Skip to content
2000
image of Transdermal Drug Delivery Systems: Integrating Modern Technology for Enhanced Therapeutics

Abstract

Introduction/Objective

In recent years, transdermal drug delivery systems (TDDS) have gained popularity as a non-invasive, patient-friendly medication delivery method. This review article examines the latest transdermal medication delivery developments and breakthroughs. The review begins with a brief summary of transdermal medication administration, stressing the skin's barrier role and drug permeation methods. Novel materials and methods improve drug solubility, stability, and skin permeability in formulation technologies.

Methods

A literature review of the most recent innovations in TDDS, such as nano-based delivery systems, microneedles, and smart patches, was conducted. Major challenges of drug solubility, stability, and skin permeability were carefully discussed, along with the transdermal patch designs of new therapeutic applications in pain management, cardiovascular diseases, and hormone therapy.

Results

Transdermal medication delivery difficulties may be overcome via nano-based drug delivery systems, microneedle arrays, and smart patches. Furthermore, the paper discusses current advances in transdermal patch design for therapeutic applications, highlighting effective instances in pain management, cardiovascular illness, and hormone therapy.

Conclusion

The article examines transdermal medication delivery regulations, safety, and patient compliance in addition to technological advances. The complete study in this review seeks to help academics, doctors, and pharmaceutical professionals understand transdermal drug delivery and its future. Understanding recent advances in this field can help stakeholders design more effective and patient-friendly transdermal drug delivery systems, enhancing treatment outcomes and patient well-being.

Loading

Article metrics loading...

/content/journals/cds/10.2174/0115748863362068250122102544
2025-02-11
2025-10-29
Loading full text...

Full text loading...

References

  1. Soares S. Costa A. Sarmento B. Novel non-invasive methods of insulin delivery. Expert Opin. Drug Deliv. 2012 9 12 1539 1558 10.1517/17425247.2012.737779 23098366
    [Google Scholar]
  2. Domingues C. Jarak I. Veiga F. Dourado M. Figueiras A. Pediatric drug development: reviewing challenges and opportunities by tracking innovative therapies. Pharmaceutics 2023 15 10 2431 10.3390/pharmaceutics15102431 37896191
    [Google Scholar]
  3. Supe S. Takudage P. Methods for evaluating penetration of drug into the skin: A review. Skin Res. Technol. 2021 27 3 299 308 10.1111/srt.12968 33095948
    [Google Scholar]
  4. Kang J.S. Lee M.H. Overview of therapeutic drug monitoring. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.) 2009 24 1 1 10 10.3904/kjim.2009.24.1.1 19270474
    [Google Scholar]
  5. Kumar K.S. Bhowmik D, Srivastava S, Paswan S, Dutta AS. Sustained release drug delivery system potential. Pharma Innov. 2012 1 2
    [Google Scholar]
  6. Verma R.K. Garg S. Drug delivery technologies and future directions. Pharm. Technol. 2001 25 2 1 14
    [Google Scholar]
  7. Moffat J.G. Vincent F. Lee J.A. Eder J. Prunotto M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 2017 16 8 531 543 10.1038/nrd.2017.111 28685762
    [Google Scholar]
  8. Adepu S. Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules 2021 26 19 5905 10.3390/molecules26195905 34641447
    [Google Scholar]
  9. Sabbagh F. Kim B.S. Recent advances in polymeric transdermal drug delivery systems. J. Control. Release 2022 341 132 146 10.1016/j.jconrel.2021.11.025 34813879
    [Google Scholar]
  10. Wilczewska A.Z. Niemirowicz K. Markiewicz K.H. Car H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012 64 5 1020 1037 10.1016/S1734‑1140(12)70901‑5 23238461
    [Google Scholar]
  11. Tanwar H. Sachdeva R. Transdermal drug delivery system: A review. Int. J. Pharm. Sci. Res. 2016 7 6 2274
    [Google Scholar]
  12. Dhiman S. Singh T.G. Rehni A.K. Transdermal patches: a recent approach to new drug delivery system. Int. J. Pharm. Pharm. Sci. 2011 3 5 26 34
    [Google Scholar]
  13. Jaishankar M. Tseten T. Anbalagan N. Mathew B.B. Beeregowda K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014 7 2 60 72 10.2478/intox‑2014‑0009 26109881
    [Google Scholar]
  14. Meyers M.A. Chen P-Y. Lin A.Y-M. Seki Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008 53 1 1 206 10.1016/j.pmatsci.2007.05.002
    [Google Scholar]
  15. Mishra B. Bonde G.V. Transdermal drug delivery. Controlled drug delivery systems. CRC Press 2020 239 275 10.1201/9780429197833‑14
    [Google Scholar]
  16. Karande P. Mitragotri S. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim. Biophys. Acta Biomembr. 2009 1788 11 2362 2373 10.1016/j.bbamem.2009.08.015 19733150
    [Google Scholar]
  17. Edmondson S.R. Thumiger S.P. Werther G.A. Wraight C.J. Epidermal homeostasis: the role of the growth hormone and insulin-like growth factor systems. Endocr. Rev. 2003 24 6 737 764 10.1210/er.2002‑0021 14671001
    [Google Scholar]
  18. Alkilani A. McCrudden M.T. Donnelly R. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 2015 7 4 438 470 10.3390/pharmaceutics7040438 26506371
    [Google Scholar]
  19. Pawar P. Kashyap H. Malhotra S. Sindhu R. Hp-β-CD-voriconazole in situ gelling system for ocular drug delivery: in vitro, stability, and antifungal activities assessment. BioMed Res. Int. 2013 2013 1 341218 23762839
    [Google Scholar]
  20. Bhattaccharjee S.A. Strategies for Rapid and Sustained Delivery of Actives into and across Skin. Macon, GA: Mercer University 2020 1 6
    [Google Scholar]
  21. Cho B.A. Solubility and crystallization of fentanyl in polyisobutylene films: Parameters that control the stability of a drug in adhesive system. Michigan, US: University of Michigan 2001 1 4
    [Google Scholar]
  22. Thakur A.K. Chellappan D.K. Dua K. Mehta M. Satija S. Singh I. Patented therapeutic drug delivery strategies for targeting pulmonary diseases. Expert Opin. Ther. Pat. 2020 30 5 375 387 10.1080/13543776.2020.1741547 32178542
    [Google Scholar]
  23. Yewale C. Polymers in transdermal drug delivery. Applications of polymers in drug delivery. Elsevier 2021 131 158 10.1016/B978‑0‑12‑819659‑5.00005‑7
    [Google Scholar]
  24. Liu P. Ju T. Qiu Y. Diffusion-controlled drug delivery systems. Design of Controlled Release Drug Delivery Systems 2006 107 137
    [Google Scholar]
  25. Mazidi Z. Javanmardi S. Naghib S.M. Mohammadpour Z. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials. Chem. Eng. J. 2022 433 134569 10.1016/j.cej.2022.134569
    [Google Scholar]
  26. Jithan A. Reddy B.C. Kumar Y.S. Controlled Release Products. Madhusudan RY, Jithin AV, Eds Advances in drug delivery. 1st Ed.. New York: Everand 2019 1 812
    [Google Scholar]
  27. Adibkia K. Ghanbarzadeh S. Shokri M.H. Arami Z. Arash Z. Shokri J. Micro-porous surfaces in controlled drug delivery systems: design and evaluation of diltiazem hydrochloride controlled porosity osmotic pump using non-ionic surfactants as pore-former. Pharm. Dev. Technol. 2014 19 4 507 512 10.3109/10837450.2013.805774 23763379
    [Google Scholar]
  28. Al Hanbali O.A. Khan H.M.S. Sarfraz M. Arafat M. Ijaz S. Hameed A. Transdermal patches: Design and current approaches to painless drug delivery. Acta Pharm. 2019 69 2 197 215 10.2478/acph‑2019‑0016 31259729
    [Google Scholar]
  29. Ediriweera G.R. Chang Y. Wang Q. Gong Y. Akhter D.T. Pang H. Han F.Y. Chen C. Whittaker A.K. Fu C. Stimuli-responsive sulfoxide polymer–protein conjugates with improved pharmacokinetics and tumor delivery. Chem. Mater. 2023 35 17 7252 7265 10.1021/acs.chemmater.3c01566
    [Google Scholar]
  30. Dash A. Cudworth G. II Therapeutic applications of implantable drug delivery systems. J. Pharmacol. Toxicol. Methods 1998 40 1 1 12 10.1016/S1056‑8719(98)00027‑6 9920528
    [Google Scholar]
  31. Anal A.K. Chapter 11 - Controlled-Release Dosage Forms. Pharmaceutical Manufacturing Handbook:Production and Processes.Hoboken, New Jersey: John Wiley & Sons, Inc. 2008 347 392 10.1002/9780470259818.ch11
    [Google Scholar]
  32. Ita K.B. K., Chemical penetration enhancers for transdermal drug delivery-success and challenges. Curr. Drug Deliv. 2015 12 6 645 651 10.2174/1567201812666150804104600 26239423
    [Google Scholar]
  33. Al-Khalili M. Enhancement of drug permeability in different skin models using physical and chemical techniques. Columbia, South Carolina: University of South Carolina 2002 1 8
    [Google Scholar]
  34. Pereira R. Silva S.G. Pinheiro M. Reis S. Vale M.L. Current status of amino acid-based permeation enhancers in transdermal drug delivery. Membranes (Basel) 2021 11 5 343 10.3390/membranes11050343 34067194
    [Google Scholar]
  35. Lodén M. Role of topical emollients and moisturizers in the treatment of dry skin barrier disorders. Am. J. Clin. Dermatol. 2003 4 11 771 788 10.2165/00128071‑200304110‑00005 14572299
    [Google Scholar]
  36. Dragicevic N. Atkinson J.P. Maibach H.I. Chemical penetration enhancers: classification and mode of action. Percutaneous penetration enhancers chemical methods in penetration enhancement: modification of the stratum corneum. Springer 2015 11 27 10.1007/978‑3‑662‑47039‑8_2
    [Google Scholar]
  37. Rao R. Nanda S. Sonophoresis: recent advancements and future trends. J. Pharm. Pharmacol. 2009 61 6 689 705 10.1211/jpp.61.06.0001 19505359
    [Google Scholar]
  38. Alexander A. Dwivedi S. Ajazuddin Giri T.K. Saraf S. Saraf S. Tripathi D.K. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J. Control. Release 2012 164 1 26 40 10.1016/j.jconrel.2012.09.017 23064010
    [Google Scholar]
  39. Alkilani A.Z. Nasereddin J. Hamed R. Nimrawi S. Hussein G. Abo-Zour H. Donnelly R.F. Beneath the skin: a review of current trends and future prospects of transdermal drug delivery systems. Pharmaceutics 2022 14 6 1152 10.3390/pharmaceutics14061152 35745725
    [Google Scholar]
  40. Kochhar J.S. Tan JY, Kwang YC, Kang L. Microneedles for transdermal drug delivery. Switzerland: Springer Nature 2019 156 10.1007/978‑3‑030‑15444‑8
    [Google Scholar]
  41. Makvandi P. Kirkby M. Hutton A.R.J. Shabani M. Yiu C.K.Y. Baghbantaraghdari Z. Jamaledin R. Carlotti M. Mazzolai B. Mattoli V. Donnelly R.F. Engineering microneedle patches for improved penetration: analysis, skin models and factors affecting needle insertion. Nano-Micro Lett. 2021 13 1 93 10.1007/s40820‑021‑00611‑9 34138349
    [Google Scholar]
  42. Wang R. Jiang G. Aharodnikau U.E. Yunusov K. Sun Y. Liu T. Solomevich S.O. Recent advances in polymer microneedles for drug transdermal delivery: Design strategies and applications. Macromol. Rapid Commun. 2022 43 8 2200037 10.1002/marc.202200037 35286762
    [Google Scholar]
  43. Ita K. Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics 2015 7 3 90 105 10.3390/pharmaceutics7030090 26131647
    [Google Scholar]
  44. Nagarkar R. Singh M. Nguyen H.X. Jonnalagadda S. A review of recent advances in microneedle technology for transdermal drug delivery. J. Drug Deliv. Sci. Technol. 2020 59 101923 10.1016/j.jddst.2020.101923
    [Google Scholar]
  45. Yao S. Luo Y. Wang Y. Engineered microneedles arrays for wound healing. Engineered Regeneration 2022 3 3 232 240 10.1016/j.engreg.2022.05.003
    [Google Scholar]
  46. Dhankhar S. Garg N. Chauhan S. Saini M. Singh T.G. Singh R. Unravelling the Microbiome’s Role in Healing Diabetic Wounds. Curr. Pharm. Biotechnol. 2024 25 1 13 38920078
    [Google Scholar]
  47. Lee J.W. Park J.H. Prausnitz M.R. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008 29 13 2113 2124 10.1016/j.biomaterials.2007.12.048 18261792
    [Google Scholar]
  48. Wu K.S-h. Mechanical behavior of human stratum corneum: relationship to tissue structure and condition. Stanford, California:Stanford University 2006 1 8
    [Google Scholar]
  49. Zhang T. Luo X. Xu K. Zhong W. Peptide-containing nanoformulations: Skin barrier penetration and activity contribution. Adv. Drug Deliv. Rev. 2023 203 115139 10.1016/j.addr.2023.115139 37951358
    [Google Scholar]
  50. DeMuth P.C. Min Y. Huang B. Kramer J.A. Miller A.D. Barouch D.H. Hammond P.T. Irvine D.J. Polymer multilayer tattooing for enhanced DNA vaccination. Nat. Mater. 2013 12 4 367 376 10.1038/nmat3550 23353628
    [Google Scholar]
  51. Baek S.H. Shin J.H. Kim Y.C. Drug-coated microneedles for rapid and painless local anesthesia. Biomed. Microdevices 2017 19 1 2 10.1007/s10544‑016‑0144‑1 28070698
    [Google Scholar]
  52. Shin J.H. Noh J.Y. Kim K.H. Park J.K. Lee J.H. Jeong S.D. Jung D.Y. Song C.S. Kim Y.C. Effect of zymosan and poly (I:C) adjuvants on responses to microneedle immunization coated with whole inactivated influenza vaccine. J. Control. Release 2017 265 83 92 10.1016/j.jconrel.2017.09.010 28890214
    [Google Scholar]
  53. Dugam S. Tade R. Dhole R. Nangare S. Emerging era of microneedle array for pharmaceutical and biomedical applications: recent advances and toxicological perspectives. Future J. Pharm. Sci. 2021 7 1 19 10.1186/s43094‑020‑00176‑1
    [Google Scholar]
  54. Fu J. Li C. Liu Y. Chen M. Zhang Q. Yu X. Wu B. Li J. Du L. Dang Y. Wu D. Wei M. Lin Z. Lei X. The microneedles carrying cisplatin and IR820 to perform synergistic chemo-photodynamic therapy against breast cancer. J. Nanobiotechnology 2020 18 1 146 10.1186/s12951‑020‑00697‑0 33076924
    [Google Scholar]
  55. Liu Y. Ye L. Lin F. Gomaa Y. Flyer D. Carrion R. Jr Patterson J.L. Prausnitz M.R. Smith G. Glenn G. Wu H. Compans R.W. Yang C. Intradermal vaccination with adjuvanted ebola virus soluble glycoprotein subunit vaccine by microneedle patches protects mice against lethal ebola virus challenge. J. Infect. Dis. 2018 218 Suppl. 5 S545 S552 10.1093/infdis/jiy267 29893888
    [Google Scholar]
  56. Savitri D. Wahyuni S. Bukhari A. Djawad K. Hatta M. Riyanto P. Bahar B. Wahab S. Hamid F. Rifai Y. Anti-inflammatory effects of banana (Musa balbisiana) peel extract on acne vulgaris: In vivo and in silico study. J. Taibah Univ. Med. Sci. 2023 18 6 1586 1598 10.1016/j.jtumed.2023.07.008 37693819
    [Google Scholar]
  57. Amarnani R. Shende P. Microneedles in diagnostic, treatment and theranostics: An advancement in minimally-invasive delivery system. Biomed. Microdevices 2022 24 1 4 10.1007/s10544‑021‑00604‑w 34878589
    [Google Scholar]
  58. Li X. Zhao Z. Zhang M. Ling G. Zhang P. Research progress of microneedles in the treatment of melanoma. J. Control. Release 2022 348 631 647 10.1016/j.jconrel.2022.06.021 35718209
    [Google Scholar]
  59. Jain A.K. Lee C.H. Gill H.S. 5-Aminolevulinic acid coated microneedles for photodynamic therapy of skin tumors. J. Control. Release 2016 239 72 81 10.1016/j.jconrel.2016.08.015 27543445
    [Google Scholar]
  60. Hao Y. Dong M. Zhang T. Peng J. Jia Y. Cao Y. Qian Z. Novel approach of using near-infrared responsive PEGylated gold nanorod coated poly (l-lactide) microneedles to enhance the antitumor efficiency of docetaxel-loaded MPEG-PDLLA micelles for treating an A431 tumor. ACS Appl. Mater. Interfaces 2017 9 18 15317 15327 10.1021/acsami.7b03604 28418236
    [Google Scholar]
  61. Xie X. Pascual C. Lieu C. Oh S. Wang J. Zou B. Xie J. Li Z. Xie J. Yeomans D.C. Wu M.X. Xie X.S. Analgesic microneedle patch for neuropathic pain therapy. ACS Nano 2017 11 1 395 406 10.1021/acsnano.6b06104 28001346
    [Google Scholar]
  62. Manoj H. Gupta P, Mohan L, Nagai M, Wankhar S, Santra TS.Microneedles: Current trends & applications. In: Microfluidics and Bio-MEMS. Dubai, U.A.E.: Jenny Stanford Publishing 2020 275 342 10.1201/9781003014935‑7
    [Google Scholar]
  63. Chen Y. Chen N. Feng X. The role of internal and external stimuli in the rational design of skin-specific drug delivery systems. Int. J. Pharm. 2021 592 120081 10.1016/j.ijpharm.2020.120081 33189810
    [Google Scholar]
  64. Kochhar J.S. Lim W.X.S. Zou S. Foo W.Y. Pan J. Kang L. Microneedle integrated transdermal patch for fast onset and sustained delivery of lidocaine. Mol. Pharm. 2013 10 11 4272 4280 10.1021/mp400359w 24044683
    [Google Scholar]
  65. Ling M.H. Chen M.C. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats. Acta Biomater. 2013 9 11 8952 8961 10.1016/j.actbio.2013.06.029 23816646
    [Google Scholar]
  66. Liu S. Wu D. Quan Y. Kamiyama F. Kusamori K. Katsumi H. Sakane T. Yamamoto A. Improvement of transdermal delivery of exendin-4 using novel tip-loaded microneedle arrays fabricated from hyaluronic acid. Mol. Pharm. 2016 13 1 272 279 10.1021/acs.molpharmaceut.5b00765 26649921
    [Google Scholar]
  67. Zhang Y. Yu J. Kahkoska A.R. Wang J. Buse J.B. Gu Z. Advances in transdermal insulin delivery. Adv. Drug Deliv. Rev. 2019 139 51 70 10.1016/j.addr.2018.12.006 30528729
    [Google Scholar]
  68. Yang J. Luo R. Yang L. Wang X. Huang Y. Microneedle-integrated sensors for extraction of skin interstitial fluid and metabolic analysis. Int. J. Mol. Sci. 2023 24 12 9882 10.3390/ijms24129882 37373027
    [Google Scholar]
  69. Mohan A.M.V. Windmiller J.R. Mishra R.K. Wang J. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosens. Bioelectron. 2017 91 574 579 10.1016/j.bios.2017.01.016 28088750
    [Google Scholar]
  70. Dixit N. Bali V. Baboota S. Ahuja A. Ali J. Iontophoresis - an approach for controlled drug delivery: a review. Curr. Drug Deliv. 2007 4 1 1 10 17269912
    [Google Scholar]
  71. Xu X. Zhang H. Yan Y. Wang J. Guo L. Effects of electrical stimulation on skin surface. Acta Mech. Sin. 2021 37 12 1843 1871 10.1007/s10409‑020‑01026‑2 33584001
    [Google Scholar]
  72. Priya B. Rashmi T. Bozena M. Transdermal iontophoresis. Expert Opin. Drug Deliv. 2006 3 1 127 138 10.1517/17425247.3.1.127 16370945
    [Google Scholar]
  73. Roy S. Chakraborty T. Iontophoretic drug permeation enhancement techniques. Advances and Challenges in Pharmaceutical Technology. Elsevier 2021 395 409 10.1016/B978‑0‑12‑820043‑8.00015‑3
    [Google Scholar]
  74. Bradley Phipps J. Gyory J.R. Transdermal ion migration. Adv. Drug Deliv. Rev. 1992 9 2-3 137 176 10.1016/0169‑409X(92)90022‑I
    [Google Scholar]
  75. Fischbarg J. Hernandez J.A. Rubashkin A.A. Iserovich P. Cacace V.I. Kusnier C.F. Epithelial fluid transport is due to electro-osmosis (80%), plus osmosis (20%). J. Membr. Biol. 2017 250 3 327 333 10.1007/s00232‑017‑9966‑x 28623474
    [Google Scholar]
  76. Alizadeh A. Hsu W.L. Wang M. Daiguji H. Electroosmotic flow: From microfluidics to nanofluidics. Electrophoresis 2021 42 7-8 834 868 10.1002/elps.202000313 33382088
    [Google Scholar]
  77. Zhang H. Zhai Y. Yang X. Zhai G. Breaking the skin barrier: achievements and future directions. Curr. Pharm. Des. 2015 21 20 2713 2724 10.2174/1381612821666150428124406 25925124
    [Google Scholar]
  78. Gelfuso G.M. Figueiredo F.V. Gratieri T. Lopez R.F.V. The effects of pH and ionic strength on topical delivery of a negatively charged porphyrin (TPPS4). J. Pharm. Sci. 2008 97 10 4249 4257 10.1002/jps.21295 18240285
    [Google Scholar]
  79. Rac V. Lević S. Balanč B. Graells BO. Bijelić G. PVA Cryogel as model hydrogel for iontophoretic transdermal drug delivery investigations. Comparison with PAA/PVA and PAA/PVP interpenetrating networks. Colloids Surf. B Biointerfaces 2019 180 441 448 10.1016/j.colsurfb.2019.05.017 31096138
    [Google Scholar]
  80. Saharan R. Kaur J. Dhankhar S. Garg N. Chauhan S. Beniwal S. Sharma H. Hydrogel-based Drug Delivery System in Diabetes Management. Pharm. Nanotechnol. 2024 12 4 289 299 10.2174/0122117385266276230928064235 37818559
    [Google Scholar]
  81. Wang Y. Zeng L, Song W, Liu J. Influencing factors and drug application of iontophoresis in transdermal drug delivery: an overview of recent progress. Drug Deliv. Transl. Res. 2021 12 1 15 26 10.1007/s13346‑021‑00898‑6 33486687
    [Google Scholar]
  82. Chauhan S. Current Approaches in Healing of Wounds in Diabetes and Diabetic Foot Ulcers. Curr. Bioact. Compd. 2023 19 3 104 121
    [Google Scholar]
  83. Ahmadi F. McLoughlin I.V. Chauhan S. ter-Haar G. Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure. Prog. Biophys. Mol. Biol. 2012 108 3 119 138 10.1016/j.pbiomolbio.2012.01.004 22402278
    [Google Scholar]
  84. Feiszthuber H. Bhatnagar S. Gyöngy M. Coussios C.C. Cavitation-enhanced delivery of insulin in agar and porcine models of human skin. Phys. Med. Biol. 2015 60 6 2421 2434 10.1088/0031‑9155/60/6/2421 25716689
    [Google Scholar]
  85. Sharma K.S. Artificial intelligence assisted fabrication of 3D, 4D and 5D printed formulations or devices for drug delivery. Curr. Drug Deliv. 2023 20 6 752 769 10.2174/1567201820666221207140956 36503474
    [Google Scholar]
  86. Mittal P. Biobased Nanomaterials in Biomedical Applications. Biobased Nanomaterials 2024 141 171 10.1007/978‑981‑97‑0542‑9_6
    [Google Scholar]
  87. Sahlgren C. Meinander A. Zhang H. Cheng F. Preis M. Xu C. Salminen T.A. Toivola D. Abankwa D. Rosling A. Karaman D.Ş. Salo-Ahen O.M.H. Österbacka R. Eriksson J.E. Willför S. Petre I. Peltonen J. Leino R. Johnson M. Rosenholm J. Sandler N. Tailored approaches in drug development and diagnostics: from molecular design to biological model systems. Adv. Healthc. Mater. 2017 6 21 1700258 10.1002/adhm.201700258 28892296
    [Google Scholar]
  88. Warsi M.H. Yusuf M. Al Robaian M. Khan M. Muheem A. Khan S. 3D printing methods for pharmaceutical manufacturing: opportunity and challenges. Curr. Pharm. Des. 2019 24 42 4949 4956 10.2174/1381612825666181206121701 30520367
    [Google Scholar]
  89. Savvides L. A History of 3D Printing: Three Waves of Development. 3D Printing Cultures, Politics and Hackerspaces (Digital Activism and Society: Politics, Economy And Culture In Network Communication) Emerald Publishing Limited : Leeds 2021 29 51 10.1108/978‑1‑80071‑665‑020211005
    [Google Scholar]
  90. Joseph B. Sam RM, Tharayil A, Sagarika VK, Kalarikkal N,Thomas S. Chapter 13 - Photopolymers for 3D printing. In: Polymers for 3D Printing. Amsterdam, Netherlands: Elsevier 2022 145 154 10.1016/B978‑0‑12‑818311‑3.00011‑2
    [Google Scholar]
  91. Abdella S. Youssef S.H. Afinjuomo F. Song Y. Fouladian P. Upton R. Garg S. 3D Printing of thermo-sensitive drugs. Pharmaceutics 2021 13 9 1524 10.3390/pharmaceutics13091524 34575600
    [Google Scholar]
  92. Jandyal A. Chaturvedi I. Wazir I. Raina A. Ul Haq M.I. 3D printing – A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers 2022 3 33 42 10.1016/j.susoc.2021.09.004
    [Google Scholar]
  93. Song Y. Ghafari Y. Asefnejad A. Toghraie D. An overview of selective laser sintering 3D printing technology for biomedical and sports device applications: Processes, materials, and applications. Opt. Laser Technol. 2024 171 110459 10.1016/j.optlastec.2023.110459
    [Google Scholar]
  94. Yao Z.C. Wang J.C. Ahmad Z. Li J.S. Chang M.W. Fabrication of patterned three-dimensional micron scaled core-sheath architectures for drug patches. Mater. Sci. Eng. C 2019 97 776 783 10.1016/j.msec.2018.12.110 30678967
    [Google Scholar]
  95. Senapati S. Mahanta A.K. Kumar S. Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018 3 1 7 10.1038/s41392‑017‑0004‑3 29560283
    [Google Scholar]
  96. Ghilan A. Chiriac A.P. Nita L.E. Rusu A.G. Neamtu I. Chiriac V.M. Trends in 3D printing processes for biomedical field: opportunities and challenges. J. Polym. Environ. 2020 28 5 1345 1367 10.1007/s10924‑020‑01722‑x 32435165
    [Google Scholar]
  97. Nguyen T. Study, Design and Implementation of 3D Printer. Thesis Häme University of Applied Sciences 2019 41
    [Google Scholar]
  98. Rabiei M. Kashanian S. Samavati S.S. Jamasb S. McInnes S.J.P. Nanomaterial and advanced technologies in transdermal drug delivery. J. Drug Target. 2020 28 4 356 367 10.1080/1061186X.2019.1693579 31851847
    [Google Scholar]
  99. Sood R. Tomar D. Kaushik P. Sharma P. Rani N. Guarve K. Dhankhar S. Garg N. Enhanced Solubility and Increased Bioavailability with Engineered Nanocrystals. Curr. Drug Ther. 2024 19 6 638 647 10.2174/0115748855269071231113070552
    [Google Scholar]
  100. Sharma S. Kumari N. Garg D. Chauhan S. A Compendium of Bioavailability Enhancement via Niosome Technology. Pharm. Nanotechnol. 2023 11 4 324 338 10.2174/2211738511666230309104323 36892113
    [Google Scholar]
  101. Prow T.W. Grice J.E. Lin L.L. Faye R. Butler M. Becker W. Wurm E.M.T. Yoong C. Robertson T.A. Soyer H.P. Roberts M.S. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev. 2011 63 6 470 491 10.1016/j.addr.2011.01.012 21315122
    [Google Scholar]
  102. Sharma P. Kaushik P. Kumar Sharma S. Dhankhar S. Garg N. Rani N. Exploring Microsponges in Dermatology: Opportunities and Hurdles Ahead. Micro Nanosyst. 2024 16 2 65 74 10.2174/0118764029295903240328054858
    [Google Scholar]
  103. Mokhtarzadeh A. Alibakhshi A. Yaghoobi H. Hashemi M. Hejazi M. Ramezani M. Recent advances on biocompatible and biodegradable nanoparticles as gene carriers. Expert Opin. Biol. Ther. 2016 16 6 771 785 10.1517/14712598.2016.1169269 26998622
    [Google Scholar]
  104. Sharma H. Garg N. Dhankhar S. MIttal P. Chauhan S. Saini M. Biobased Nanomaterials: Pioneering Innovations for Biomedical Advancements. Pharm. Nanotechnol. 2024 12 1 15 10.2174/0122117385291530240305044703 38504570
    [Google Scholar]
  105. Raj S. Khurana S, Choudhari R, Kesari KK, Kamal MA, Garg N, etal. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. In: Seminars in cancer biology. Amsterdam, Netherlands: Elsevier 2021 69 166 77 10.1016/j.semcancer.2019.11.002 31715247
    [Google Scholar]
  106. Dhankar S. Garg N. Chauhan S. Saini M. A Bird View on the Role of Graphene Oxide Nanosystems in Therapeutic Delivery. Curr. Nanosci. 2024 20 1 11 10.2174/0115734137299120240312044808
    [Google Scholar]
  107. Mura S. Nicolas J. Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013 12 11 991 1003 10.1038/nmat3776 24150417
    [Google Scholar]
  108. Fumoto S. Nishida K. Co-delivery systems of multiple drugs using nanotechnology for future cancer therapy. Chem. Pharm. Bull. (Tokyo) 2020 68 7 603 612 10.1248/cpb.c20‑00008 32611997
    [Google Scholar]
  109. Kumar L. Verma S. Singh M. Chalotra T. Utreja P. Advanced drug delivery systems for transdermal delivery of non-steroidal anti-inflammatory drugs: A review. Curr. Drug Deliv. 2018 15 8 1087 1099 10.2174/1567201815666180605114131 29875000
    [Google Scholar]
  110. Wen H. Jung H. Li X. Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J. 2015 17 6 1327 1340 10.1208/s12248‑015‑9814‑9 26276218
    [Google Scholar]
  111. Burger C. Shahzad Y. Brummer A. Gerber M. du Plessis J. Traversing the skin barrier with nano-emulsions. Curr. Drug Deliv. 2017 14 4 458 472 27557672
    [Google Scholar]
  112. Rajpoot K. Solid lipid nanoparticles: a promising nanomaterial in drug delivery. Curr. Pharm. Des. 2019 25 37 3943 3959 10.2174/1381612825666190903155321 31481000
    [Google Scholar]
  113. Svenson S. Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 2009 31 3 445 62 10.1016/j.ejpb.2008.09.023 18976707
    [Google Scholar]
  114. Kesharwani P. Dendrimer-based nanotherapeutics. Academic Press 2021
    [Google Scholar]
  115. Pierre M.B.R. dos Santos Miranda Costa I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch. Dermatol. Res. 2011 303 9 607 621 10.1007/s00403‑011‑1166‑4 21805180
    [Google Scholar]
  116. Souto E.B. Fernandes A.R. Martins-Gomes C. Coutinho T.E. Durazzo A. Lucarini M. Souto S.B. Silva A.M. Santini A. Nanomaterials for skin delivery of cosmeceuticals and pharmaceuticals. Appl. Sci. (Basel) 2020 10 5 1594 10.3390/app10051594
    [Google Scholar]
  117. Barkat M.A. Harshita Rizwanullah M. Pottoo F.H. Beg S. Akhter S. Ahmad F.J. Therapeutic nanoemulsion: concept to delivery. Curr. Pharm. Des. 2020 26 11 1145 1166 10.2174/1381612826666200317140600 32183664
    [Google Scholar]
  118. Shastri D.H. Effective delivery routes and strategies for solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). Curr. Pharm. Des. 2018 23 43 6592 6601 10.2174/1381612823666171122111132 29173154
    [Google Scholar]
/content/journals/cds/10.2174/0115748863362068250122102544
Loading
/content/journals/cds/10.2174/0115748863362068250122102544
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test