
Full text loading...
Mitochondrial dysfunction plays a central role in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS). Targeted drug delivery to mitochondria represents a promising therapeutic strategy to mitigate neuronal degeneration and preserve mitochondrial function in these devastating conditions. This review provides a comprehensive overview of recent advances in targeted drug delivery solutions for mitochondrial dysfunction in neurodegenerative disorders. The mechanisms underlying mitochondrial dysfunction in AD, PD, HD, and ALS are explored, highlighting the specific challenges and opportunities for therapeutic intervention. Emerging drug delivery technologies are discussed, including mitochondria-responsive systems, nanoparticles, peptides, and viral vectors, designed to deliver therapeutic agents directly to mitochondria along with suitable case studies. Furthermore, preclinical and clinical studies evaluating the efficacy and safety of mitochondria-targeted therapeutics are reviewed, and future directions and challenges in the field are outlined. By elucidating the intersection of mitochondrial biology and drug delivery, this review aims to inspire further research and innovation toward effective treatments for neurodegenerative diseases.
Article metrics loading...
Full text loading...
References
Data & Media loading...