Skip to content
2000
image of Mitochondrial Dysfunction in Neurodegenerative Disorders: Role of Prototype Targeted Drug Delivery Solutions

Abstract

Mitochondrial dysfunction plays a central role in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS). Targeted drug delivery to mitochondria represents a promising therapeutic strategy to mitigate neuronal degeneration and preserve mitochondrial function in these devastating conditions. This review provides a comprehensive overview of recent advances in targeted drug delivery solutions for mitochondrial dysfunction in neurodegenerative disorders. The mechanisms underlying mitochondrial dysfunction in AD, PD, HD, and ALS are explored, highlighting the specific challenges and opportunities for therapeutic intervention. Emerging drug delivery technologies are discussed, including mitochondria-responsive systems, nanoparticles, peptides, and viral vectors, designed to deliver therapeutic agents directly to mitochondria along with suitable case studies. Furthermore, preclinical and clinical studies evaluating the efficacy and safety of mitochondria-targeted therapeutics are reviewed, and future directions and challenges in the field are outlined. By elucidating the intersection of mitochondrial biology and drug delivery, this review aims to inspire further research and innovation toward effective treatments for neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/cds/10.2174/0115748863375490250626163609
2025-07-11
2025-09-14
Loading full text...

Full text loading...

References

  1. Dhapola R. Sarma P. Medhi B. Prakash A. Reddy D.H. Recent advances in molecular pathways and therapeutic implications targeting mitochondrial dysfunction for Alzheimer’s disease. Mol. Neurobiol. 2022 59 1 535 555 10.1007/s12035‑021‑02612‑6 34725778
    [Google Scholar]
  2. Chaturvedi R.K. Beal M.F. Mitochondrial approaches for neuroprotection. Ann. N. Y. Acad. Sci. 2008 1147 1 395 412 10.1196/annals.1427.027 19076459
    [Google Scholar]
  3. D’Amato M. Morra F. Di Meo I. Tiranti V. Mitochondrial transplantation in mitochondrial medicine: current challenges and future perspectives. Int. J. Mol. Sci. 2023 24 3 1969 10.3390/ijms24031969 36768312
    [Google Scholar]
  4. Wu Y. Chen M. Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion 2019 49 35 45 10.1016/j.mito.2019.07.003 31288090
    [Google Scholar]
  5. Qian K. Bao X. Li Y. Cholinergic neuron targeting nanosystem delivering hybrid peptide for combinatorial mitochondrial therapy in alzheimer’s disease. ACS Nano 2022 16 7 11455 11472 10.1021/acsnano.2c05795 35839463
    [Google Scholar]
  6. Moreira P.I. Zhu X. Wang X. Mitochondria: A therapeutic target in neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis. 2010 1802 1 212 220 10.1016/j.bbadis.2009.10.007 19853657
    [Google Scholar]
  7. Burchell V.S. Gandhi S. Deas E. Wood N.W. Abramov A.Y. Plun-Favreau H. Targeting mitochondrial dysfunction in neurodegenerative disease: Part II. Expert Opin. Ther. Targets 2010 14 5 497 511 10.1517/14728221003730434 20334487
    [Google Scholar]
  8. Zhang W. Liu D. Yuan M. Zhu L.Q. The mechanisms of mitochondrial abnormalities that contribute to sleep disorders and related neurodegenerative diseases. Ageing Res. Rev. 2024 97 102307 10.1016/j.arr.2024.102307 38614368
    [Google Scholar]
  9. Yang P. Sheng D. Guo Q. Neuronal mitochondria-targeted micelles relieving oxidative stress for delayed progression of Alzheimer’s disease. Biomaterials 2020 238 119844 10.1016/j.biomaterials.2020.119844 32062148
    [Google Scholar]
  10. Bandiwadekar A. Khot K. Gopan G. Jose J. Microneedles: A versatile drug delivery carrier for phytobioactive compounds as a therapeutic modulator for targeting mitochondrial dysfunction in the management of neurodegenerative diseases. Curr. Neuropharmacol. 2022 22 6 1110 1128 10.2174/1570159X20666221012142247 36237157
    [Google Scholar]
  11. Pantic B. Trevisan E. Citta A. Myotonic dystrophy protein kinase (DMPK) prevents ROS-induced cell death by assembling a hexokinase II-Src complex on the mitochondrial surface. Cell Death Dis. 2013 4 10 e858 10.1038/cddis.2013.385 24136222
    [Google Scholar]
  12. Oude Ophuis R.J.A. Wijers M. Bennink M.B. A tail-anchored myotonic dystrophy protein kinase isoform induces perinuclear clustering of mitochondria, autophagy, and apoptosis. PLoS One 2009 4 11 e8024 10.1371/journal.pone.0008024 19946639
    [Google Scholar]
  13. Kaliman P. Llagostera E. Myotonic dystrophy protein kinase (DMPK) and its role in the pathogenesis of myotonic dystrophy 1. Cell. Signal. 2008 20 11 1935 1941 10.1016/j.cellsig.2008.05.005 18583094
    [Google Scholar]
  14. Bhardwaj R.R. Duchini A. Non-alcoholic steatohepatitis in myotonic dystrophy: DMPK gene mutation, insulin resistance and development of steatohepatitis. Case Rep. Gastroenterol. 2010 4 1 100 103 10.1159/000292093 21103235
    [Google Scholar]
  15. Di Leo V. Lawless C. Roussel M.P. Resistance exercise training rescues mitochondrial dysfunction in skeletal muscle of patients with myotonic dystrophy type 1. J. Neuromuscul. Dis. 2023 10 6 1111 1126 10.3233/JND‑230099 37638448
    [Google Scholar]
  16. Llamusí B. Artero R. Molecular effects of the CTG repeats in mutant dystrophia myotonica protein kinase gene. Curr. Genomics 2008 9 8 509 516 10.2174/138920208786847944 19516957
    [Google Scholar]
  17. Pezzini I. Mattoli V. Ciofani G. Mitochondria and neurodegenerative diseases: the promising role of nanotechnology in targeted drug delivery. Expert Opin. Drug Deliv. 2017 14 4 513 523 10.1080/17425247.2016.1218461 27467010
    [Google Scholar]
  18. Golpich M. Amini E. Mohamed Z. Azman Ali R. Mohamed Ibrahim N. Ahmadiani A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment. CNS Neurosci. Ther. 2017 23 1 5 22 10.1111/cns.12655 27873462
    [Google Scholar]
  19. Allen J.K. Sutherland T.C. Prater A.R. Geoffroy C.G. Pellois J.P. In vivo peptide-based delivery of a gene-modifying enzyme into cells of the central nervous system. Sci. Adv. 2022 8 39 eabo2954 10.1126/sciadv.abo2954 36170360
    [Google Scholar]
  20. Yan J. Chen J. Zhang N. Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis. J. Mater. Chem. B Mater. Biol. Med. 2019 8 3 492 503 10.1039/c9tb02266j 31840727
    [Google Scholar]
  21. Cheng H. Zheng R.R. Fan G.L. Mitochondria and plasma membrane dual-targeted chimeric peptide for single-agent synergistic photodynamic therapy. Biomaterials 2019 188 1 11 10.1016/j.biomaterials.2018.10.005 30312907
    [Google Scholar]
  22. Paleos C.M. Tsiourvas D. Sideratou Z. Triphenylphosphonium decorated liposomes and dendritic polymers: Prospective second-generation drug delivery systems for targeting mitochondria. Mol. Pharm. 2016 13 7 2233 2241 10.1021/acs.molpharmaceut.6b00237 27280339
    [Google Scholar]
  23. Cheng X. Feng D. Lv J. Application prospects of triphenylphosphine-based mitochondria-targeted cancer therapy. Cancers 2023 15 3 666 10.3390/cancers15030666 36765624
    [Google Scholar]
  24. Fedorov E.V. Chelombitko M.A. Chernyavskij D.A. Mitochondria-targeted antioxidant SkQ1 prevents the development of experimental colitis in mice and impairment of the barrier function of the intestinal epithelium. Cells 2022 11 21 3420 10.3390/cells11213441 36359839
    [Google Scholar]
  25. Sacks B. Onal H. Martorana R. Mitochondrial targeted antioxidants, mitoquinone and SKQ1, not vitamin C, mitigate doxorubicin-induced damage in H9c2 myoblast: pretreatment vs. co-treatment. BMC Pharmacol. Toxicol. 2021 22 1 49 10.1186/s40360‑021‑00518‑6 34530934
    [Google Scholar]
  26. Onal H. Martorana R. Sehgal A. Mitochondria targeted antioxidants mitoquinone and SKQ1 provide protection against doxorubicin-induced cell damage on H9c2 myoblast. FASEB J. 2020 34 S1 1 10.1096/fasebj.2020.34.s1.05183
    [Google Scholar]
  27. Battigelli A. Russier J. Venturelli E. Peptide-based carbon nanotubes for mitochondrial targeting. Nanoscale 2013 5 19 9110 9117 10.1039/c3nr02694a 23903095
    [Google Scholar]
  28. Katayama T. Kinugawa S. Takada S. A mitochondrial delivery system using liposome-based nanocarriers that target myoblast cells. Mitochondrion 2019 49 66 72 10.1016/j.mito.2019.07.005 31326598
    [Google Scholar]
  29. Chuah J.A. Matsugami A. Hayashi F. Numata K. Self-assembled peptide-based system for mitochondrial-targeted gene delivery: Functional and structural insights. Biomacromolecules 2016 17 11 3547 3557 10.1021/acs.biomac.6b01056 27696822
    [Google Scholar]
  30. Wang L. Niu X. Song Q. A two-step precise targeting nanoplatform for tumor therapy via the alkyl radicals activated by the microenvironment of organelles. J. Control. Release 2020 318 197 209 10.1016/j.jconrel.2019.10.017 31672622
    [Google Scholar]
  31. Xiao Q. Du W. Dong X. Cell-penetrating mitochondria-targeting ligands for universal delivery of small molecules, proteins and nanomaterials. Chemistry 2021 27 47 12207 12214 10.1002/chem.202101989
    [Google Scholar]
  32. Yuan P. Mao X. Wu X. Liew S.S. Li L. Yao S.Q. Mitochondria-targeting, intracellular delivery of native proteins using biodegradable silica nanoparticles. Angew. Chem. Int. Ed. 2019 58 23 7657 7661 10.1002/anie.201901699 30994955
    [Google Scholar]
  33. Zielonka J. Joseph J. Sikora A. Mitochondria-targeted triphenylphosphonium-based compounds: Syntheses, mechanisms of action and therapeutic and diagnostic applications. Chem. Rev. 2017 117 15 10043 10120 10.1021/acs.chemrev.7b00042 28654243
    [Google Scholar]
  34. Lei E.K. Kelley S.O. Delivery and release of small-molecule probes in mitochondria using traceless linkers. J. Am. Chem. Soc. 2017 139 28 9455 9458 10.1021/jacs.7b04415 28664723
    [Google Scholar]
  35. Marrache S. Dhar S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl. Acad. Sci. USA 2012 109 40 16288 16293 10.1073/pnas.1210096109 22991470
    [Google Scholar]
  36. Foss D.V. Muldoon J.J. Nguyen D.N. Peptide-mediated delivery of CRISPR enzymes for the efficient editing of primary human lymphocytes. Nat. Biomed. Eng. 2023 7 5 647 660 10.1038/s41551‑023‑01032‑2 37147433
    [Google Scholar]
  37. Rogov A.G. Goleva T.N. Aliverdieva D.A. Zvyagilskaya R.A. SkQ3 exhibits the most pronounced antioxidant effect on isolated rat liver mitochondria and yeast cells. Int. J. Mol. Sci. 2024 25 2 1107 10.3390/ijms25021107 38256179
    [Google Scholar]
  38. Sud’ina G.F. Golenkina E.A. Prikhodko A.S. Kondratenko N.D. Gaponova T.V. Chernyak B.V. Mitochondria-targeted antioxidant SkQ1 inhibits leukotriene synthesis in human neutrophils. Front. Pharmacol. 2022 13 1023517 10.3389/fphar.2022.1023517 36506526
    [Google Scholar]
  39. Zinovkin R.A. Zamyatnin A.A. Mitochondria-targeted drugs. Curr. Mol. Pharmacol. 2019 12 3 202 214 10.2174/1874467212666181127151059 30479224
    [Google Scholar]
  40. Cerrato C.P. Pirisinu M. Vlachos E.N. Langel Ü. Novel cell‐penetrating peptide targeting mitochondria. FASEB J. 2015 29 11 4589 4599 10.1096/fj.14‑269225 26195590
    [Google Scholar]
  41. Xu Y. Wang S. Chan H.F. Triphenylphosphonium-modified poly(ethylene glycol)-poly(ε-caprolactone) micelles for mitochondria- targeted gambogic acid delivery. Int. J. Pharm. 2017 522 1-2 21 33 10.1016/j.ijpharm.2017.01.064 28215509
    [Google Scholar]
  42. Lu P. Bruno B.J. Rabenau M. Lim C.S. Delivery of drugs and macromolecules to the mitochondria for cancer therapy. J. Control. Release 2016 240 38 51 10.1016/j.jconrel.2015.10.023 26482081
    [Google Scholar]
  43. Zhou M. Li L. Li L. Overcoming chemotherapy resistance via simultaneous drug-efflux circumvention and mitochondrial targeting. Acta Pharm. Sin. B 2019 9 3 615 625 10.1016/j.apsb.2018.11.005 31193791
    [Google Scholar]
  44. Lichty B.D. McBride H. Hanson S. Bell J.C. Matrix protein of vesicular stomatitis virus harbours a cryptic mitochondrial-targeting motif. J. Gen. Virol. 2006 87 11 3379 3384 10.1099/vir.0.81762‑0 17030873
    [Google Scholar]
  45. Himeda T. Okuwa T. Nojiri M. Muraki Y. Ohara Y. The anti-apoptotic protein L* of Theiler’s murine encephalomyelitis virus (TMEV) contains a mitochondrial targeting signal. Virus Res. 2011 155 2 381 388 10.1016/j.virusres.2010.11.006 21130126
    [Google Scholar]
  46. Weber-Lotfi F. Dietrich A. Russo M. Rubino L. Mitochondrial targeting and membrane anchoring of a viral replicase in plant and yeast cells. J. Virol. 2002 76 20 10485 10496 10.1128/JVI.76.20.10485‑10496.2002 12239325
    [Google Scholar]
  47. Jean S.R. Ahmed M. Lei E.K. Wisnovsky S.P. Kelley S.O. Peptide-mediated delivery of chemical probes and therapeutics to mitochondria. Acc. Chem. Res. 2016 49 9 1893 1902 10.1021/acs.accounts.6b00277 27529125
    [Google Scholar]
  48. Ishikawa T. Somiya K. Munechika R. Harashima H. Yamada Y. Mitochondrial transgene expression via an artificial mitochondrial DNA vector in cells from a patient with a mitochondrial disease. J. Control. Release 2018 274 109 117 10.1016/j.jconrel.2018.02.005 29408532
    [Google Scholar]
  49. Zeng K. Wang J.K. Wang L. Guo Q. Liu T.T. Wang F. Small molecule induces mitochondrial fusion for neuroprotection via targeting CK2 without affecting its conventional kinase activity. Signal Transduct. Target. Ther. 2021 6 1 120 10.1038/s41392‑021‑00533‑3
    [Google Scholar]
  50. Yamada Y. Kawamura E. Harashima H. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes. J. Nanopart. Res. 2012 14 8 1013 10.1007/s11051‑012‑1013‑3 22448125
    [Google Scholar]
  51. Chen Y. Zhu X. Zhang X. Liu B. Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol. Ther. 2010 18 9 1650 1656 10.1038/mt.2010.136 20606648
    [Google Scholar]
  52. Wakamoto T. Seirin-Lee S. Optimal targeted therapy for multiple cancers based on contrastive Notch signaling networks. bioRxiv 2024
    [Google Scholar]
  53. Ishak C.A. Loo Yau H. De Carvalho D.D. Spliceosome-targeted therapies induce dsRNA responses. Immunity 2021 54 1 11 13 10.1016/j.immuni.2020.12.012 33440135
    [Google Scholar]
  54. You Z. Liu S.P. Du J. Wu Y.H. Zhang S.Z. Advancements in MAPK signaling pathways and MAPK‐targeted therapies for ameloblastoma: A review. J. Oral Pathol. Med. 2019 48 3 201 205 10.1111/jop.12807 30489659
    [Google Scholar]
  55. Meng P. Research on cellular immune targeted drug therapy for breast cancer based on bioinformatics. Int J Biol Life Sci 2023 2 3 98 100 10.54097/ijbls.v2i3.8662
    [Google Scholar]
  56. Guo L. Ding W. Zheng L.M. The C(RgdyK)-conjugated Fe3O4 nanoparticles with high drug load for dual-targeting integrin α(v)β3-expressing cancer cells. J. Nanosci. Nanotechnol. 2014 14 7 4858 4864 10.1166/jnn.2014.8691 24757954
    [Google Scholar]
  57. Zhang L. Deng S. Zhang Y. Homotypic targeting delivery of siRNA with artificial cancer cells. Adv. Healthc. Mater. 2020 9 9 1900772 10.1002/adhm.201900772 32181988
    [Google Scholar]
  58. Choi K.Y. Silvestre O.F. Huang X. Versatile RNA interference nanoplatform for systemic delivery of RNAs. ACS Nano 2014 8 5 4559 4570 10.1021/nn500085k 24779637
    [Google Scholar]
  59. Gao Y. Men K. Pan C. Functionalized DMP-039 hybrid nanoparticle as a novel mRNA vector for efficient cancer suicide gene therapy. Int. J. Nanomedicine 2021 16 5211 5232 10.2147/IJN.S319092 34366664
    [Google Scholar]
  60. Zhou J. Patel T.R. Fu M. Bertram J.P. Saltzman W.M. Octa-functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors. Biomaterials 2012 33 2 583 591 10.1016/j.biomaterials.2011.09.061 22014944
    [Google Scholar]
  61. Yamada Y. Furukawa R. Yasuzaki Y. Harashima H. Dual function MITO-Porter, a nano carrier integrating both efficient cytoplasmic delivery and mitochondrial macromolecule delivery. Mol. Ther. 2011 19 8 1449 1456 10.1038/mt.2011.99 21694702
    [Google Scholar]
  62. Perez Ortiz J.M. Swerdlow R.H. Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities. Br. J. Pharmacol. 2019 176 18 3489 3507 10.1111/bph.14585 30675901
    [Google Scholar]
  63. Lin M.T. Beal M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006 443 7113 787 795 10.1038/nature05292 17051205
    [Google Scholar]
  64. Khan T. Waseem R. Zehra Z. Mitochondrial dysfunction: Pathophysiology and mitochondria-targeted drug delivery approaches. Pharmaceutics 2022 14 12 2657 10.3390/pharmaceutics14122657 36559149
    [Google Scholar]
  65. Almikhlafi M.A. Karami M.M. Jana A. Mitochondrial medicine: A promising therapeutic option against various neurodegenerative disorders. Curr. Neuropharmacol. 2023 21 5 1165 1183 10.2174/1570159X20666220830112408 36043795
    [Google Scholar]
  66. Lee J. Mitochondrial drug targets in neurodegenerative diseases. Bioorg. Med. Chem. Lett. 2016 26 3 714 720 10.1016/j.bmcl.2015.11.032 26806044
    [Google Scholar]
  67. Cho H. Cho Y.Y. Shim M.S. Lee J.Y. Lee H.S. Kang H.C. Mitochondria-targeted drug delivery in cancers. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 8 165808 10.1016/j.bbadis.2020.165808 32333953
    [Google Scholar]
  68. Van Giau V. An S.S.A. Hulme J.P. Mitochondrial therapeutic interventions in Alzheimer’s disease. J. Neurol. Sci. 2018 395 62 70 10.1016/j.jns.2018.09.033 30292965
    [Google Scholar]
  69. Niu X. Chen J. Gao J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J Pharm Sci 2019 14 5 480 496 10.1016/j.ajps.2018.09.005 32104476
    [Google Scholar]
  70. Martínez-Fong D. Bannon M.J. Trudeau L.E. NTS-Polyplex: A potential nanocarrier for neurotrophic therapy of Parkinson’s disease. Nanomedicine 2012 8 7 1052 1069 10.1016/j.nano.2012.02.009 22406187
    [Google Scholar]
  71. André E.M. Passirani C. Seijo B. Sanchez A. Montero-Menei C.N. Nano and microcarriers to improve stem cell behaviour for neuroregenerative medicine strategies: Application to Huntington’s disease. Biomaterials 2016 83 347 362 10.1016/j.biomaterials.2015.12.008 26802487
    [Google Scholar]
  72. Wei M. Yang Z. Li S. Le W. Nanotherapeutic and stem cell therapeutic strategies in neurodegenerative diseases: A promising therapeutic approach. Int. J. Nanomedicine 2023 18 611 626 10.2147/IJN.S395010 36760756
    [Google Scholar]
  73. Poovaiah N. Davoudi Z. Peng H. Treatment of neurodegenerative disorders through the blood–brain barrier using nanocarriers. Nanoscale 2018 10 36 16962 16983 10.1039/C8NR04073G 30182106
    [Google Scholar]
  74. Soares T.B. Loureiro L. Carvalho A. Lipid nanocarriers loaded with natural compounds: Potential new therapies for age related neurodegenerative diseases? Prog. Neurobiol. 2018 168 21 41 10.1016/j.pneurobio.2018.04.004 29641983
    [Google Scholar]
  75. Teixeira M.I. Lopes C.M. Amaral M.H. Costa P.C. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur. J. Pharm. Biopharm. 2020 149 192 217 10.1016/j.ejpb.2020.01.005 31982574
    [Google Scholar]
  76. Vissers C. Ming G. Song H. Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Adv. Drug Deliv. Rev. 2019 148 239 251 10.1016/j.addr.2019.02.007 30797953
    [Google Scholar]
  77. Ji W. Li Y. Peng H. Self‐catalytic small interfering RNA nanocarriers for synergistic treatment of neurodegenerative diseases. Adv. Mater. 2021 2021 34 34601753
    [Google Scholar]
  78. Lamptey R.N.L. Chaulagain B. Trivedi R. Gothwal A. Layek B. Singh J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci. 2022 23 3 1851 10.3390/ijms23031851 35163773
    [Google Scholar]
  79. Md S. Bhattmisra S.K. Zeeshan F. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J. Drug Deliv. Sci. Technol. 2018 43 295 310 10.1016/j.jddst.2017.09.022
    [Google Scholar]
  80. Choonara Y.E. Kumar P. Modi G. Pillay V. Improving drug delivery technology for treating neurodegenerative diseases. Expert Opin. Drug Deliv. 2016 13 7 1029 1043 10.1517/17425247.2016.1162152 26967508
    [Google Scholar]
  81. Geldenhuys W.J. Van der Schyf C.J. Rationally designed multi-targeted agents against neurodegenerative diseases. Curr. Med. Chem. 2013 20 13 1662 1672 10.2174/09298673113209990112 23410161
    [Google Scholar]
  82. DeVos S.L. Miller T.M. Antisense oligonucleotides: Treating neurodegeneration at the level of RNA. Neurotherapeutics 2013 10 3 486 497 10.1007/s13311‑013‑0194‑5 23686823
    [Google Scholar]
  83. Youdim M.B.H. Buccafusco J.J. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol. Sci. 2005 26 1 27 35 10.1016/j.tips.2004.11.007 15629202
    [Google Scholar]
  84. Mollasalehi N. François-Moutal L. Porciani D. Burke D.H. Khanna M. Aptamers targeting hallmark proteins of neurodegeneration. Nucleic Acid Ther. 2022 32 4 235 250 10.1089/nat.2021.0091 35452303
    [Google Scholar]
  85. Plascencia-Villa G. Perry G. Exploring molecular targets for mitochondrial therapies in neurodegenerative diseases. Int. J. Mol. Sci. 2023 24 15 12486 10.3390/ijms241512486 37569861
    [Google Scholar]
  86. Geldenhuys W.J. Van der Schyf C.J. Designing drugs with multi-target activity: The next step in the treatment of neurodegenerative disorders. Expert Opin. Drug Discov. 2013 8 2 115 129 10.1517/17460441.2013.744746 23231597
    [Google Scholar]
  87. Ramanathan S. Archunan G. Sivakumar M. Theranostic applications of nanoparticles in neurodegenerative disorders. Int. J. Nanomedicine 2018 13 5561 5576 10.2147/IJN.S149022 30271147
    [Google Scholar]
  88. Alderton G.K. Refocusing to target neurodegeneration. Science 2019 364 6436 141 143
    [Google Scholar]
  89. Effect of Oxaloacetate on mitochondrial function in Alzheimer's disease. NCT02593318 2024
    [Google Scholar]
  90. A study on Dapagliflozin and cerebral metabolism in Alzheimer's disease. 2024
    [Google Scholar]
  91. Pridopidine for neuroprotection in ALS patients. 2024
    [Google Scholar]
  92. Study of Sulforaphane from Glucoraphanin in mitochondrial dysfunction. NCT02909959 2024
    [Google Scholar]
  93. Impact of ketogenic diet on mitochondrial function in alzheimer's disease. NCT03472664 2024
    [Google Scholar]
  94. Efficacy of CNM-Au8 for bioenergetic failure in ALS. NCT04098406 2024
    [Google Scholar]
  95. Targeting insulin resistance to improve mitochondrial function in cognitive decline. NCT02460783 2024
    [Google Scholar]
  96. Popov L.D. Mitochondrial biogenesis: An update. J. Cell. Mol. Med. 2020 24 9 4892 4899 10.1111/jcmm.15194 32279443
    [Google Scholar]
  97. Noshadi E. Arshi A. Mahmoudi E. Jamshidian H. Dehghani-Samani M. Hashemzehi R. A review of mitochondrial biogenesis and cellular response. Sci J Iran Blood Transfus Organ 2019 16 3 149 159
    [Google Scholar]
  98. Cardanho-Ramos C. Morais V.A. Mitochondrial biogenesis in neurons: How and where. Int. J. Mol. Sci. 2021 22 23 13059 10.3390/ijms222313059 34884861
    [Google Scholar]
  99. Dimogkioka A.R. Lees J. Lacko E. Tokatlidis K. Protein import in mitochondria biogenesis: guided by targeting signals and sustained by dedicated chaperones. RSC Advances 2021 11 51 32476 32493 10.1039/D1RA04497D 35495482
    [Google Scholar]
  100. Grevel A. Pfanner N. Becker T. Coupling of import and assembly pathways in mitochondrial protein biogenesis. Biol. Chem. 2019 401 1 117 129 10.1515/hsz‑2019‑0310 31513529
    [Google Scholar]
  101. Daskalaki I. Tavernarakis N. Mitochondrial biogenesis in organismal senescence and neurodegeneration. Mech. Ageing Dev. 2020 191 111345 10.1016/j.mad.2020.111345 32891602
    [Google Scholar]
  102. Deval C. Calonne J. Coudy-Gandilhon C. Mitophagy and mitochondria biogenesis are differentially induced in rat skeletal muscles during immobilization and/or remobilization. Int. J. Mol. Sci. 2020 21 10 3691 10.3390/ijms21103691 32456262
    [Google Scholar]
  103. Priesnitz C. Pfanner N. Becker T. Studying protein import into mitochondria. Methods Cell Biol. 2020 155 45 79 10.1016/bs.mcb.2019.11.006 32183973
    [Google Scholar]
  104. Neiweem A.E. Jusufbegovic D. Singh A.D. Ocular complications of targeted therapy. Clin Ophthalmic Oncol 2019 3 1 145 159
    [Google Scholar]
  105. Targeted regulation of intracellular signal transduction in regeneration-competent cells: A new direction for therapy in regenerative medicine. Biointerface Res. Appl. Chem. 2021 11 4 12238 12251 10.33263/BRIAC114.1223812251
    [Google Scholar]
  106. Barata J. Oliveira M.L. Cell signaling in cancer. Mol Cell Biol Cancer 2019 3 2 67 89
    [Google Scholar]
  107. Stauber R. Gro S.L. Nguyen-Ngoc T. Targeted therapies and non-small cell carcinomas: novelties. Rev. Med. Suisse 2022 18 782 970 975 10.53738/REVMED.2022.18.782.970 35583275
    [Google Scholar]
  108. Telkoparan-Akillilar P. Panieri E. Cevik D. Suzen S. Saso L. Therapeutic targeting of the NRF2 signaling pathway in cancer. Molecules 2021 26 5 1417 1432 10.3390/molecules26051417 33808001
    [Google Scholar]
  109. Park W.J. Kim M.J. A new wave of targeting ‘undruggable’ Wnt signaling for cancer therapy: Challenges and opportunities. Cells 2023 12 8 1110 1123 10.3390/cells12081110 37190019
    [Google Scholar]
/content/journals/cds/10.2174/0115748863375490250626163609
Loading
/content/journals/cds/10.2174/0115748863375490250626163609
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test