Skip to content
2000
image of Drug-Induced Acute Kidney Injury: Mechanisms, Biomarkers, and Therapeutic Strategies

Abstract

Acute kidney injury (AKI) is a severe and life-threatening complication of drug therapy, a significant risk to patient well-being, with high morbidity and death rates. An increasing proportion of AKI cases are mainly caused due to drug-induced nephrotoxicity; despite its prevalence, the exact study of causative drugs is still unclear. AKI is often caused by kidney damage, reducing the kidneys’ ability to detoxify, eventually leading to nephrotoxicity. Drug-induced nephrotoxicity often happens through various mechanisms such as crystal nephropathy, oxidative stress, reduced flow to the kidneys, damage to kidney cells, and thrombotic microangiopathy. Epidemiology of drug-induced nephrotoxicity focuses on how prevalent it is and the factors that increase the nephrotoxicity. Specific biomarkers have been found to assess nephrotoxicity for early and accurate diagnosis of kidney damage. This review focuses on explaining drug-induced nephrotoxicity mechanisms for commonly used agents such as non-steroidal anti-inflammatory drugs, immunosuppressants, antibiotics, anticancer agents, and antifungals. It also covers specific biomarkers and respective treatment approaches. Additionally, protective agents and their mechanisms in preventing nephrotoxicity are also analyzed, including their antioxidant and anti-inflammatory potential and other drug-based interventions. This review discusses various therapeutic studies using experimental models, offering invaluable insights into the cellular processes and pathways involved in developing prevention strategies. By advancing our understanding of the mechanisms behind drug-induced nephrotoxicity, it is aimed to improve patient care and reduce health-related complications.

Loading

Article metrics loading...

/content/journals/cds/10.2174/0115748863362596250627155607
2025-07-14
2025-09-14
Loading full text...

Full text loading...

References

  1. Schetz M. Dasta J. Goldstein S. Golper T. Drug-induced acute kidney injury. Curr. Opin. Crit. Care 2005 11 6 555 565 10.1097/01.ccx.0000184300.68383.95 16292059
    [Google Scholar]
  2. Mehta R.L. Pascual M.T. Soroko S. Savage B.R. Himmelfarb J. Ikizler T.A. Paganini E.P. Chertow G.M. Spectrum of acute renal failure in the intensive care unit: The PICARD experience. Kidney Int. 2004 66 4 1613 1621 10.1111/j.1523‑1755.2004.00927.x 15458458
    [Google Scholar]
  3. Hoste E.A.J. Bagshaw S.M. Bellomo R. Cely C.M. Colman R. Cruz D.N. Edipidis K. Forni L.G. Gomersall C.D. Govil D. Honoré P.M. Joannes-Boyau O. Joannidis M. Korhonen A.M. Lavrentieva A. Mehta R.L. Palevsky P. Roessler E. Ronco C. Uchino S. Vazquez J.A. Andrade V.E. Webb S. Kellum J.A. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med. 2015 41 8 1411 1423 10.1007/s00134‑015‑3934‑7 26162677
    [Google Scholar]
  4. Ali T. Khan I. Simpson W. Prescott G. Townend J. Smith W. MacLeod A. Incidence and outcomes in acute kidney injury: A comprehensive population-based study. J. Am. Soc. Nephrol. 2007 18 4 1292 1298 10.1681/ASN.2006070756 17314324
    [Google Scholar]
  5. Porter S. Prescribing medicines in people with renal impairment. Nurs. Stand. 2023 38 11 69 74 10.7748/ns.2023.e12218 37902020
    [Google Scholar]
  6. Hall A.M. Trepiccione F. Unwin R.J. Drug toxicity in the proximal tubule: New models, methods and mechanisms. Pediatr. Nephrol. 2022 37 5 973 982 10.1007/s00467‑021‑05121‑9 34050397
    [Google Scholar]
  7. Coca S.G. Singanamala S. Parikh C.R. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int. 2012 81 5 442 448 10.1038/ki.2011.379 22113526
    [Google Scholar]
  8. Xue J.L. Daniels F. Star R.A. Kimmel P.L. Eggers P.W. Molitoris B.A. Himmelfarb J. Collins A.J. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J. Am. Soc. Nephrol. 2006 17 4 1135 1142 10.1681/ASN.2005060668 16495381
    [Google Scholar]
  9. Krishnan N. Moledina D.G. Perazella M.A. Toxic nephropathies of the tubulointerstitium: Core curriculum 2024. Am. J. Kidney Dis. 2024 83 5 659 676 10.1053/j.ajkd.2023.09.017 38243994
    [Google Scholar]
  10. Forni L.G. Darmon M. Ostermann M. Oudemans-van Straaten H.M. Pettilä V. Prowle J.R. Schetz M. Joannidis M. Renal recovery after acute kidney injury. Intensive Care Med. 2017 43 6 855 866 10.1007/s00134‑017‑4809‑x 28466146
    [Google Scholar]
  11. Chiou Y.Y. Jiang S.T. Ding Y.S. Cheng Y.H. Kidney-based in vivo model for drug-induced nephrotoxicity testing. Sci. Rep. 2020 10 1 13640 10.1038/s41598‑020‑70502‑3 32796873
    [Google Scholar]
  12. Dobrek L A synopsis of current theories on drug-induced nephrotoxicity. Life 2023 Jan 24 13 2 325 10.3390/life13020325 36836682
    [Google Scholar]
  13. Soo J.Y.C. Jansen J. Masereeuw R. Little M.H. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat. Rev. Nephrol. 2018 14 6 378 393 10.1038/s41581‑018‑0003‑9 29626199
    [Google Scholar]
  14. PubMed. 2025 Available from: https://pubmed.ncbi.nlm.nih.gov/ [cited 2025 Mar 29].
  15. Scopus preview - scopus - welcome to scopus. 2025 Available from: https://www.scopus.com/ [cited 2025 Mar 29].
  16. Clarivate. 2025 Available from: https://access.clarivate.com/login?app=wos&alternative=true&shibShireURL=https:%2F%2Fwww.webofknowledge.com%2F%3Fauth%3DShibboleth&shibReturnURL=https:%2F%2Fwww.webofknowledge.com%2F%3Fmode%3DNextgen%26action%3Dtransfer%26path%3D%252Fwos%26DestApp%3DUA&referrer=mode%3DNextgen%26path%3D%252Fwos%26DestApp%3DUA%26action%3Dtransfer&roaming=true [cited 2025 Mar 29].
  17. Kane-Gill S.L. Goldstein S.L. Drug-induced acute kidney injury: A focus on risk assessment for prevention. Crit. Care Clin. 2015 31 4 675 684 10.1016/j.ccc.2015.06.005 26410137
    [Google Scholar]
  18. KDIGO clinical practice guideline for acute kidney injury. 2024 Available from: http://www.kidney-international.org [cited 2024 Apr 12].
  19. Perazella M.A. Pharmacology behind common drug nephrotoxicities. Clin. J. Am. Soc. Nephrol. 2018 13 12 1897 1908 10.2215/CJN.00150118 29622670
    [Google Scholar]
  20. Lote C.J. Harper L. Savage C.O.S. Mechanisms of acute renal failure. Br. J. Anaesth. 1996 77 1 82 89 8703633
    [Google Scholar]
  21. Griffin B.R. Faubel S. Edelstein C.L. Biomarkers of drug-induced kidney toxicity. Ther. Drug Monit. 2019 41 2 213 226 10.1097/FTD.0000000000000589 30883514
    [Google Scholar]
  22. Awdishu L Mehta RL The 6R's of drug induced nephrotoxicity. BMC Nephrol. 2017 Apr 18 1 124 10.1186/s12882‑017‑0536‑3 28372552
    [Google Scholar]
  23. Perazella M.A. Renal vulnerability to drug toxicity. Clin. J. Am. Soc. Nephrol. 2009 4 7 1275 1283 10.2215/CJN.02050309 19520747
    [Google Scholar]
  24. Sales G.T.M. Foresto R.D. Drug-induced nephrotoxicity. Rev. Assoc. Med. Bras. 2020 66 66 s82 s90 10.1590/1806‑9282.66.s1.82 31939540
    [Google Scholar]
  25. Neal C.R. Arkill K.P. Bell J.S. Betteridge K.B. Bates D.O. Winlove C.P. Salmon A.H.J. Harper S.J. Novel hemodynamic structures in the human glomerulus. Am. J. Physiol. Renal Physiol. 2018 315 5 F1370 F1384 10.1152/ajprenal.00566.2017 29923763
    [Google Scholar]
  26. Herrera G.A. Del Pozo-Yauner L. Aufman J.J. Turbat-Herrera E.A. Pathogenesis: Structural changes in the kidneys in type 1 and type 2 diabetes. Diabetes and Kidney Disease 2nd Ed Cham springer 2022 105 154
    [Google Scholar]
  27. Mally A Jarzina S. Mapping adverse outcome pathways for kidney injury as a basis for the development of mechanism-based animal-sparing approaches to assessment of nephrotoxicity. Front. Toxicol. 2022 4 863643 10.3389/ftox.2022.863643
    [Google Scholar]
  28. Quiros Y. Vicente-Vicente L. Morales A.I. López-Novoa J.M. López-Hernández F.J. An integrative overview on the mechanisms underlying the renal tubular cytotoxicity of gentamicin. Toxicol. Sci. 2011 119 2 245 256 10.1093/toxsci/kfq267 20829429
    [Google Scholar]
  29. Arribas-López E. Zand N. Ojo O. Snowden M.J. Kochhar T. A systematic review of the effect of centella asiatica on wound healing. Int. J. Environ. Res. Public Health 2022 19 6 19 10.3390/ijerph19063266 35328954
    [Google Scholar]
  30. Mulay S.R. Anders H.J. Crystal nephropathies: Mechanisms of crystal-induced kidney injury. Nat. Rev. Nephrol. 2017 13 4 226 240 10.1038/nrneph.2017.10 28218266
    [Google Scholar]
  31. Abou-Ismail M.Y. Kapoor S. Sridhar C.D. Nayak L. Ahuja S. Thrombotic microangiopathies: An illustrated review. Res. Pract. Thromb. Haemost. 2022 6 3 e12708 10.1002/rth2.12708 35615754
    [Google Scholar]
  32. Zhang W.R. Parikh C.R. Biomarkers of acute and chronic kidney disease. Annu. Rev. Physiol. 2019 81 309 333 10.1146/annurev‑physiol‑020518‑114605 30742783
    [Google Scholar]
  33. Al-Naimi M.S. Rasheed H.A. Hussien N.R. Al-Kuraishy H.M. Al- Gareeb A.I. Nephrotoxicity: Role and significance of renal biomarkers in the early detection of acute renal injury. J. Adv. Pharm. Technol. Res. 2019 10 3 95 99 31334089
    [Google Scholar]
  34. Bonventre J.V. Yang L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 2011 121 11 4210 4221 10.1172/JCI45161 22045571
    [Google Scholar]
  35. Obert L.A. Elmore S.A. Ennulat D. Frazier K.S. A review of specific biomarkers of chronic renal injury and their potential application in nonclinical safety assessment studies. Toxicol. Pathol. 2021 49 5 996 1023 10.1177/0192623320985045 33576319
    [Google Scholar]
  36. Weber E.J. Himmelfarb J. Kelly E.J. Concise review: Current and emerging biomarkers of nephrotoxicity. Curr. Opin. Toxicol. 2017 4 16 21 10.1016/j.cotox.2017.03.002 29057384
    [Google Scholar]
  37. Kim S.Y. Moon A.R. Drug-induced nephrotoxicity and its biomarkers. Biomol. Ther. 2012 20 3 268 272 10.4062/biomolther.2012.20.3.268 24130922
    [Google Scholar]
  38. Dhanvijay P. Misra A.K. Varma S.K. Diclofenac induced acute renal failure in a decompensated elderly patient. J. Pharmacol. Pharmacother. 2013 4 2 155 157 10.4103/0976‑500X.110916 23761717
    [Google Scholar]
  39. Sheth S. Thakur S. Thorat A. Gupta P. Safe and appropriate use of diclofenac in chronic kidney disease. J. Family Med. Prim. Care 2021 10 7 2450 2456 10.4103/jfmpc.jfmpc_2358_20 34568119
    [Google Scholar]
  40. Störmer J. Gwinner W. Derlin K. Immenschuh S. Rong S. Jang M.S. Shushakova N. Haller H. Gueler F. Greite R. A single oral dose of diclofenac causes transition of experimental subclinical acute kidney injury to chronic kidney disease. Biomedicines 2022 10 5 1198 10.3390/biomedicines10051198 35625934
    [Google Scholar]
  41. Hamed K.M. Dighriri I.M. Baomar A.F. Alharthy B.T. Alenazi F.E. Alali G.H. Alenazy R.H. Alhumaidi N.T. Alhulayfi D.H. Alotaibi Y.B. Alhumaidan S.S. Alhaddad Z.A. Humadi A.A. Alzahrani S.A. Alobaid R.H. Overview of methotrexate toxicity: A comprehensive literature review. Cureus 2022 14 9 e29518 10.7759/cureus.29518 36312688
    [Google Scholar]
  42. Shirali A.C. Perazella M.A. Gettinger S. Association of acute interstitial nephritis with programmed cell death 1 inhibitor therapy in lung cancer patients. Am. J. Kidney Dis. 2016 68 2 287 291 10.1053/j.ajkd.2016.02.057 27113507
    [Google Scholar]
  43. Filippone E.J. Kraft W.K. Farber J.L. The nephrotoxicity of vancomycin. Clin. Pharmacol. Ther. 2017 102 3 459 469 10.1002/cpt.726 28474732
    [Google Scholar]
  44. Tang C. Livingston M.J. Safirstein R. Dong Z. Cisplatin nephrotoxicity: New insights and therapeutic implications. Nat. Rev. Nephrol. 2023 19 1 53 72 10.1038/s41581‑022‑00631‑7 36229672
    [Google Scholar]
  45. Motwani S.S. Sandhu S.K. Kitchlu A. Cisplatin nephrotoxicity: Novel insights into mechanisms and preventative strategies. Semin. Nephrol. 2022 42 6 151341 10.1016/j.semnephrol.2023.151341 37182407
    [Google Scholar]
  46. Gursoy V Ozkalemkas F Ozkocaman V Serenli Yegen Z Ethem Pinar I Ener B Akalin H Kazak E Ali R Ersoy A Conventional amphotericin B associated nephrotoxicity in patients with hematologic malignancies. Cureus 2021 Jul 17 13 7 e16445 10.7759/cureus.16445 34422476
    [Google Scholar]
  47. Hickey E.J. Raje R.R. Reid V.E. Gross S.M. Ray S.D. Diclofenac induced in vivo nephrotoxicity may involve oxidative stress-mediated massive genomic DNA fragmentation and apoptotic cell death. Free Radic. Biol. Med. 2001 31 2 139 152 10.1016/S0891‑5849(01)00560‑3 11440826
    [Google Scholar]
  48. Dada S. Akintoye O. Ezekpo O. Dada O. Sanya J. Diclofenac-induced alterations in renal antioxidants and cytokines in male wistar rats. 2023 Available from: https://www.researchgate.net/publication/374708739_Diclofenac-Induced_Alterations_in_Renal_Antioxidants_and_Cytokines_in_Male_Wistar_Rats 10.47191/ijmscrs/v3‑i10‑19
  49. Qasim L.B. Ghaith A. Ihsan S. Histopathological study of diclofenac induced acute renal failure under lipoic acid and bosentan therapy in male albino rats. Al Mustans. J. Pharma. Sci. 2022 22 49 58 10.32947/ajps.v22i1.829
    [Google Scholar]
  50. Famurewa A.C. Akunna G.G. Nwafor J. Chukwu O.C. Ekeleme-Egedigwe C.A. Oluniran J.N. Nephroprotective activity of virgin coconut oil on diclofenac-induced oxidative nephrotoxicity is associated with antioxidant and anti-inflammatory effects in rats. Avicenna J. Phytomed. 2020 10 3 316 324 32523886
    [Google Scholar]
  51. Alkuraishy H.M. Al-Gareeb A.I. Hussien N.R. Diclofenac induced-acute kidney injury is linked with oxidative stress and pro-inflammatory changes in Sprague Dawley rats. J. Contemp. Med. Sci. 2019 5 3 140 144 10.22317/jcms.v5i3.607
    [Google Scholar]
  52. Jhun J. Moon J. Kim S.Y. Cho K.H. Na H.S. Choi J. Jung Y.J. Song K.Y. Min J.K. Cho M.L. Rebamipide treatment ameliorates obesity phenotype by regulation of immune cells and adipocytes. PLoS One 2022 17 12 e0277692 36574392
    [Google Scholar]
  53. Soussi R. Hfaiedh N. Sakly M. Rhouma B.K. The aqueous extract of Olea europaea leaves protects from haematotoxicity and kidney damage induced by diclofenac in Swiss albino mice. RSC Advances 2019 9 40 23352 23361 10.1039/C9RA01670H 35514491
    [Google Scholar]
  54. Ramzan M. Ashraf M. Hashmi H.A. Iqbal Z. Anjum A.A. Evaluation of diclofenac sodium toxicity at different concentrations in relation to time using broiler chicken model. J. Anim. Plant Sci. 2015 25 2 357 365
    [Google Scholar]
  55. Shakibaie M. Forootanfar H. Ghaseminejad A. Salimi A. Ameri A. Doostmohammadi M. Jafari E. Rahimi H.R. Ondansetron enhanced diclofenac-induced nephrotoxicity in mice. J. Biochem. Mol. Toxicol. 2019 33 9 e22378 10.1002/jbt.22378 31332906
    [Google Scholar]
  56. Mohammed A.I. Fedoruk L. Fisher N. Liu A.X. Khanna S. Naylor K. Gong Z. Celentano A. Alrashdan M.S. Cirillo N. Systemic anti-inflammatory agents in the prevention of chemoradiation-induced mucositis: A review of randomised controlled trials. Biomolecules 2024 14 5 560 10.3390/biom14050560 38785967
    [Google Scholar]
  57. Nicolaysen A. Nephrotoxic chemotherapy agents: Old and new. Adv. Chronic Kidney Dis. 2020 27 1 38 49 10.1053/j.ackd.2019.08.005 32147000
    [Google Scholar]
  58. Grönroos M. Chen M. Jahnukainen T. Capitanio A. Aizman R.I. Celsi G. Methotrexate induces cell swelling and necrosis in renal tubular cells. Pediatr. Blood Cancer 2006 46 5 624 629 https://pubmed.ncbi.nlm.nih.gov/16025437/ 10.1002/pbc.20471 16025437
    [Google Scholar]
  59. Lopez-Olivo MA Siddhanamatha HR Shea B Tugwell P Wells GA Suarez-Almazor ME Methotrexate for treating rheumatoid arthritis. Cochrane. Database Syst. Rev. 2014 2014 6 CD000957 10.1002/14651858.CD000957.pub2
    [Google Scholar]
  60. Bello A. Perkins E. Jay R. Efthimiou P. Recommendations for optimizing methotrexate treatment for patients with rheumatoid arthritis. Open Access Rheumatol. 2017 9 67 79 10.2147/OARRR.S131668 28435338
    [Google Scholar]
  61. Parthasarathy M. Prince S.E. Andrographis paniculata (Burm.f.) Nees Alleviates Methotrexate-Induced Hepatotoxicity in Wistar Albino Rats. Life (Basel) 2023 13 5 1173 10.3390/life13051173 37240818
    [Google Scholar]
  62. El-Agawy MSE Badawy AMM Rabei MR Methotrexate-induced alteration of renal aquaporins 1 and 2, oxidative stress and tubular apoptosis can be attenuated by omega-3 fatty acids supplementation. 2022 23 21 12794 10.3390/ijms232112794
    [Google Scholar]
  63. Widemann B.C. Adamson P.C. Understanding and managing methotrexate nephrotoxicity. Oncologist 2006 11 6 694 703 10.1634/theoncologist.11‑6‑694 16794248
    [Google Scholar]
  64. Shinde C.G. Venkatesh M.P. Kumar T.M.P. Shivakumar H.G. Methotrexate: A gold standard for treatment of rheumatoid arthritis. J. Pain Palliat. Care Pharmacother. 2014 28 4 351 358 10.3109/15360288.2014.959238 25322199
    [Google Scholar]
  65. Wasfey E.F. Shaaban M. Essam M. Ayman Y. Kamar S. Mohasseb T. Rozik R. Khaled H. Eladly M. Elissawi M. Bassem A. Elshora S.Z. Radwan S.M. Infliximab ameliorates methotrexate-induced nephrotoxicity in experimental rat model: Impact on oxidative stress, mitochondrial biogenesis, apoptotic and autophagic machineries. Cell Biochem. Biophys. 2023 81 4 717 726 10.1007/s12013‑023‑01168‑7 37656380
    [Google Scholar]
  66. Sharma S. Baboota S. Amin S. Mir S.R. Ameliorative effect of a standardized polyherbal combination in methotrexate-induced nephrotoxicity in the rat. Pharm. Biol. 2020 58 1 184 199 10.1080/13880209.2020.1717549 32083987
    [Google Scholar]
  67. Kawaguchi S. Fujiwara S.I. Murahashi R. Nakashima H. Matsuoka S. Ikeda T. Toda Y. Ito S. Ban T. Nagayama T. Umino K. Minakata D. Nakano H. Yamasaki R. Ashizawa M. Yamamoto C. Hatano K. Sato K. Oh I. Ohmine K. Kanda Y. Risk factors for high-dose methotrexate-induced nephrotoxicity. Int. J. Hematol. 2021 114 1 79 84 33743109
    [Google Scholar]
  68. Marin G.E. Neag M.A. Burlacu C.C. Buzoianu A.D. The protective effects of nutraceutical components in methotrexate-induced toxicity models—an overview. Microorganisms 2022 10 10 2053 10.3390/microorganisms10102053 36296329
    [Google Scholar]
  69. Kan W.C. Chen Y.C. Wu V.C. Shiao C.C. Vancomycin-associated acute kidney injury: A narrative review from pathophysiology to clinical application. Int. J. Mol. Sci. 2022 23 4 2052 10.3390/ijms23042052 35216167
    [Google Scholar]
  70. Tantranont N. Luque Y. Hsiao M. Haute C. Gaber L. Barrios R. Adrogue H.E. Niasse A. Truong L.D. Vancomycin-associated tubular casts and vancomycin nephrotoxicity. Kidney Int. Rep. 2021 6 7 1912 1922 34307986
    [Google Scholar]
  71. Bamgbola O. Review of vancomycin-induced renal toxicity: An update. Ther. Adv. Endocrinol. Metab. 2016 7 3 136 147 10.1177/2042018816638223 27293542
    [Google Scholar]
  72. Hong T.S. Briscese K. Yuan M. Deshpande K. Aleksunes L.M. Brunetti L. Renoprotective effects of melatonin against vancomycin-related acute kidney injury in hospitalized patients: A retrospective cohort study. Antimicrob. Agents Chemother. 2021 65 9 e00462-21 10.1128/AAC.00462‑21 34152824
    [Google Scholar]
  73. Elyasi S. Khalili H. Dashti-Khavidaki S. Mohammadpour A. Vancomycin-induced nephrotoxicity: Mechanism, incidence, risk factors and special populations. A literature review. Eur. J. Clin. Pharmacol. 2012 68 9 1243 1255 10.1007/s00228‑012‑1259‑9 22411630
    [Google Scholar]
  74. Rahmani H. Khalili H. Prevention of vancomycin-induced nephrotoxicity; an updated review of clinical and preclinical studies. Infect. Disord. Drug Targets 2022 22 2 e310321192584 10.2174/1871526521666210331164552 33797371
    [Google Scholar]
  75. Pais G.M. Liu J. Zepcan S. Avedissian S.N. Rhodes N.J. Downes K.J. Moorthy G.S. Scheetz M.H. Vancomycin-induced kidney injury: Animal models of toxicodynamics, mechanisms of injury, human translation, and potential strategies for prevention. Pharmacotherapy 2020 40 5 438 454 10.1002/phar.2388 32239518
    [Google Scholar]
  76. Badri S. Soltani R. Sayadi M. Khorvash F. Meidani M. Taheri S. Effect of n-acetylcysteine against vancomycin-induced nephrotoxicity: A randomized controlled clinical trial. Arch. Iran Med. 2020 23 6 397 402 10.34172/aim.2020.33 32536177
    [Google Scholar]
  77. Mehanna E.T. Khalaf S.S. Mesbah N.M. Abo-Elmatty D.M. Hafez M.M. Anti-oxidant, anti-apoptotic, and mitochondrial regulatory effects of selenium nanoparticles against vancomycin induced nephrotoxicity in experimental rats. Life Sci. 2022 288 120098 34715137
    [Google Scholar]
  78. Salehi B. Machin L. Monzote L. Sharifi-Rad J. Ezzat S.M. Salem M.A. Merghany R.M. Mahdy E.N.M. Kılıç C.S. Sytar O. Sharifi-Rad M. Sharopov F. Martins N. Martorell M. Cho W.C. Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega 2020 5 20 11849 11872 10.1021/acsomega.0c01818 32478277
    [Google Scholar]
  79. Bulucu F. Oktenli C. Kenar L. Koc B. Ocal R. Karadurmus N. Inal V. Yamanel L. Sanisoglu Y.S. Aydin A. Detrimental effects of N-acetylcysteine plus desferoxamine combination in an experimental nephrotic syndrome model. Int. J. Toxicol. 2007 26 6 525 532 10.1080/10915810701707403 18066968
    [Google Scholar]
  80. Yu P. Luo J. Song H. Qian T. He X. Fang J. Dong W. Bian X. N-acetylcysteine ameliorates vancomycin-induced nephrotoxicity by inhibiting oxidative stress and apoptosis in the in vivo and in vitro models. Int. J. Med. Sci. 2022 19 4 740 752 10.7150/ijms.69807 35582415
    [Google Scholar]
  81. Ahmida M.H.S. Protective role of curcumin in nephrotoxic oxidative damage induced by vancomycin in rats. Exp. Toxicol. Pathol. 2012 64 3 149 153 20832269
    [Google Scholar]
  82. Kiss R.C. Xia F. Acklin S. Targeting DNA damage response and repair to enhance therapeutic index in cisplatin-based cancer treatment. Int. J. Mol. Sci. 2021 22 15 8199 10.3390/ijms22158199 34360968
    [Google Scholar]
  83. Zhang J. Ye Z. Tew K.D. Townsend D.M. Cisplatin chemotherapy and renal function. Adv. Cancer Res. 2021 152 305 327 10.1016/bs.acr.2021.03.008 34353441
    [Google Scholar]
  84. Miller R.P. Tadagavadi R.K. Ramesh G. Reeves W.B. Mechanisms of Cisplatin nephrotoxicity. Toxins 2010 2 11 2490 2518 10.3390/toxins2112490 22069563
    [Google Scholar]
  85. Zhou J Nie RC Yin YX Cai XX Xie D Cai MY Protective effect of natural antioxidants on reducing cisplatin-induced nephrotoxicity. Dis. Markers 2022 2022 1612348 10.1155/2022/1612348
    [Google Scholar]
  86. Dong X.Q. Chu L.K. Cao X. Xiong Q.W. Mao Y.M. Chen C.H. Bi Y.L. Liu J. Yan X.M. Glutathione metabolism rewiring protects renal tubule cells against cisplatin-induced apoptosis and ferroptosis. Redox Rep. 2023 28 1 2152607 10.1080/13510002.2022.2152607 36692085
    [Google Scholar]
  87. Chen B. Liu G. Zou P. Li X. Hao Q. Jiang B. Yang X. Hu Z. Epigallocatechin-3-gallate protects against cisplatin-induced nephrotoxicity by inhibiting endoplasmic reticulum stress-induced apoptosis. Exp. Biol. Med. 2015 240 11 1513 1519 10.1177/1535370215573394 25716017
    [Google Scholar]
  88. Zhu X. Jiang X. Li A. Zhao Z. Li S. S-allylmercaptocysteine attenuates cisplatin-induced nephrotoxicity through suppression of apoptosis, oxidative stress, and inflammation. Nutrients 2017 9 2 166 10.3390/nu9020166 28230744
    [Google Scholar]
  89. Zicca A. Cafaggi S. Mariggiò M.A. Vannozzi M.O. Ottone M. Bocchini V. Caviglioli G. Viale M. Reduction of cisplatin hepatotoxicity by procainamide hydrochloride in rats. Eur. J. Pharmacol. 2002 442 3 265 272 10.1016/S0014‑2999(02)01537‑6 12065080
    [Google Scholar]
  90. Majeed N Tahir M. Effect of nigella sativa extract on renal functions in amphotericin b induced nephrotoxicity in mice. Biomédica 2014 30 1 1 4
    [Google Scholar]
  91. Sabra R. Branch R.A. Amphotericin B nephrotoxicity. Drug Saf. 1990 5 2 94 108 10.2165/00002018‑199005020‑00003 2182052
    [Google Scholar]
  92. Goldman R.D. Koren G. Amphotericin B nephrotoxicity in children. J. Pediatr. Hematol. Oncol. 2004 26 7 421 426 10.1097/00043426‑200407000‑00004 15218415
    [Google Scholar]
  93. Sabra R. Zeinoun N. Sharaf L.H. Ghali R. Beshara G. Serhal H. Role of humoral mediators in, and influence of a liposomal formulation on, acute amphotericin B nephrotoxicity. Pharmacol. Toxicol. 2001 88 4 168 175 10.1111/j.1600‑0773.2001.880402.x 11322173
    [Google Scholar]
  94. Organ-on-a-chip, OoC technology. 2024 Available from: https://www.moleculardevices.com/applications/3d-cell-models/organ-on-a-chip [cited 2024 Jul 25].
/content/journals/cds/10.2174/0115748863362596250627155607
Loading
/content/journals/cds/10.2174/0115748863362596250627155607
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test