Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Despite their hazardous nature, snake venoms hold immense potential for the development of novel therapies. This summary delves into the key aspects of snake venom research, focusing on their significance as targets for neutralization, their utility as novel drugs, the application of studies, and future prospects with nanotechnology.

: Snake venom harbors a rich diversity of toxic proteins with a wide range of biological activities. Its importance lies in the possibility of neutralizing its detrimental effects and exploring its therapeutic potential for diverse ailments.

: The development of more effective and specific antivenoms is crucial for treating snakebites, particularly in regions with a high prevalence of accidents. Molecular-level venom studies are essential for identifying novel targets for the development of more efficacious antivenoms.

: Proteins present in snake venom exhibit diverse pharmacological activities, including antithrombotic, anti-inflammatory, analgesic, and antimicrobial properties. Investigating these proteins can lead to the development of novel medications for various diseases.

: Bioinformatics tools and molecular modelling can aid in the discovery of novel molecular targets in snake venom, accelerating the process of developing new drugs and therapies.

: Nanotechnology offers new possibilities for developing more efficient and targeted drug delivery systems, enhancing the safety and effectiveness of snake venom-based treatments.

Snake venom research represents a promising area of inquiry with immense potential for the development of novel drugs and therapies. The integration of traditional and innovative techniques, such as studies and nanotechnology, can accelerate this process and contribute to the advancement of public health.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501352925250225045555
2025-02-27
2025-10-31
Loading full text...

Full text loading...

References

  1. Gwaltney-BrantS.M. GuptaR.C. Zootoxins.Reproductive and Developmental Toxicology.Elsevier2nd ed201796397210.1016/B978‑0‑12‑804239‑7.00049‑4
    [Google Scholar]
  2. WarrellD.A. Venomous and poisonous animals.Manson’s Tropical Infectious DiseasesElsevier 20241096112710.1016/B978‑0‑7020‑7959‑7.00079‑8
    [Google Scholar]
  3. RanawakaU.K. LallooD.G. de SilvaH.J. Neurotoxicity in snakebite--the limits of our knowledge.PLoS Negl. Trop. Dis.2013710e230210.1371/journal.pntd.000230224130909
    [Google Scholar]
  4. SlagboomJ. KoolJ. HarrisonR.A. CasewellN.R. Haemotoxic snake venoms: Their functional activity, impact on snakebite victims and pharmaceutical promise.Br. J. Haematol.2017177694795910.1111/bjh.1459128233897
    [Google Scholar]
  5. WaiddyanathaS. SilvaA. SiribaddanaS. IsbisterG.K. Long-term effects of snake envenoming.Toxins201911419310.3390/toxins1104019330935096
    [Google Scholar]
  6. Snakebite envenoming.2023Available from: https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming#:~:text=Key%20facts,are%20caused%20by%20snakebites%20annually
  7. Accident caused by venomous animals,2016Available from: https://portalsinan.saude.gov.br/acidente-por-animais-peconhentos
  8. Epidemiological Bulletin Neglected Diseases in Brazil: Morbidity and mortality and national response in the context of the sustainable development goals.2024Available from: https://www.gov. br/saude/pt-br/assuntos/noticias/2024/janeiro/ministerio-da-saude-divulga-boletim-epidemiologico-doencas-negligenciadas-no-brasil
  9. SilvaA.M. BernardeP.S. AbreuL.C. Accidents with poisonous animals in Brazil by age and sex.J. Hum. Growth Dev.20152515410.7322/jhgd.96768
    [Google Scholar]
  10. CarrascoP.A. VenegasP.J. ChaparroJ.C. ScrocchiG.J. Nomenclatural instability in the venomous snakes of the Bothrops complex: Implications in toxinology and public health.Toxicon201611912212810.1016/j.toxicon.2016.05.01427242040
    [Google Scholar]
  11. SousaL.F. ZdenekC.N. DobsonJ.S. Op den BrouwB. CoimbraF.C.P. GillettA. Del-ReiT.H.M. ChalkidisH.M. Sant’AnnaS. Teixeira-da-RochaM.M. GregoK. Travaglia CardosoS.R. Moura da SilvaA.M. FryB.G. Coagulotoxicity of Bothrops (Lancehead Pit-Vipers) venoms from Brazil: Differential biochemistry and antivenom efficacy resulting from prey-driven venom variation.Toxins 2018101041110.3390/toxins1010041130314373
    [Google Scholar]
  12. AlmeidaD.D. VialaV.L. NachtigallP.G. BroeM. GibbsH.L. SerranoS.M.T. Moura-da-SilvaA.M. HoP.L. Nishiyama-JrM.Y. Junqueira-de-AzevedoI.L.M. Tracking the recruitment and evolution of snake toxins using the evolutionary context provided by the Bothrops jararaca genome.Proc. Natl. Acad. Sci. USA202111820e201515911810.1073/pnas.201515911833972420
    [Google Scholar]
  13. YehY.T. ChenM.H. ChangJ.C.Y. FanJ.S. YenD.H.T. ChenY.C. Protobothrops mucrosquamatus bites to the head: Clinical spectrum from case series.Am. J. Trop. Med. Hyg.201899375375510.4269/ajtmh.18‑022029943718
    [Google Scholar]
  14. ValentaJ. StachZ. OtahalM. Protobothrops mangshanensis bite: First clinical report of envenoming and its treatment.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.2012156218318510.5507/bp.2012.02122660227
    [Google Scholar]
  15. ChanhomeL. KhowO. ReamtongO. VasaruchapongT. LaoungbuaP. TawanT. Biochemical and proteomic analyses of venom from a new pit viper, Protobothrops kelomohy.J. Venom Anim. Toxins Incl. Trop. Dis.202228e20210080
    [Google Scholar]
  16. LiuC.C. WuC.J. HsiaoY.C. YangY.H. LiuK.L. HuangG.J. HsiehC.H. ChenC.K. LiawG.W. Snake venom proteome of Protobothrops mucrosquamatus in Taiwan: Delaying venom-induced lethality in a rodent model by inhibition of phospholipase A2 activity with varespladib.J. Proteomics202123410408410.1016/j.jprot.2020.10408433359941
    [Google Scholar]
  17. HuangT.F. HsuC.C. KuoY.J. Anti-thrombotic agents derived from snake venom proteins.Thromb. J.201614S1Suppl. 11810.1186/s12959‑016‑0113‑127766044
    [Google Scholar]
  18. VarolA. SezenS. EvcimenD. ZarepourA. UlusG. ZarrabiA. BadrG. DaştanS.D. OrbayoğluA.G. SelamoğluZ. VarolM. Cellular targets and molecular activity mechanisms of bee venom in cancer: Recent trends and developments.Toxin Rev.20224141382139510.1080/15569543.2021.2024576
    [Google Scholar]
  19. RapôsoC. Scorpion and spider venoms in cancer treatment: State of the art, challenges, and perspectives.J. Clin. Transl. Res.20173223324910.18053/jctres.03.201702.00230873475
    [Google Scholar]
  20. AlbuquerqueP.L.M.M. PaivaJ.H.H.G.L. MartinsA.M.C. MenesesG.C. Silva-JúniorG.B. BuckleyN. Clinical assessment and pathophysiology of Bothrops venom-related acute kidney injury: A scoping review.J. Venom Anim. Toxins Incl. Trop. Dis.202026e20190076
    [Google Scholar]
  21. JacksonT.N.W. KoludarovI. How the toxin got its toxicity.Front. Pharmacol.20201157492510.3389/fphar.2020.57492533381030
    [Google Scholar]
  22. LarréchéS. ChippauxJ.P. ChevillardL. MathéS. RésièreD. SiguretV. MégarbaneB. Bleeding and thrombosis: Insights into pathophysiology of bothrops venom-related hemostasis disorders.Int. J. Mol. Sci.20212217964310.3390/ijms2217964334502548
    [Google Scholar]
  23. CardosoJ.L.C. FrançaF.O.S. WenF.H. MálaqueC.M.S. HaddadV.Jr Venomous animals in Brazil: Biology, clinic and therapeutics of envenomations.Rev. Inst. Med. Trop. São Paulo200345633833810.1590/S0036‑46652003000600009
    [Google Scholar]
  24. Ranéia e SilvaP.A. de LimaD.S. Mesquita LuizJ.P. CâmaraN.O.S. Alves-FilhoJ.C.F. PontilloA. BortoluciK.R. Faquim-MauroE.L. Inflammatory effect of Bothropstoxin-I from Bothrops jararacussu venom mediated by NLRP3 inflammasome involves ATP and P2X7 receptor.Clin. Sci.2021135568770110.1042/CS2020141933620070
    [Google Scholar]
  25. MulderP.P.G. VligM. BoekemaB.K.H.L. StoopM.M. PijpeA. van ZuijlenP.P.M. de JongE. van CranenbroekB. JoostenI. KoenenH.J.P.M. UlrichM.M.W. Persistent systemic inflammation in patients with severe burn injury is accompanied by influx of immature neutrophils and shifts in T cell subsets and cytokine profiles.Front. Immunol.20211162122210.3389/fimmu.2020.62122233584717
    [Google Scholar]
  26. KarkkainenM.J. FerrellR.E. LawrenceE.C. KimakM.A. LevinsonK.L. McTigueM.A. AlitaloK. FinegoldD.N. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema.Nat. Genet.200025215315910.1038/7599710835628
    [Google Scholar]
  27. MenaldoD.L. BernardesC.P. ZoccalK.F. Jacob-FerreiraA.L. CostaT.R. Del LamaM.P.F.M. NaalR.M.Z.G. FrantzF.G. FaccioliL.H. SampaioS.V. Immune cells and mediators involved in the inflammatory responses induced by a P-I metalloprotease and a phospholipase A2 from Bothrops atrox venom.Mol. Immunol.20178523824710.1016/j.molimm.2017.03.00828327442
    [Google Scholar]
  28. SousaL.F. BernardoniJ.L. ZdenekC.N. DobsonJ. CoimbraF. GillettA. Lopes-FerreiraM. Moura-da-SilvaA.M. FryB.G. Differential coagulotoxicity of metalloprotease isoforms from Bothrops neuwiedi snake venom and consequent variations in antivenom efficacy.Toxicol. Lett.202033321122110.1016/j.toxlet.2020.08.00932841740
    [Google Scholar]
  29. Pérez-GómezA.S. MonteiroW.M. JoãoG.A.P. SousaJ.D.B. SafeI.P. DamianM.M. SachettJ.A.G. SilvaI.M. Hemorrhagic stroke following viper bites and delayed antivenom administration: Three case reports from the Western Brazilian Amazon.Rev. Soc. Bras. Med. Trop.201952e2019011510.1590/0037‑8682‑0115‑201931340373
    [Google Scholar]
  30. GutiérrezJ.M. LomonteB. Local tissue damage induced by Bothrops snake venoms: A review.Mem. Inst. Butantan19894211223
    [Google Scholar]
  31. McHughG.S. EngelD.C. ButcherI. SteyerbergE.W. LuJ. MushkudianiN. HernándezA.V. MarmarouA. MaasA.I.R. MurrayG.D. Prognostic value of secondary insults in traumatic brain injury: results from the IMPACT study.J. Neurotrauma200724228729310.1089/neu.2006.003117375993
    [Google Scholar]
  32. LemonD.J. HorvathF.P. FordA.A. MayH.C. MoffettS.X. OliveraD.S. HwangY.Y. ICP-MS characterization of seven North American snake venoms.Toxicon2020184626710.1016/j.toxicon.2020.05.01732479834
    [Google Scholar]
  33. XuX. LiuQ. XieY. Metal ion-induced stabilization and refolding of anticoagulation factor II from the venom of Agkistrodon acutus.Biochemistry200241113546355410.1021/bi015819j11888270
    [Google Scholar]
  34. FrancisB. SeebartC. KaiserI.I. Citrate is an endogenous inhibitor of snake venom enzymes by metal-ion chelation.Toxicon199230101239124610.1016/0041‑0101(92)90440‑G1440629
    [Google Scholar]
  35. TeixeiraC.F.P. FernandesC.M. ZulianiJ.P. ZamunerS.F. Inflammatory effects of snake venom metalloproteinases.Mem. Inst. Oswaldo Cruz2005100Suppl. 118118410.1590/S0074‑0276200500090003115962120
    [Google Scholar]
  36. GutiérrezJ.M. RucavadoA. EscalanteT. DíazC. Hemorrhage induced by snake venom metalloproteinases: Biochemical and biophysical mechanisms involved in microvessel damage.Toxicon2005458997101110.1016/j.toxicon.2005.02.02915922771
    [Google Scholar]
  37. Silva-NetoA.V. SantosW.G. BotelhoA.F.M. DiamantinoG.M.L. Soto-BlancoB. MeloM.M. Use of EDTA in the treatment of local tissue damage caused by the Bothrops alternatus venom.Arq. Bras. Med. Vet. Zootec.20187051529153810.1590/1678‑4162‑10158
    [Google Scholar]
  38. Simoes-SilvaR. AlfonsoJ. GomezA. HolandaR.J. SobrinhoJ.C. ZaqueoK.D. Moreira-DillL.S. KayanoA.M. GrabnerF.P. da SilvaS.L. AlmeidaJ.R. StabeliR.G. ZulianiJ.P. SoaresA.M. Snake venom, a natural library of new potential therapeutic molecules: challenges and current perspectives.Curr. Pharm. Biotechnol.201819430833510.2174/138920101966618062011102529929461
    [Google Scholar]
  39. GutiérrezJ.M. CalveteJ.J. HabibA.G. HarrisonR.A. WilliamsD.J. WarrellD.A. Snakebite envenoming.Nat. Rev. Dis. Primers2017311706310.1038/nrdp.2017.6328905944
    [Google Scholar]
  40. BicklerP.E. Amplification of snake venom toxicity by endogenous signaling pathways.Toxins 20201226810.3390/toxins1202006831979014
    [Google Scholar]
  41. Vivas-RuizD.E. RosasP. ProleónA. TorrejónD. LazoF. Tenorio-RiccaA.B. GuajardoF. AlmarzaC. AndradesV. AstorgaJ. OropesaD. ToledoJ. VeraM.J. MartínezJ. Araya-MaturanaR. Dubois-CamachoK. HermosoM.A. AlvarengaV.G. SanchezE.F. YarlequéA. OliveiraL.S. UrraF.A. Pictolysin-III, a hemorrhagic type-III Metalloproteinase isolated from Bothrops Pictus (Serpent: Viperidae) venom, reduces mitochondrial respiration and induces cytokine secretion in epithelial and stromal cell lines.Pharmaceutics2023155153310.3390/pharmaceutics1505153337242775
    [Google Scholar]
  42. OliveiraEB GomesDL PalominoGM FariasKJS SilvaWD RochaHAO Bothrops jararaca and bothrops erythromelas snake venoms promote cell cycle arrest and induce apoptosis via the mitochondrial depolarization of cervical cancer cells.Evid. Based Complement Alternat. Med.20162016157497110.1155/2016/1574971
    [Google Scholar]
  43. FrihlingB.E.F. BoletiA.P.A. de OliveiraC.F.R. SanchesS.C. CardosoP.H.O. VerbisckN. MacedoM.L.R. RitaP.H.S. CarvalhoC.M.E. MiglioloL. Purification, characterization and evaluation of the antitumoral activity of a Phospholipase A2 from the snake Bothrops Moojeni. Pharmaceuticals 202215672410.3390/ph1506072435745643
    [Google Scholar]
  44. Aranda-SouzaM.A. RossatoF.A. CostaR.A.P. FigueiraT.R. CastilhoR.F. GuarniereM.C. NunesE.S. CoelhoL.C.B.B. CorreiaM.T.S. VercesiA.E. A lectin from Bothrops leucurus snake venom raises cytosolic calcium levels and promotes B16-F10 melanoma necrotic cell death via mitochondrial permeability transition.Toxicon2014829710310.1016/j.toxicon.2014.02.01824593964
    [Google Scholar]
  45. Costa TorresA.F. DantasR.T. ToyamaM.H. FilhoE.D. ZaraF.J. Rodrigues de QueirozM.G. Pinto NogueiraN.A. Rosa de OliveiraM. de Oliveira ToyamaD. MonteiroH.S.A. MartinsA.M.C. Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: Phospholipase A2 and l-amino acid oxidase.Toxicon201055479580410.1016/j.toxicon.2009.11.01319944711
    [Google Scholar]
  46. da Silva CaldeiraC.A. Diniz-SousaR. PimentaD.C. dos SantosA.P.A. TelesC.B.G. MatosN.B. da SilvaS.L. StabeliR.G. CamperiS.A. SoaresA.M. de Azevedo CalderonL. Antimicrobial peptidomes of Bothrops atrox and Bothrops jararacussu snake venoms.Amino Acids202153101635164810.1007/s00726‑021‑03055‑y34482475
    [Google Scholar]
  47. BarbosaL.G. CostaT.R. BorgesI.P. CostaM.S. CarneiroA.C. BorgesB.C. SilvaM.J.B. AmorimF.G. QuintonL. YoneyamaK.A.G. de Melo RodriguesV. SampaioS.V. RodriguesR.S. A comparative study on the leishmanicidal activity of the L-amino acid oxidases BjussuLAAO-II and BmooLAAO-II isolated from Brazilian Bothrops snake venoms.Int. J. Biol. Macromol.202116726727810.1016/j.ijbiomac.2020.11.14633242552
    [Google Scholar]
  48. KhanS.A. IliesM.A. The Phospholipase A2 superfamily: Structure, isozymes, catalysis, physiologic and pathologic roles.Int. J. Mol. Sci.2023242135310.3390/ijms2402135336674864
    [Google Scholar]
  49. Manjunatha KiniR. Excitement ahead: Structure, function and mechanism of snake venom phospholipase A2 enzymes.Toxicon200342882784010.1016/j.toxicon.2003.11.00215019485
    [Google Scholar]
  50. DennisE.A. Diversity of group types, regulation, and function of phospholipase A2.J. Biol. Chem.199426918130571306010.1016/S0021‑9258(17)36794‑78175726
    [Google Scholar]
  51. MackessyS.P. Handbook of venoms and toxins of reptiles.CRC Press200910.1201/9781420008661
    [Google Scholar]
  52. QuachN.D. ArnoldR.D. CummingsB.S. Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease.Biochem. Pharmacol.201490433834810.1016/j.bcp.2014.05.02224907600
    [Google Scholar]
  53. WardR.J. ChioatoL. de OliveiraA.H.C. RullerR. SáJ.M. Active-site mutagenesis of a Lys49-phospholipase A2: biological and membrane-disrupting activities in the absence of catalysis.Biochem. J.20023621899610.1042/bj362008911829743
    [Google Scholar]
  54. TsaiI.H. WangY.M. ChenY.H. TsaiT.S. TuM.C. Venom phospholipases A2 of bamboo viper (Trimeresurus stejnegeri): Molecular characterization, geographic variations and evidence of multiple ancestries.Biochem. J.2004377121522310.1042/bj2003081812959640
    [Google Scholar]
  55. ChijiwaT. TokunagaE. IkedaR. TeradaK. OgawaT. Oda-UedaN. HattoriS. NozakiM. OhnoM. Discovery of novel [Arg49]phospholipase A2 isozymes from Protobothrops elegans venom and regional evolution of Crotalinae snake venom phospholipase A2 isozymes in the southwestern islands of Japan and Taiwan.Toxicon200648667268210.1016/j.toxicon.2006.06.02116962627
    [Google Scholar]
  56. SchaloskeR.H. DennisE.A. The phospholipase A2 superfamily and its group numbering system.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20061761111246125910.1016/j.bbalip.2006.07.01116973413
    [Google Scholar]
  57. WatanabeL. SoaresA.M. WardR.J. FontesM.R.M. ArniR.K. Structural insights for fatty acid binding in a Lys49-phospholipase A2: crystal structure of myotoxin II from Bothrops moojeni complexed with stearic acid.Biochimie200587216116710.1016/j.biochi.2004.11.00515760708
    [Google Scholar]
  58. MurakamiM.T. ArrudaE.Z. MeloP.A. MartinezA.B. Calil-EliásS. TomazM.A. LomonteB. GutiérrezJ.M. ArniR.K. Inhibition of myotoxic activity of Bothrops asper myotoxin II by the anti-trypanosomal drug suramin.J. Mol. Biol.2005350341642610.1016/j.jmb.2005.04.07215961104
    [Google Scholar]
  59. BorgesR.J. SalvadorG.H.M. CampanelliH.B. PimentaD.C. de Oliveira NetoM. UsónI. FontesM.R.M. BthTX-II from Bothrops jararacussu venom has variants with different oligomeric assemblies: An example of snake venom phospholipases A2 versatility.Int. J. Biol. Macromol.202119125526610.1016/j.ijbiomac.2021.09.08334547312
    [Google Scholar]
  60. BorgesR.J. CardosoF.F. de CarvalhoC. de MarinoI. PereiraP.S. SoaresA.M. Dal-Pai-SilvaM. UsónI. FontesM.R.M. Structural and functional studies of a snake venom phospholipase A2-like protein complexed to an inhibitor from Tabernaemontana catharinensis.Biochimie202320610511510.1016/j.biochi.2022.10.01136273763
    [Google Scholar]
  61. de LimaL.F.G. BorgesR.J. ViviescasM.A. FernandesC.A.H. FontesM.R.M. Structural studies with BnSP-7 reveal an atypical oligomeric conformation compared to phospholipases A2-like toxins.Biochimie2017142112110.1016/j.biochi.2017.07.00928751219
    [Google Scholar]
  62. MurakamiM.T. ViçotiM.M. AbregoJ.R.B. LourenzoniM.R. CintraA.C.O. ArrudaE.Z. TomazM.A. MeloP.A. ArniR.K. Interfacial surface charge and free accessibility to the PLA2-active site-like region are essential requirements for the activity of Lys49 PLA2 homologues.Toxicon200749337838710.1016/j.toxicon.2006.10.01117157889
    [Google Scholar]
  63. VerheijH.M. VolwerkJ.J. JansenE.H.J.M. PuykW.C. DijkstraB.W. DrenthJ. De HaasG.H. Methylation of histidine-48 in pancreatic phospholipase A2. Role of histidine and calcium ion in the catalytic mechanism.Biochemistry198019474375010.1021/bi00545a0217356955
    [Google Scholar]
  64. ScottD.L. WhiteS.P. OtwinowskiZ. YuanW. GelbM.H. SiglerP.B. Interfacial catalysis: The mechanism of phospholipase A2.Science199025049871541154610.1126/science.22747852274785
    [Google Scholar]
  65. LomonteB. MorenoE. TarkowskiA. HansonL.A. MaccaranaM. Neutralizing interaction between heparins and myotoxin II, a lysine 49 phospholipase A2 from Bothrops asper snake venom. Identification of a heparin-binding and cytolytic toxin region by the use of synthetic peptides and molecular modeling.J. Biol. Chem.199426947298672987310.1016/S0021‑9258(18)43961‑07961981
    [Google Scholar]
  66. PáramoL. LomonteB. Pizarro-CerdáJ. BengoecheaJ.A. GorvelJ.P. MorenoE. Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A 2 from Bothrops asper snake venom.Eur. J. Biochem.1998253245246110.1046/j.1432‑1327.1998.2530452.x9654096
    [Google Scholar]
  67. CintraA.C.O. MarangoniS. OliveiraB. GiglioJ.R. Bothropstoxin-I: Amino acid sequence and function.J. Protein Chem.1993121576410.1007/BF010249158427634
    [Google Scholar]
  68. BezerraP.H.A. FerreiraI.M. FranceschiB.T. BianchiniF. AmbrósioL. CintraA.C.O. BthTX-I from Bothrops jararacussu induces apoptosis in human breast cancer cell lines and decreases cancer stem cell subpopulation.JVAT inc Trop Dis.201925e20190010
    [Google Scholar]
  69. KL. M D SS. H MS. y JI. M vP. C M AR. S NS. A ML. M NS. A MS. S SS. J PZ. Action of BjussuMP-II, a snake venom metalloproteinase isolated from Bothrops jararacussu venom, on human neutrophils.Toxicon202322210699210.1016/j.toxicon.2022.10699236493931
    [Google Scholar]
  70. SilvaM.C.S. PereiraS.S. GouveiaM.P. LuizM.B. SousaR.M.O. KayanoA.M. FranciscoA.F. PradoN.D.R. DillL.S.M. FontesM.R.M. ZanchiF.B. StabeliR.G. SoaresA.M. ZulianiJ.P. FernandesC.F.C. Anti-metalloprotease P-I single-domain antibodies: Tools for next-generation snakebite antivenoms.BioMed Res. Int.2022202211710.1155/2022/274896235909472
    [Google Scholar]
  71. ZycharB.C. ClissaP.B. CarvalhoE. AlvesA.S. BaldoC. Faquim-MauroE.L. GonçalvesL.R.C. Modulation of adhesion molecules expression by different metalloproteases isolated from Bothrops Snakes.Toxins 2021131180310.3390/toxins1311080334822587
    [Google Scholar]
  72. BhatS.K. JoshiM.B. VasishtaS. JagadaleR.N. BiligiriS.G. CoronadoM.A. P-I metalloproteinases and L-amino acid oxidases from Bothrops species inhibit angiogenesis.J. Venom Anim. Toxins Incl. Trop. Dis.202127e20200180
    [Google Scholar]
  73. OlaobaO.T. Karina dos SantosP. Selistre-de-AraujoH.S. Ferreira de SouzaD.H. Snake venom metalloproteinases (SVMPs): A structure-function update.Toxicon X2020710005210.1016/j.toxcx.2020.10005232776002
    [Google Scholar]
  74. OliveiraL.S. Estevão-CostaM.I. AlvarengaV.G. Vivas-RuizD.E. YarlequeA. LimaA.M. CavacoA. EbleJ.A. SanchezE.F. Atroxlysin-III, A metalloproteinase from the venom of the peruvian pit viper snake Bothrops atrox (Jergón) induces glycoprotein vi shedding and impairs platelet function.Molecules20192419348910.3390/molecules2419348931561469
    [Google Scholar]
  75. AlmeidaG de O. Snake venom disintegrins update: insights about new findings.J. Venom Anim. Toxins Incl. Trop. Dis.202329e20230039
    [Google Scholar]
  76. FerreiraB.A. DeconteS.R. de MouraF.B.R. TomiossoT.C. ClissaP.B. AndradeS.P. AraújoF.A. Inflammation, angiogenesis and fibrogenesis are differentially modulated by distinct domains of the snake venom metalloproteinase jararhagin.Int. J. Biol. Macromol.20181191179118710.1016/j.ijbiomac.2018.08.05130102981
    [Google Scholar]
  77. LayfieldH.J. WilliamsH.F. RavishankarD. MehmiA. SonavaneM. SalimA. VaiyapuriR. LakshminarayananK. VallanceT.M. BicknellA.B. TrimS.A. PatelK. VaiyapuriS. Repurposing cancer drugs batimastat and marimastat to inhibit the activity of a group I metalloprotease from the venom of the western diamondback rattlesnake, Crotalus atrox. Toxins 202012530910.3390/toxins1205030932397419
    [Google Scholar]
  78. SalvadorG.H.M. BorgesR.J. EulálioM.M.C. dos SantosL.D. FontesM.R.M. Biochemical, pharmacological and structural characterization of BmooMP-I, a new P–I metalloproteinase from Bothrops moojeni venom.Biochimie2020179546410.1016/j.biochi.2020.09.00132946987
    [Google Scholar]
  79. AkaoP.K. TonoliC.C.C. NavarroM.S. CintraA.C.O. NetoJ.R. ArniR.K. MurakamiM.T. Structural studies of BmooMPα-I, a non-hemorrhagic metalloproteinase from Bothrops moojeni venom.Toxicon2010552-336136810.1016/j.toxicon.2009.08.01319706302
    [Google Scholar]
  80. LingottT. SchlebergerC. GutiérrezJ.M. MerfortI. High-resolution crystal structure of the snake venom metalloproteinase BaP1 complexed with a peptidomimetic: Insight into inhibitor binding.Biochemistry200948266166617410.1021/bi900231519485419
    [Google Scholar]
  81. WatanabeL. ShannonJ.D. ValenteR.H. RucavadoA. Alape-GirónA. KamigutiA.S. TheakstonR.D.G. FoxJ.W. GutiérrezJ.M. ArniR.K. Amino acid sequence and crystal structure of BaP1, a metalloproteinase from Bothrops asper snake venom that exerts multiple tissue-damaging activities.Protein Sci.200312102273228110.1110/ps.0310240314500885
    [Google Scholar]
  82. AinsworthS. SlagboomJ. AlomranN. PlaD. AlhamdiY. KingS.I. BoltonF.M.S. GutiérrezJ.M. VonkF.J. TohC.H. CalveteJ.J. KoolJ. HarrisonR.A. CasewellN.R. The paraspecific neutralisation of snake venom induced coagulopathy by antivenoms.Commun. Biol.2018113410.1038/s42003‑018‑0039‑130271920
    [Google Scholar]
  83. OliveiraA.L. ViegasM.F. da SilvaS.L. SoaresA.M. RamosM.J. FernandesP.A. The chemistry of snake venom and its medicinal potential.Nat. Rev. Chem.20226745146910.1038/s41570‑022‑00393‑7
    [Google Scholar]
  84. TasoulisT. IsbisterG.K. A current perspective on snake venom composition and constituent protein families.Arch. Toxicol.202397113315310.1007/s00204‑022‑03420‑036437303
    [Google Scholar]
  85. BhatS.K. JoshiM.B. UllahA. MasoodR. BiligiriS.G. ArniR.K. SatyamoorthyK. Serine proteinases from Bothrops snake venom activates PI3K/Akt mediated angiogenesis.Toxicon2016124637210.1016/j.toxicon.2016.11.00127816537
    [Google Scholar]
  86. KuniyoshiA.K. KodamaR.T. Cajado-CarvalhoD. IwaiL.K. KitanoE. da SilvaC.C.F. DuzziB. Dias da SilvaW. PortaroF.C. Experimental antivenom against serine proteases from the Bothrops jararaca venom obtained in mice, and its comparison with the antibothropic serum from the Butantan Institute.Toxicon2019169596710.1016/j.toxicon.2019.09.00131494207
    [Google Scholar]
  87. HersI. VincentE.E. TavaréJ.M. Akt signalling in health and disease.Cell. Signal.201123101515152710.1016/j.cellsig.2011.05.00421620960
    [Google Scholar]
  88. Boldrini-FrançaJ. Pinheiro-JuniorE.L. PeigneurS. PuccaM.B. CerniF.A. BorgesR.J. CostaT.R. CaroneS.E.I. FontesM.R.M. SampaioS.V. ArantesE.C. TytgatJ. Beyond hemostasis: A snake venom serine protease with potassium channel blocking and potential antitumor activities.Sci. Rep.2020101447610.1038/s41598‑020‑61258‑x32161292
    [Google Scholar]
  89. UllahA. MasoodR. AliI. UllahK. AliH. AkbarH. BetzelC. Thrombin-like enzymes from snake venom: Structural characterization and mechanism of action.Int. J. Biol. Macromol.201811478881110.1016/j.ijbiomac.2018.03.16429604354
    [Google Scholar]
  90. CastroH.C. ZingaliR.B. AlbuquerqueM.G. Pujol-LuzM. RodriguesC.R. Snake venom thrombin-like enzymes: From reptilase to now.Cell. Mol. Life Sci.2004617-884385610.1007/s00018‑003‑3325‑z15095007
    [Google Scholar]
  91. Sant’ AnaC.D. TicliF.K. OliveiraL.L. GiglioJ.R. RechiaC.G.V. FulyA.L. Selistre de AraújoH.S. FrancoJ.J. StabeliR.G. SoaresA.M. SampaioS.V. BjussuSP-I: A new thrombin-like enzyme isolated from Bothrops jararacussu snake venom.Comp. Biochem. Physiol. A Mol. Integr. Physiol.2008151344345410.1016/j.cbpa.2007.02.03617466550
    [Google Scholar]
  92. UllahA. SouzaT.A.C.B. ZanphorlinL.M. MariuttiR.B. SantanaV.S. MurakamiM.T. ArniR.K. Crystal structure of Jararacussin-I: The highly negatively charged catalytic interface contributes to macromolecular selectivity in snake venom thrombin-like enzymes.Protein Sci.201322112813210.1002/pro.218923139169
    [Google Scholar]
  93. SerranoS.M.T. The long road of research on snake venom serine proteinases.Toxicon201362192610.1016/j.toxicon.2012.09.00323010164
    [Google Scholar]
  94. GaviraJ.A. Current trends in protein crystallization.Arch. Biochem. Biophys.201660231110.1016/j.abb.2015.12.01026747744
    [Google Scholar]
  95. SrivastavaA. NagaiT. SrivastavaA. MiyashitaO. TamaF. Role of computational methods in going beyond X-ray crystallography to explore protein structure and dynamics.Int. J. Mol. Sci.20181911340110.3390/ijms1911340130380757
    [Google Scholar]
  96. AhmadE. FatimaM.T. HoqueM. OwaisM. SaleemuddinM. Fibrin matrices: The versatile therapeutic delivery systems.Int. J. Biol. Macromol.20158112113610.1016/j.ijbiomac.2015.07.05426231328
    [Google Scholar]
  97. StockerK. FischerH. MeierJ. Thrombin-like snake venom proteinases.Toxicon198220126527310.1016/0041‑0101(82)90225‑27043783
    [Google Scholar]
  98. Sant’AnaC.D. BernardesC.P. IzidoroL.F.M. MazziM.V. SoaresS.G. FulyA.L. ZingaliR.B. MagroA.J. BrazA.S.K. FontesM.R.M. StábeliR.G. SampaioS.V. SoaresA.M. Molecular characterization of BjussuSP-I, a new thrombin-like enzyme with procoagulant and kallikrein-like activity isolated from Bothrops jararacussu snake venom.Biochimie200890350050710.1016/j.biochi.2007.10.00517996740
    [Google Scholar]
  99. TanK.K. BayB.H. GopalakrishnakoneP. L-amino acid oxidase from snake venom and its anticancer potential.Toxicon201814471310.1016/j.toxicon.2018.01.01529407871
    [Google Scholar]
  100. FelicianoP.R. RustiguelJ.K. SoaresR.O.S. SampaioS.V. Cristina NonatoM. Crystal structure and molecular dynamics studies of L-amino acid oxidase from Bothrops atrox. Toxicon2017128505910.1016/j.toxicon.2017.01.01728137621
    [Google Scholar]
  101. NikodijevićD.D. JovankićJ.V. CvetkovićD.M. AnđelkovićM.Z. NikezićA.G. MilutinovićM.G. L-amino acid oxidase from snake venom: Biotransformation and induction of apoptosis in human colon cancer cells.Eur. J. Pharmacol.202191017446610.1016/j.ejphar.2021.17446634481879
    [Google Scholar]
  102. Costal-OliveiraF. StranskyS. Guerra-DuarteC. Naves de SouzaD.L. Vivas-RuizD.E. YarlequéA. SanchezE.F. Chávez-OlórteguiC. BragaV.M.M. L-amino acid oxidase from Bothrops atrox snake venom triggers autophagy, apoptosis and necrosis in normal human keratinocytes.Sci. Rep.20199178110.1038/s41598‑018‑37435‑430692577
    [Google Scholar]
  103. de Melo FernandesT.A. TeixeiraS.C. CostaT.R. RosiniA.M. de SouzaG. PolloniL. BarbosaB.F. SilvaM.J.B. FerroE.A.V. ÁvilaV.M.R. BjussuLAAO-II, an l-amino acid oxidase from Bothrops jararacussu snake venom, impairs Toxoplasma gondii infection in human trophoblast cells and villous explants from the third trimester of pregnancy.Microbes Infect.202325610512310.1016/j.micinf.2023.10512336870599
    [Google Scholar]
  104. OkuboB.M. SilvaO.N. MiglioloL. GomesD.G. PortoW.F. BatistaC.L. RamosC.S. HolandaH.H.S. DiasS.C. FrancoO.L. MorenoS.E. Evaluation of an antimicrobial L-amino acid oxidase and peptide derivatives from Bothropoides mattogrosensis pitviper venom.PLoS One201273e3363910.1371/journal.pone.003363922438972
    [Google Scholar]
  105. DeolindoP. Teixeira-FerreiraA.S. DaMattaR.A. AlvesE.W. l-Amino acid oxidase activity present in fractions of Bothrops jararaca venom is responsible for the induction of programmed cell death in Trypanosoma cruzi. Toxicon201056694495510.1016/j.toxicon.2010.06.01920615423
    [Google Scholar]
  106. BernardesC.P. MenaldoD.L. ZoccalK.F. Boldrini-FrançaJ. PeigneurS. ArantesE.C. RosaJ.C. FaccioliL.H. TytgatJ. SampaioS.V. First report on BaltCRP, a cysteine-rich secretory protein (CRISP) from Bothrops alternatus venom: Effects on potassium channels and inflammatory processes.Int. J. Biol. Macromol.201914055656710.1016/j.ijbiomac.2019.08.10831419561
    [Google Scholar]
  107. RobertsK.P. EnsrudK.M. WootersJ.L. NolanM.A. JohnstonD.S. HamiltonD.W. Epididymal secreted protein Crisp-1 and sperm function.Mol. Cell. Endocrinol.20062501-212212710.1016/j.mce.2005.12.03416414181
    [Google Scholar]
  108. ReyesA. HatcherJ.D. SalazarE. GalanJ. IliukA. SanchezE.E. SuntravatM. Proteomic profiling of extracellular vesicles isolated from plasma and peritoneal exudate in mice induced by Crotalus scutulatus scutulatus crude venom and its purified cysteine-rich secretory protein (Css-CRiSP).Toxins 202315743410.3390/toxins1507043437505703
    [Google Scholar]
  109. BarthT. MandacaruS.C. CharneauS. SouzaM.V. RicartC.A.O. NoronhaE.F. SouzaA.A. FreitasS.M. RoepstorffP. FontesW. CastroM.S. Pires JúniorO.R. Biochemical and structural characterization of a protein complex containing a hyaluronidase and a CRISP-like protein isolated from the venom of the spider Acanthoscurria natalensis. J. Proteomics201919210211310.1016/j.jprot.2018.08.01230165259
    [Google Scholar]
  110. LodovichoM.E. CostaT.R. BernardesC.P. MenaldoD.L. ZoccalK.F. CaroneS.E. RosaJ.C. PuccaM.B. CerniF.A. ArantesE.C. TytgatJ. FaccioliL.H. Pereira-CrottL.S. SampaioS.V. Investigating possible biological targets of Bj-CRP, the first cysteine-rich secretory protein (CRISP) isolated from Bothrops jararaca snake venom.Toxicol. Lett.201726515616910.1016/j.toxlet.2016.12.00327932254
    [Google Scholar]
  111. Moura-da-SilvaA.M. Contreras-BernalJ.C. Cirilo GimenesS.N. Freitas-de-SousaL.A. Portes-JuniorJ.A. da Silva PeixotoP. Kei IwaiL. Mourão de MouraV. Ferreira BisnetoP. LacerdaM. Mendonça da SilvaI. de Lima FerreiraL.C. Silva de OliveiraS. Hui WenF. de Almeida Gonçalves SachettJ. MonteiroW.M. The relationship between clinics and the venom of the causative Amazon pit viper (Bothrops atrox).PLoS Negl. Trop. Dis.2020146e000829910.1371/journal.pntd.000829932511239
    [Google Scholar]
  112. AokiN. SakiyamaA. KurokiK. MaenakaK. KohdaD. DeshimaruM. TeradaS. Serotriflin, a CRISP family protein with binding affinity for small serum protein-2 in snake serum.Biochim. Biophys. Acta. Proteins Proteomics20081784462162810.1016/j.bbapap.2007.12.01018222185
    [Google Scholar]
  113. ShikamotoY. SutoK. YamazakiY. MoritaT. MizunoH. Crystal structure of a CRISP family Ca2+ -channel blocker derived from snake venom.J. Mol. Biol.2005350473574310.1016/j.jmb.2005.05.02015953617
    [Google Scholar]
  114. ShioiN. TadokoroT. ShioiS. OkabeY. MatsubaraH. KitaS. OseT. KurokiK. TeradaS. MaenakaK. Crystal structure of the complex between venom toxin and serum inhibitor from Viperidae snake.J. Biol. Chem.201929441250125610.1074/jbc.RA118.00684030504218
    [Google Scholar]
  115. DavidV. WermelingerL.S. FrattaniF.S. LimaA.G.F. SantosY.F.S. MourãoP.A.S. AlmeidaF.C.L. KurtenbachE. ZingaliR.B. rJararacin, a recombinant disintegrin from Bothrops jararaca venom: Exploring its effects on hemostasis and thrombosis.Arch. Biochem. Biophys.202373810955710.1016/j.abb.2023.10955736878339
    [Google Scholar]
  116. RamosO.H.P. Selistre-de-AraujoH.S. Snake venom metalloproteases — Structure and function of catalytic and disintegrin domains.Comp. Biochem. Physiol. C Toxicol. Pharmacol.20061423-432834610.1016/j.cbpc.2005.11.00516434235
    [Google Scholar]
  117. MenezesM.C. Paes LemeA.F. MeloR.L. SilvaC.A. Della CasaM. BruniF.M. LimaC. Lopes-FerreiraM. CamargoA.C.M. FoxJ.W. SerranoS.M.T. Activation of leukocyte rolling by the cysteine-rich domain and the hyper-variable region of HF3, a snake venom hemorrhagic metalloproteinase.FEBS Lett.2008582283915392110.1016/j.febslet.2008.10.03418977230
    [Google Scholar]
  118. VasconcelosA.A. EstradaJ.C. DavidV. WermelingerL.S. AlmeidaF.C.L. ZingaliR.B. Structure-function relationship of the disintegrin family: Sequence signature and integrin interaction.Front. Mol. Biosci.2021878330110.3389/fmolb.2021.78330134926583
    [Google Scholar]
  119. DavidV. SuccarB.B. De MoraesJ.A. Saldanha-GamaR.F.G. Barja-FidalgoC. ZingaliR.B. Recombinant and chimeric disintegrins in preclinical research.Toxins 201810832110.3390/toxins1008032130087285
    [Google Scholar]
  120. MorjenM. ZakraouiO. Abdelkafi-KoubaaZ. Srairi-AbidN. MarrakchiN. Essafi-BenkhadirK. JebaliJ. CC5 and CC8, two disintegrin isoforms from Cerastes cerastes snake venom decreased inflammation response in vitro and in vivo. Int. J. Mol. Sci.202324151242710.3390/ijms24151242737569801
    [Google Scholar]
  121. FujiiY. OkudaD. FujimotoZ. HoriiK. MoritaT. MizunoH. Crystal structure of trimestatin, a disintegrin containing a cell adhesion recognition motif RGD.J. Mol. Biol.200333251115112210.1016/S0022‑2836(03)00991‑414499613
    [Google Scholar]
  122. VasconcelosA.A. EstradaJ.C. CarusoI.P. KurtenbachE. ZingaliR.B. AlmeidaF.C.L. Toward the mechanism of jarastatin (rJast) inhibition of the integrin αVβ3.Int. J. Biol. Macromol.202425512807810.1016/j.ijbiomac.2023.12807837972836
    [Google Scholar]
  123. MoritaT. Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities.Toxicon20054581099111410.1016/j.toxicon.2005.02.02115922777
    [Google Scholar]
  124. PereiraD.F.C. Matias RibeiroM.S. de Sousa SimamotoB.B. DiasE.H.V. CostaJ.O. Santos-FilhoN.A. BordonK.C.F. ArantesE.C. DantasN.O. SilvaA.C.A. de OliveiraF. MamedeC.C.N. Baltetin: A new C-type lectin-like isolated from Bothrops alternatus snake venom which act as a platelet aggregation inhibiting.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2021117312269510.1016/j.jchromb.2021.12269533915386
    [Google Scholar]
  125. BruserudØ. The snake venom rhodocytin from Calloselasma rhodostoma- a clinically important toxin and a useful experimental tool for studies of C-type lectin-like receptor 2 (CLEC-2).Toxins 20135466567410.3390/toxins504066523594438
    [Google Scholar]
  126. SenU. VasudevanS. SubbaraoG. McClintockR.A. CelikelR. RuggeriZ.M. VarugheseK.I. Crystal structure of the von Willebrand factor modulator botrocetin.Biochemistry200140234535210.1021/bi002173711148028
    [Google Scholar]
  127. SuzukiN. FujimotoZ. MoritaT. FukamizuA. MizunoH. pH-Dependent structural changes at Ca(2+)-binding sites of coagulation factor IX-binding protein.J. Mol. Biol.20053531808710.1016/j.jmb.2005.08.01816165155
    [Google Scholar]
  128. MizunoH. FujimotoZ. KoizumiM. KanoH. AtodaH. MoritaT. Structure of coagulation factors IX/X-binding protein, a heterodimer of C-type lectin domains.Nat. Struct. Biol.19974643844110.1038/nsb0697‑4389187649
    [Google Scholar]
  129. ShikamotoY. MoritaT. FujimotoZ. MizunoH. Crystal structure of Mg2+- and Ca2+-bound Gla domain of factor IX complexed with binding protein.J. Biol. Chem.200327826240902409410.1074/jbc.M30065020012695512
    [Google Scholar]
  130. FukudaK. MizunoH. AtodaH. MoritaT. Crystal structure of flavocetin-A, a platelet glycoprotein Ib-binding protein, reveals a novel cyclic tetramer of C-type lectin-like heterodimers.Biochemistry20003981915192310.1021/bi992134z10684640
    [Google Scholar]
  131. KohC.Y. KiniR.M. From snake venom toxins to therapeutics – Cardiovascular examples.Toxicon201259449750610.1016/j.toxicon.2011.03.01721447352
    [Google Scholar]
  132. FerreiraS.H. GreeneL.J. AlabasterV.A. BakhleY.S. VaneJ.R. Activity of various fractions of bradykinin potentiating factor against angiotensin I converting enzyme.Nature1970225523037938010.1038/225379a04312128
    [Google Scholar]
  133. HerzigV. Cristofori-ArmstrongB. IsraelM.R. NixonS.A. VetterI. KingG.F. Animal toxins — Nature’s evolutionary-refined toolkit for basic research and drug discovery.Biochem. Pharmacol.202018111409610.1016/j.bcp.2020.11409632535105
    [Google Scholar]
  134. BordonK.C.F. ColognaC.T. Fornari-BaldoE.C. Pinheiro-JúniorE.L. CerniF.A. AmorimF.G. AnjoletteF.A.P. CordeiroF.A. WiezelG.A. CardosoI.A. FerreiraI.G. OliveiraI.S. Boldrini-FrançaJ. PuccaM.B. BaldoM.A. ArantesE.C. From animal poisons and venoms to medicines: Achievements, challenges and perspectives in drug discovery.Front. Pharmacol.202011113210.3389/fphar.2020.0113232848750
    [Google Scholar]
  135. MasudaH. SatoA. ShizunoT. YokoyamaK. SuzukiY. TokunagaM. AsaharaT. Batroxobin accelerated tissue repair via neutrophil extracellular trap regulation and defibrinogenation in a murine ischemic hindlimb model.PLoS One2019148e022089810.1371/journal.pone.022089831419236
    [Google Scholar]
  136. SachettoA.T.A. MackmanN. Modulation of the mammalian coagulation system by venoms and other proteins from snakes, arthropods, nematodes and insects.Thromb. Res.201917814515410.1016/j.thromres.2019.04.01931030034
    [Google Scholar]
  137. TasimaL.J. Serino-SilvaC. HatakeyamaD.M. NishidukaE.S. TashimaA.K. Sant’AnnaS.S. Crotamine in Crotalus durissus: distribution according to subspecies and geographic origin, in captivity or nature.J Venom Anim Toxins Incl Trop Dis.202026e20190053
    [Google Scholar]
  138. MoreiraL.A. OliveiraL.P. MagalhãesM.R. OliveiraS.A.M. Oliveira-NetoJ.R. CarvalhoP.M.G. CarvalhoA.A.V. FajemiroyeJ.O. CruzA.C. CunhaL.C. Acute toxicity, antinociceptive, and anti-inflammatory activities of the orally administered crotamine in mice.Naunyn Schmiedebergs Arch. Pharmacol.202139481703171110.1007/s00210‑021‑02103‑434014349
    [Google Scholar]
  139. HayashiM.A.F. NascimentoF.D. KerkisA. OliveiraV. OliveiraE.B. PereiraA. Rádis-BaptistaG. NaderH.B. YamaneT. KerkisI. TersariolI.L.S. Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization.Toxicon200852350851710.1016/j.toxicon.2008.06.02918662711
    [Google Scholar]
  140. WarrellD.A. Venomous bites, stings, and poisoning.Infect. Dis. Clin. North Am.2019331173810.1016/j.idc.2018.10.00130712761
    [Google Scholar]
  141. HifumiT. SakaiA. KondoY. YamamotoA. MorineN. AtoM. ShibayamaK. UmezawaK. KiriuN. KatoH. KoidoY. InoueJ. KawakitaK. KurodaY. Venomous snake bites: Clinical diagnosis and treatment.J. Intensive Care2015311610.1186/s40560‑015‑0081‑825866646
    [Google Scholar]
  142. ChippauxJ.P. WilliamsV. WhiteJ. Snake venom variability: Methods of study, results and interpretation.Toxicon199129111279130310.1016/0041‑0101(91)90116‑91814005
    [Google Scholar]
  143. AlangodeA. RajanK. NairB.G. Snake antivenom: Challenges and alternate approaches.Biochem. Pharmacol.202018111413510.1016/j.bcp.2020.11413532628928
    [Google Scholar]
  144. WarrellD.A. Snake bite.Lancet20103759708778810.1016/S0140‑6736(09)61754‑220109866
    [Google Scholar]
  145. Progress in the characterization of venoms and standardization of antivenoms.1981Available from: https://iris.who.int/handle/10665/37282
  146. LundquistA.L. ChariR.S. WoodJ.H. MillerG.G. SchaeferH.M. RaifordD.S. WrightK.J. GordenD.L. Serum sickness following rabbit antithymocyte-globulin induction in a liver transplant recipient: Case report and literature review.Liver Transpl.200713564765010.1002/lt.2109817377915
    [Google Scholar]
  147. IcmeF AvciA YilmazN UrfalıogluAB AvciBS YesilogluO The role of procalcitonin in predicting necessity of antivenom administration and clinical severity in snake bites.Tohoku J. Exp. Med.2022257429129910.1620/tjem.2022.J037
    [Google Scholar]
  148. SoaresF.G.S. IbiapinaH.N. SartimM.A. Mendonça-da-SilvaI. NascimentoE.F. FerreiraL.C.L. CerniF.A. MalheiroA. PuccaM.B. WenF.H. Maria Moura-da-SilvaA. CostaA.G. MonteiroW.M. SachettJ.A.G. Lower levels of CXCL-8 and IL-2 on admission as predictors of early adverse reactions to Bothrops antivenom in the Brazilian Amazon.Cytokine202215215582510.1016/j.cyto.2022.15582535168182
    [Google Scholar]
  149. LauriaP.S.S. Maia-MarquesR. OliveiraR. NunesV.L.C. Casais-e-SilvaL.L. Effects of photobiomodulation therapy on the local experimental envenoming by Bothrops leucurus snake.J. Photochem. Photobiol. B202121411208710.1016/j.jphotobiol.2020.11208733234463
    [Google Scholar]
  150. LiaqatA. MallhiT.H. KhanY.H. KhokharA. ChamanS. AliM. Anti-snake venom property of medicinal plants: A comprehensive review of literature.Braz. J. Pharm. Sci.202258e19112410.1590/s2175‑97902022e191124
    [Google Scholar]
  151. PereiraB.M.R. DarosM.R. ParenteJ.P. MatosF.J.A. Bredemeyeroside D, a novel triterpenoid saponin from Bredemeyera jloribunda: A potent snake venom antidote activity on mice.Phytother. Res.199610866666910.1002/(SICI)1099‑1573(199612)10:8<666::AID‑PTR937>3.0.CO;2‑H
    [Google Scholar]
  152. AlvesN.T.Q. XimenesR.M. JorgeR.J.B. SilveiraJ.A.M. SantosJ.V.A. RodriguesF.A.P. CostaP.H.S. XavierF.A.F.Jr EvangelistaJ.S.A.M. HavtA. SoaresV.C.G. ToyamaM.H. OliveiraA.N.A. AraújoR.M. AlvesR.S. MonteiroH.S.A. Anti-ophidian activity of Bredemeyera floribunda Willd. (Polygalaceae) root extract on the local effects induced by Bothrops jararacussu venom.Braz. J. Med. Biol. Res.2019521e758110.1590/1414‑431x2018758130517287
    [Google Scholar]
  153. GuptaY.K. PeshinS.S. Do herbal medicines have potential for managing snake bite envenomation?Toxicol. Int.2012192899910.4103/0971‑6580.9719422778503
    [Google Scholar]
  154. FernandesF.F.A. TomazM.A. El-KikC.Z. Monteiro-MachadoM. StrauchM.A. ConsB.L. Tavares-HenriquesM.S. CintraA.C.O. FacundoV.A. MeloP.A. Counteraction of Bothrops snake venoms by Combretum leprosum root extract and arjunolic acid.J. Ethnopharmacol.2014155155256210.1016/j.jep.2014.05.05624952279
    [Google Scholar]
  155. AssafimM. FerreiraM.S. FrattaniF.S. GuimarãesJ.A. MonteiroR.Q. ZingaliR.B. Counteracting effect of glycyrrhizin on the hemostatic abnormalities induced by Bothrops jararaca snake venom.Br. J. Pharmacol.2006148680781310.1038/sj.bjp.070678616751793
    [Google Scholar]
  156. de MouraV.M. da SilvaW.C.R. RaposoJ.D.A. Freitas-de-SousaL.A. Dos-SantosM.C. de OliveiraR.B. Veras MourãoR.H. The inhibitory potential of the condensed-tannin-rich fraction of Plathymenia reticulata Benth. (Fabaceae) against Bothrops atrox envenomation.J. Ethnopharmacol.201618313614210.1016/j.jep.2016.02.04726940901
    [Google Scholar]
  157. Simas Pereira JuniorL.C. SouzaJ.F. Rodrigues da SilvaA.C. Coriolano de OliveiraE. SanchezE.F. FulyA.L. Utilization of gallic acid to inhibit some toxic activities caused by Bothrops jararaca or B. jararacussu snake venoms.Toxicon202221751210.1016/j.toxicon.2022.07.00935931224
    [Google Scholar]
  158. GomesA. GhoshS. SenguptaJ. SahaK. GomesA. Nanotechnology in snake venom research—An overview.Indian J. Exp. Biol.20185610707715
    [Google Scholar]
  159. OfforB.C. PiaterL.A. Snake venom toxins: Potential anticancer therapeutics.J. Appl. Toxicol.202444566668510.1002/jat.454437697914
    [Google Scholar]
  160. MadedduF. Di MartinoJ. PieroniM. Del BuonoD. BottoniP. BottaL. CastrignanòT. SaladinoR. Molecular docking and dynamics simulation revealed the potential inhibitory activity of new drugs against human topoisomerase I receptor.Int. J. Mol. Sci.202223231465210.3390/ijms23231465236498979
    [Google Scholar]
  161. MartoranaA. La MonicaG. BonoA. ManninoS. BuscemiS. Palumbo PiccionelloA. GentileC. LauriaA. PeriD. Antiproliferative activity predictor: A new reliable in silico tool for drug response prediction against NCI60 panel.Int. J. Mol. Sci.202223221437410.3390/ijms23221437436430850
    [Google Scholar]
  162. QinL. KuaiJ. YangF. YangL. SunP. ZhangL. LiG. Selected by bioinformatics and molecular docking analysis, Dhea and 2–14,15-Eg are effective against cholangiocarcinoma.PLoS One2022172e026018010.1371/journal.pone.026018035113866
    [Google Scholar]
  163. NarykovO. ZhuY. BrettinT. EvrardY.A. PartinA. ShuklaM. XiaF. ClydeA. VasanthakumariP. DoroshowJ.H. StevensR.L. Integration of computational docking into anti-cancer drug response prediction models.Cancers 20231615010.3390/cancers1601005038201477
    [Google Scholar]
  164. AysaN.H. AzizS.W. Al-AssalyR. Novel in silico nano-drug design and delivery systems employing the density functional theory: A review.Rev. Clin. Pharmacol. Pharmacokinet202438Sup219319610.61873/FGXZ4557
    [Google Scholar]
  165. MoffattS. Convergence of nanoinformatics nanobiotechnology and bioinformatics.MOJ Proteom Bioinform20152619319510.15406/mojpb.2015.02.00068
    [Google Scholar]
  166. OuW. StewartS. WhiteA. KwizeraE.A. XuJ. FangY. ShamulJ.G. XieC. NurudeenS. TiradaN.P. LuX. TkaczukK.H.R. HeX. In-situ cryo-immune engineering of tumor microenvironment with cold-responsive nanotechnology for cancer immunotherapy.Nat. Commun.202314139210.1038/s41467‑023‑36045‑736693842
    [Google Scholar]
  167. KoyandeN.P. SrivastavaR. PadmakumarA. RenganA.K. Advances in nanotechnology for cancer immunoprevention and immunotherapy: A review.Vaccines 20221010172710.3390/vaccines1010172736298592
    [Google Scholar]
  168. RajS. KhuranaS. ChoudhariR. KesariK.K. KamalM.A. GargN. RuokolainenJ. DasB.C. KumarD. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy.Semin. Cancer Biol.20216916617710.1016/j.semcancer.2019.11.00231715247
    [Google Scholar]
  169. TilsedC.M. FisherS.A. NowakA.K. LakeR.A. LesterhuisW.J. Cancer chemotherapy: Insights into cellular and tumor microenvironmental mechanisms of action.Front. Oncol.20221296031710.3389/fonc.2022.96031735965519
    [Google Scholar]
  170. MohammadpourdounighiN. BehfarA. EzabadiA. ZolfagharianH. HeydariM. Preparation of chitosan nanoparticles containing Naja naja oxiana snake venom.Nanomedicine20106113714310.1016/j.nano.2009.06.00219616121
    [Google Scholar]
  171. KanchaM.M. MehrabiM. BitarafF.S. VahediH. AlizadehM. Bernkop-SchnürchA. Preparation, characterization, and anticancer activity assessment of chitosan/TPP nanoparticles loaded with Echis carinatus venom.Anticancer. Agents Med. Chem.202424753354310.2174/011871520627973123112910522138243949
    [Google Scholar]
  172. KazzazJ. NeidlemanJ. SinghM. OttG. O’HaganD.T. Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T lymphocytes against recombinant p55 gag from HIV-1.J. Control. Release2000672-334735610.1016/S0168‑3659(00)00226‑110825566
    [Google Scholar]
  173. CuiZ. MumperR.J. Coating of cationized protein on engineered nanoparticles results in enhanced immune responses.Int. J. Pharm.20022381-222923910.1016/S0378‑5173(02)00079‑011996826
    [Google Scholar]
  174. ZhouS. DengX. YangH. Biodegradable poly(ε-caprolactone)-poly(ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system.Biomaterials200324203563357010.1016/S0142‑9612(03)00207‑212809785
    [Google Scholar]
  175. Ataman-ÖnalY. MunierS. GanéeA. TerratC. DurandP.Y. BattailN. MartinonF. Le GrandR. CharlesM.H. DelairT. VerrierB. Surfactant-free anionic PLA nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models.J. Control. Release2006112217518510.1016/j.jconrel.2006.02.00616563545
    [Google Scholar]
  176. OliveiraI.C.F. de PaulaM.O. LastraH.C.B. AlvesB.B. MorenoD.A.N. YoshidaE.H. Amaral FilhoJ. CogoJ.C. VarandaE.A. RaiM. SantosC.A. Oshima-FrancoY. Activity of silver nanoparticles on prokaryotic cells and Bothrops jararacussu snake venom.Drug Chem. Toxicol.2019421606410.1080/01480545.2018.147885029961355
    [Google Scholar]
  177. DingS. SerraC.A. VandammeT.F. YuW. AntonN. Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective.J. Control. Release2019295314910.1016/j.jconrel.2018.12.03730579983
    [Google Scholar]
  178. IqbalM. ZafarN. FessiH. ElaissariA. Double emulsion solvent evaporation techniques used for drug encapsulation.Int. J. Pharm.2015496217319010.1016/j.ijpharm.2015.10.05726522982
    [Google Scholar]
  179. SonmezlerD. SumnuG. SahinS. Encapsulation of olive leaf extract using double emulsion method.Phys. Fluids202335808311810.1063/5.0159145
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501352925250225045555
Loading
/content/journals/cdt/10.2174/0113894501352925250225045555
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test