realgar-induced KRAS mutation lung cancer cell death via KRAS/Raf/MAPK mediates ferroptosis. Int. J. Oncol. 2022 61 6 157 10.3892/ijo.2022.5447 36321791
    [Google Scholar]
  59. Andreani C. Bartolacci C. Scaglioni P.P. Ferroptosis: A specific vulnerability of RAS-driven cancers? Front. Oncol. 2022 12 923915 10.3389/fonc.2022.923915 35912247
    [Google Scholar]
  60. Wu X. Liu C. Li Z. Regulation of GSK3β/Nrf2 signaling pathway modulated erastin-induced ferroptosis in breast cancer. Mol. Cell. Biochem. 2020 473 1-2 217 228 10.1007/s11010‑020‑03821‑8 32642794
    [Google Scholar]
  61. Dodson M. Castro-Portuguez R. Zhang D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019 23 101107 10.1016/j.redox.2019.101107 30692038
    [Google Scholar]
  62. Yi J. Zhu J. Wu J. Thompson C.B. Jiang X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP mediated lipogenesis. Proc. Natl. Acad. Sci. USA 2020 117 49 31189 31197 10.1073/pnas.2017152117 33229547
    [Google Scholar]
  63. Liu Y. Wang Y. Liu J. Kang R. Tang D. Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death. Cancer Gene Ther. 2021 28 1-2 55 63 10.1038/s41417‑020‑0182‑y 32457486
    [Google Scholar]
  64. Liu X.Q. Shi M.Z. Bai Y.T. Hypoxia and ferroptosis. Cell. Signal. 2024 122 111328 10.1016/j.cellsig.2024.111328 39094672
    [Google Scholar]
  65. Luo Z. Tian M. Yang G. Hypoxia signaling in human health and diseases: Implications and prospects for therapeutics. Signal Transduct. Target. Ther. 2022 7 1 218 10.1038/s41392‑022‑01080‑1 35798726
    [Google Scholar]
  66. Bouhamida E. Morciano G. Perrone M. The interplay of hypoxia signalling on mitochondrial dysfunction and inflammation in cardiovascular diseases and cancer: From molecular mechanisms to therapeutic approaches. Biology 2022 11 2 300 10.3390/biology11020300 35205167
    [Google Scholar]
  67. Xue C. Li M. Liu C. NIR‐actuated remote activation of ferroptosis in target tumour cells through a photothermally responsive iron‐chelated biopolymer nanoplatform. Angew. Chem. Int. Ed. 2021 60 16 8938 8947 10.1002/anie.202016872 33543529
    [Google Scholar]
  68. Shen Z. Song J. Yung B.C. Zhou Z. Wu A. Chen X. Emerging strategies of cancer therapy based on ferroptosis. Adv. Mater. 2018 30 12 1704007 10.1002/adma.201704007 29356212
    [Google Scholar]
  69. Li Y. Yan H. Xu X. Liu H. Wu C. Zhao L. Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway. Oncol. Lett. 2020 19 1 323 333 10.3892/ol.2019.11066 31897145
    [Google Scholar]
  70. Kinowaki Y. Taguchi T. Onishi I. Kirimura S. Kitagawa M. Yamamoto K. Overview of ferroptosis and synthetic lethality strategies. Int. J. Mol. Sci. 2021 22 17 9271 10.3390/ijms22179271 34502181
    [Google Scholar]
  71. Wu Z. Zhong M. Liu Y. Application of natural products for inducing ferroptosis in tumor cells. Biotechnol. Appl. Biochem. 2022 69 1 190 197 10.1002/bab.2096 33393679
    [Google Scholar]
  72. Ding Y. Chen X. Liu C. Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. J. Hematol. Oncol. 2021 14 1 19 10.1186/s13045‑020‑01016‑8 33472669
    [Google Scholar]
  73. Li J. Lama R. Galster S.L. Small-molecule MMRi62 induces ferroptosis and inhibits metastasis in pancreatic cancer via degradation of ferritin heavy chain and mutant p53. Mol. Cancer Ther. 2022 21 4 535 545 10.1158/1535‑7163.MCT‑21‑0728 35131878
    [Google Scholar]
  74. Wu S. Zhu C. Tang D. Dou Q.P. Shen J. Chen X. The role of ferroptosis in lung cancer. Biomark. Res. 2021 9 1 82 10.1186/s40364‑021‑00338‑0 34742351
    [Google Scholar]
  75. Liang Z. Zhao W. Li X. Wang L. Meng L. Yu R. Cisplatin synergizes with PRLX93936 to induce ferroptosis in non-small cell lung cancer cells. Biochem. Biophys. Res. Commun. 2021 569 79 85 10.1016/j.bbrc.2021.06.088 34237431
    [Google Scholar]
  76. Kim J.W. Min D.W. Kim D. GPX4 overexpressed non-small cell lung cancer cells are sensitive to RSL3-induced ferroptosis. Sci. Rep. 2023 13 1 8872 10.1038/s41598‑023‑35978‑9 37258589
    [Google Scholar]
  77. Wang L. Wang J. Chen L. TIMP1 represses sorafenib-triggered ferroptosis in colorectal cancer cells by activating the PI3K/Akt signaling pathway. Immunopharmacol. Immunotoxicol. 2023 45 4 419 425 10.1080/08923973.2022.2160731 36541209
    [Google Scholar]
  78. Zhang W. Jiang B. Liu Y. Xu L. Wan M. Bufotalin induces ferroptosis in non-small cell lung cancer cells by facilitating the ubiquitination and degradation of GPX4. Free Radic. Biol. Med. 2022 180 75 84 10.1016/j.freeradbiomed.2022.01.009 35038550
    [Google Scholar]
  79. Zefrei F.J. Shormij M. Dastranj L. Ferroptosis inducers as promising radiosensitizer agents in cancer radiotherapy. Curr. Radiopharm. 2024 17 1 14 29 10.2174/0118744710262369231110065230 37974441
    [Google Scholar]
  80. Thangavelu P. Sundaram V. Gunasekaran K. Development of optimized novel liposome loaded with 6-gingerol and assessment of its therapeutic activity against NSCLC in vitro and in vivo experimental models. Chem. Phys. Lipids 2022 245 105206 10.1016/j.chemphyslip.2022.105206 35483420
    [Google Scholar]
  81. Xu H. Ye D. Ren M. Zhang H. Bi F. Ferroptosis in the tumor microenvironment: Perspectives for immunotherapy. Trends Mol. Med. 2021 27 9 856 867 10.1016/j.molmed.2021.06.014 34312075
    [Google Scholar]
  82. Zhao L. Zhou X. Xie F. Ferroptosis in cancer and cancer immunotherapy. Cancer Commun. 2022 42 2 88 116 10.1002/cac2.12250 35133083
    [Google Scholar]
  83. Luo L. Wang H. Tian W. Targeting ferroptosis-based cancer therapy using nanomaterials: Strategies and applications. Theranostics 2021 11 20 9937 9952 10.7150/thno.65480 34815796
    [Google Scholar]
  84. Zhu L. Meng D. Wang X. Chen X. Ferroptosis-driven nanotherapeutics to reverse drug resistance in tumour microenvironment. ACS Appl. Bio Mater. 2022 5 6 2481 2506 10.1021/acsabm.2c00199 35614872
    [Google Scholar]
  85. Lei G. Mao C. Yan Y. Zhuang L. Gan B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell 2021 12 11 836 857 10.1007/s13238‑021‑00841‑y 33891303
    [Google Scholar]
  86. Lang X. Green M.D. Wang W. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 2019 9 12 1673 1685 10.1158/2159‑8290.CD‑19‑0338 31554642
    [Google Scholar]
  87. Xu Y. Zhao J. Zhao Y. The role of ferroptosis in neurodegenerative diseases. Mol. Biol. Rep. 2023 50 2 1655 1661 10.1007/s11033‑022‑08048‑y 36385663
    [Google Scholar]
  88. Ji Y. Zheng K. Li S. Insight into the potential role of ferroptosis in neurodegenerative diseases. Front. Cell. Neurosci. 2022 16 1005182 10.3389/fncel.2022.1005182 36385946
    [Google Scholar]
  89. Song X. Long D. Nrf2 and ferroptosis: A new research direction for neurodegenerative diseases. Front. Neurosci. 2020 14 267 10.3389/fnins.2020.00267 32372896
    [Google Scholar]
  90. Paul B.D. Neuroprotective roles of the reverse transsulfuration pathway in Alzheimer’s disease. Front. Aging Neurosci. 2021 13 659402 10.3389/fnagi.2021.659402 33796019 PMCID: PMC8007787
    [Google Scholar]
  91. Sbodio J.I. Snyder S.H. Paul B.D. Regulators of the transsulfuration pathway. Br. J. Pharmacol. 2019 176 4 583 593 10.1111/bph.14446 30007014
    [Google Scholar]
  92. Jiang L. Hickman J.H. Wang S.J. Gu W. Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses. Cell Cycle 2015 14 18 2881 2885 10.1080/15384101.2015.1068479 26218928
    [Google Scholar]
  93. Gao M. Monian P. Quadri N. Ramasamy R. Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 2015 59 2 298 308 10.1016/j.molcel.2015.06.011 26166707
    [Google Scholar]
  94. Roh J.L. Kim E.H. Jang H. Shin D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 2017 11 254 262 10.1016/j.redox.2016.12.010 28012440
    [Google Scholar]
  95. Itoh K. Tong K.I. Yamamoto M. Molecular mechanism activating nrf2–keap1 pathway in regulation of adaptive response to electrophiles. Free Radic. Biol. Med. 2004 36 10 1208 1213 10.1016/j.freeradbiomed.2004.02.075 15110385
    [Google Scholar]
  96. Wang H. An P. Xie E. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 2017 66 2 449 465 10.1002/hep.29117 28195347
    [Google Scholar]
  97. Elhani I. Hentgen V. Grateau G. Georgin-Lavialle S. Neurological manifestations in mevalonate kinase deficiency: A systematic review. Mol. Genet. Metab. 2022 136 2 85 93 10.1016/j.ymgme.2022.04.006 35525811
    [Google Scholar]
  98. Saeedi Saravi S.S. Saeedi Saravi S.S. Khoshbin K. Dehpour A.R. Current insights into pathogenesis of Parkinson’s disease: Approach to mevalonate pathway and protective role of statins. Biomed. Pharmacother. 2017 90 724 730 10.1016/j.biopha.2017.04.038 28419968
    [Google Scholar]
  99. Shi H. Song L. Wu Y. Edaravone alleviates traumatic brain injury by inhibition of ferroptosis via FSP1 pathway. Mol. Neurobiol. 2024 61 12 10448 10461 10.1007/s12035‑024‑04216‑2 38733490
    [Google Scholar]
  100. Ou M. Jiang Y. Ji Y. Role and mechanism of ferroptosis in neurological diseases. Mol. Metab. 2022 61 101502 10.1016/j.molmet.2022.101502 35447365
    [Google Scholar]
  101. Wang H. An P. Xie E. Wu Q. Fang X. Gao H. Characterisation of ferroptosis in murine models of Parkinson’s disease. Nat. Commun. 2018 9 1 81 10.1038/s41467‑017‑02593‑y 29311685
    [Google Scholar]
  102. Wu C. Zhao L. Guo Y. Moxibustion treatment for Parkinson’s disease: Study protocol for a randomized controlled trial. BMC Complement. Med. Ther. 2023 23 1 193 10.1186/s12906‑023‑03995‑w
    [Google Scholar]
  103. Mahoney-Sánchez L. Bouchaoui H. Ayton S. Devos D. Duce J.A. Devedjian J.C. Ferroptosis and its potential role in the physiopathology of parkinson’s disease. Prog. Neurobiol. 2021 196 101890 10.1016/j.pneurobio.2020.101890 32726602
    [Google Scholar]
  104. Wang Z.L. Yuan L. Li W. Li J.Y. Ferroptosis in Parkinson’s disease: Glia–neuron crosstalk. Trends Mol. Med. 2022 28 4 258 269 10.1016/j.molmed.2022.02.003 35260343
    [Google Scholar]
  105. Jakaria M. Belaidi A.A. Bush A.I. Ayton S. Ferroptosis as a mechanism of neurodegeneration in Alzheimer’s disease. J. Neurochem. 2021 159 5 804 825 10.1111/jnc.15519 34553778
    [Google Scholar]
  106. Masaldan S. Bush A.I. Devos D. Rolland A.S. Moreau C. Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radic. Biol. Med. 2019 133 221 233 10.1016/j.freeradbiomed.2018.09.033 30266679
    [Google Scholar]
  107. Mi Y. Gao X. Xu H. Cui Y. Zhang Y. Gou X. The emerging roles of ferroptosis in Huntington’s disease. Neuromolecular Med. 2019 21 2 110 119 10.1007/s12017‑018‑8518‑6 30600476
    [Google Scholar]
  108. DeGregorio-Rocasolano N. Martí-Sistac O. Gasull T. Deciphering the iron side of stroke: Neurodegeneration at the crossroads between iron dyshomeostasis, excitotoxicity, and ferroptosis. Front. Neurosci. 2019 13 85 10.3389/fnins.2019.00085 30837827
    [Google Scholar]
  109. Wang Y. Wu S. Li Q. Sun H. Wang H. Pharmacological inhibition of ferroptosis as a therapeutic target for neurodegenerative diseases and strokes. Adv. Sci. 2023 10 24 2300325 10.1002/advs.202300325 37341302
    [Google Scholar]
  110. Vitalakumar D. Sharma A. Flora S.J.S. Ferroptosis: A potential therapeutic target for neurodegenerative diseases. J. Biochem. Mol. Toxicol. 2021 35 8 e22830 10.1002/jbt.22830 34047408
    [Google Scholar]
  111. Geng Z. Guo Z. Guo R. Ye R. Zhu W. Yan B. Ferroptosis and traumatic brain injury. Brain Res. Bull. 2021 172 212 219 10.1016/j.brainresbull.2021.04.023 33932492
    [Google Scholar]
  112. Tang S. Gao P. Chen H. Zhou X. Ou Y. He Y. The role of iron, its metabolism and ferroptosis in traumatic brain injury. Front. Cell. Neurosci. 2020 14 590789 10.3389/fncel.2020.590789 33100976
    [Google Scholar]
  113. Cheng H. Wang P. Wang N. Neuroprotection of NRF2 against ferroptosis after traumatic brain injury in mice. Antioxidants 2023 12 3 731 10.3390/antiox12030731 36978979
    [Google Scholar]
  114. Xu Y. Jia B. Li J. Li Q. Luo C. The interplay between ferroptosis and neuroinflammation in central neurological disorders. Antioxidants 2024 13 4 395 10.3390/antiox13040395 38671843
    [Google Scholar]
  115. Zhang C. Liu X. Jin S. Chen Y. Guo R. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol. Cancer 2022 21 1 47 10.1186/s12943‑022‑01530‑y 35151318
    [Google Scholar]
  116. Sun S. Shen J. Jiang J. Wang F. Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct. Target. Ther. 2023 8 1 372 10.1038/s41392‑023‑01606‑1 37735472
    [Google Scholar]
  117. Chen Z. Wang W. Abdul Razak S.R. Han T. Ahmad N.H. Li X. Ferroptosis as a potential target for cancer therapy. Cell Death Dis. 2023 14 7 460 10.1038/s41419‑023‑05930‑w 37488128
    [Google Scholar]
  118. Wang S Lu Y Chi T Zhang Y Zhao Y Guo H Feng L Identification of ferroptosis-related genes in type 2 diabetes mellitus based on machine learning. Immun Inflamm Dis 2023 11 10 e1036 10.1002/iid3.1036 37904700
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501358981251124065950
Loading
/content/journals/cdt/10.2174/0113894501358981251124065950
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test