Skip to content
2000
image of Understanding and Mitigating Cardiotoxicity in Anticancer Drug 
Therapy: A Comprehensive Review

Abstract

Cancer and heart disease stand as the leading global causes of morbidity and mortality. Although advancements in cancer treatment have improved survival rates, the associated cardiovascular risks cannot be overlooked. This paper delves into the intricate relationship between cancer treatment and adverse cardiovascular events, emphasizing the critical role of factors such as drug type, dosage, administration mode, and treatment duration. Cardiotoxicity, which manifests as irreversible damage or reversible dysfunction, poses a significant challenge, with myocardial dysfunction potentially progressing to congestive heart failure. Various cardiac events, including hypertension, ischemia, and rhythm abnormalities, may be linked to cancer treatments, necessitating a nuanced understanding of their impact on the cardiovascular system. The review sheds light on the unexpected rates of cardiac dysfunction in cancer patients receiving both traditional chemotherapy drugs and novel chemotherapy drugs. Strategies for mitigating cardiovascular damage are explored, encompassing both synthetic medications and natural products as potential cardio protectants. The paper comprehensively explores the cellular and molecular pathways leading to cardiotoxicity induced by targeted therapy and chemotherapy. Additionally, it discusses cardioprotective tactics crucial for managing acute and chronic manifestations of cardiac damage, as well as diagnostic blood biomarkers for early detection. In light of the growing intersection between cancer and cardiovascular health, implementing effective strategies to safeguard the health of patients during cancer treatment becomes imperative for providing optimal patient care.

Loading

Article metrics loading...

/content/journals/cds/10.2174/0115748863356150250414071307
2025-05-06
2025-09-16
Loading full text...

Full text loading...

References

  1. Geiger S. Lange V. Suhl P. Heinemann V. Stemmler H.J. Anticancer therapy induced cardiotoxicity: Review of the literature. Anticancer Drugs 2010 21 6 578 590 10.1097/CAD.0b013e3283394624 20375725
    [Google Scholar]
  2. Morelli M.B. Bongiovanni C. Da Pra S. Miano C. Sacchi F. Lauriola M. D’Uva G. Cardiotoxicity of anticancer drugs: Molecular mechanisms and strategies for cardioprotection. Front. Cardiovasc. Med. 2022 9 847012 10.3389/fcvm.2022.847012 35497981
    [Google Scholar]
  3. Rosa G.M. Gigli L. Tagliasacchi M.I. Di Iorio C. Carbone F. Nencioni A. Montecucco F. Brunelli C. Update on cardiotoxicity of anti‐cancer treatments. Eur. J. Clin. Invest. 2016 46 3 264 284 10.1111/eci.12589 26728634
    [Google Scholar]
  4. Ahmad J. Thurlapati A. Thotamgari S. Grewal U.S. Sheth A.R. Gupta D. Beedupalli K. Dominic P. Anti-cancer drugs associated atrial fibrillation—an analysis of real-world pharmacovigilance data. Front. Cardiovasc. Med. 2022 9 739044 10.3389/fcvm.2022.739044 35498039
    [Google Scholar]
  5. Curigliano G. Cardinale D. Dent S. Criscitiello C. Aseyev O. Lenihan D. Cipolla C.M. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J. Clin. 2016 66 4 309 325 10.3322/caac.21341 26919165
    [Google Scholar]
  6. Choksey A. Timm K.N. Cancer therapy-induced cardiotoxicity—a metabolic perspective on pathogenesis, diagnosis and therapy. Int. J. Mol. Sci. 2021 23 1 441 10.3390/ijms23010441 35008867
    [Google Scholar]
  7. Papazoglou P. Peng L. Sachinidis A. Epigenetic mechanisms involved in the cardiovascular toxicity of anticancer drugs. Front. Cardiovasc. Med. 2021 8 658900 10.3389/fcvm.2021.658900 33987212
    [Google Scholar]
  8. Brandão S.R. Carvalho F. Amado F. Ferreira R. Costa V.M. Insights on the molecular targets of cardiotoxicity induced by anticancer drugs: A systematic review based on proteomic findings. Metabolism 2022 134 155250 10.1016/j.metabol.2022.155250 35809654
    [Google Scholar]
  9. Syahputra R.A. Harahap U. Dalimunthe A. Nasution M.P. Satria D. The role of flavonoids as a cardioprotective strategy against doxorubicin-induced cardiotoxicity: A review. Molecules 2022 27 4 1320 10.3390/molecules27041320 35209107
    [Google Scholar]
  10. Ananthan K. Lyon A.R. The role of biomarkers in cardio-oncology. J. Cardiovasc. Transl. Res. 2020 13 3 431 450 10.1007/s12265‑020‑10042‑3 32642841
    [Google Scholar]
  11. Hazafa A. Rehman K.U. Jahan N. Jabeen Z. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells. Nutr. Cancer 2020 72 3 386 397 10.1080/01635581.2019.1637006 31287738
    [Google Scholar]
  12. Berthiaume J.M. Wallace K.B. Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol. Toxicol. 2007 23 1 15 25 10.1007/s10565‑006‑0140‑y 17009097
    [Google Scholar]
  13. Gorini S. De Angelis A. Berrino L. Malara N. Rosano G. Ferraro E. Chemotherapeutic drugs and mitochondrial dysfunction: Focus on doxorubicin, trastuzumab, and sunitinib. Oxid. Med. Cell. Longev. 2018 2018 1 7582730 10.1155/2018/7582730 29743983
    [Google Scholar]
  14. Ferreira A. Cunha-Oliveira T. Simões R.F. Carvalho F.S. Burgeiro A. Nordgren K. Wallace K.B. Oliveira P.J. Altered mitochondrial epigenetics associated with subchronic doxorubicin cardiotoxicity. Toxicology 2017 390 63 73 10.1016/j.tox.2017.08.011 28865727
    [Google Scholar]
  15. Tokarska-Schlattner M. Zaugg M. Zuppinger C. Wallimann T. Schlattner U. New insights into doxorubicin-induced cardiotoxicity: The critical role of cellular energetics. J. Mol. Cell. Cardiol. 2006 41 3 389 405 10.1016/j.yjmcc.2006.06.009 16879835
    [Google Scholar]
  16. Tadokoro T. Ikeda M. Ide T. Deguchi H. Ikeda S. Okabe K. Ishikita A. Matsushima S. Koumura T. Yamada K. Imai H. Tsutsui H. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight 2020 5 9 e132747 10.1172/jci.insight.132747 32376803
    [Google Scholar]
  17. Zhang S. Liu X. Bawa-Khalfe T. Lu L.S. Lyu Y.L. Liu L.F. Yeh E.T.H. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 2012 18 11 1639 1642 10.1038/nm.2919 23104132
    [Google Scholar]
  18. Gambardella J. Trimarco B. Iaccarino G. Sorriento D. Cardiac nonmyocyte cell functions and crosstalks in response to cardiotoxic drugs. Oxid. Med. Cell. Longev. 2017 2017 1 1089359 10.1155/2017/1089359 29201269
    [Google Scholar]
  19. Swain S.M. Whaley F.S. Ewer M.S. Congestive heart failure in patients treated with doxorubicin. Cancer 2003 97 11 2869 2879 10.1002/cncr.11407 12767102
    [Google Scholar]
  20. Albini A. Pennesi G. Donatelli F. Cammarota R. De Flora S. Noonan D.M. Cardiotoxicity of anticancer drugs: The need for cardio-oncology and cardio-oncological prevention. J. Natl. Cancer Inst. 2010 102 1 14 25 10.1093/jnci/djp440 20007921
    [Google Scholar]
  21. Wouters K.A. Kremer L.C.M. Miller T.L. Herman E.H. Lipshultz S.E. Protecting against anthracycline‐induced myocardial damage: A review of the most promising strategies. Br. J. Haematol. 2005 131 5 561 578 10.1111/j.1365‑2141.2005.05759.x 16351632
    [Google Scholar]
  22. Von Hoff D.D. Layard M.W. Basa P. Davis H.L. Jr Von Hoff A.L. Rozencweig M. Muggia F.M. Risk factors for doxorubicin-induced congestive heart failure. Ann. Intern. Med. 1979 91 5 710 717 10.7326/0003‑4819‑91‑5‑710 496103
    [Google Scholar]
  23. Smith L.A. Cornelius V.R. Plummer C.J. Levitt G. Verrill M. Canney P. Jones A. Cardiotoxicity of anthracycline agents for the treatment of cancer: Systematic review and meta-analysis of randomised controlled trials. BMC Cancer 2010 10 1 337 10.1186/1471‑2407‑10‑337 20587042
    [Google Scholar]
  24. Meyer C.C. Calis K.A. Burke L.B. Walawander C.A. Grasela T.H. Symptomatic cardiotoxicity associated with 5-fluorouracil. Pharmacotherapy 1997 17 4 729 736 10.1002/j.1875‑9114.1997.tb03748.x 9250550
    [Google Scholar]
  25. Jurczyk M. Król M. Midro A. Kurnik-Łucka M. Poniatowski A. Gil K. Cardiotoxicity of Fluoropyrimidines: Epidemiology, mechanisms, diagnosis, and management. J. Clin. Med. 2021 10 19 4426 10.3390/jcm10194426 34640443
    [Google Scholar]
  26. Shiga T. Hiraide M. Cardiotoxicities of 5-Fluorouracil and Other Fluoropyrimidines. Curr. Treat. Options Oncol. 2020 21 4 27 10.1007/s11864‑020‑0719‑1 32266582
    [Google Scholar]
  27. Curtin N.J. Harris A.L. Aherne G.W. Mechanism of cell death following thymidylate synthase inhibition: 2′-deoxyuridine-5′-triphosphate accumulation, DNA damage, and growth inhibition following exposure to CB3717 and dipyridamole. Cancer Res. 1991 51 9 2346 2352 2015598
    [Google Scholar]
  28. Longley D.B. Harkin D.P. Johnston P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003 3 5 330 338 10.1038/nrc1074 12724731
    [Google Scholar]
  29. Adjei A.A. A review of the pharmacology and clinical activity of new chemotherapy agents for the treatment of colorectal cancer. Br. J. Clin. Pharmacol. 1999 48 3 265 277 10.1046/j.1365‑2125.1999.00010.x 10510136
    [Google Scholar]
  30. de Forni M. Malet-Martino M.C. Jaillais P. Shubinski R.E. Bachaud J.M. Lemaire L. Canal P. Chevreau C. Carrié D. Soulié P. Cardiotoxicity of high-dose continuous infusion fluorouracil: A prospective clinical study. J. Clin. Oncol. 1992 10 11 1795 1801 10.1200/JCO.1992.10.11.1795 1403060
    [Google Scholar]
  31. Kosmas C. Kallistratos M.S. Kopterides P. Syrios J. Skopelitis H. Mylonakis N. Karabelis A. Tsavaris N. Cardiotoxicity of fluoropyrimidines in different schedules of administration: A prospective study. J. Cancer Res. Clin. Oncol. 2008 134 1 75 82 10.1007/s00432‑007‑0250‑9 17636329
    [Google Scholar]
  32. Saif M.W. Shah M.M. Shah A.R. Fluoropyrimidine-associated cardiotoxicity: Revisited. Expert Opin. Drug Saf. 2009 8 2 191 202 10.1517/14740330902733961 19309247
    [Google Scholar]
  33. Jensen S.A. Sørensen J.B. Risk factors and prevention of cardiotoxicity induced by 5-fluorouracil or capecitabine. Cancer Chemother. Pharmacol. 2006 58 4 487 493 10.1007/s00280‑005‑0178‑1 16418875
    [Google Scholar]
  34. Zamorano J.L. Lancellotti P. Rodriguez Muñoz D. Aboyans V. Asteggiano R. Galderisi M. Habib G. Lenihan D.J. Lip G.Y.H. Lyon A.R. Lopez Fernandez T. Mohty D. Piepoli M.F. Tamargo J. Torbicki A. Suter T.M. ESC Scientific Document Group 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines. Eur. Heart J. 2016 37 36 2768 2801 10.1093/eurheartj/ehw211 27567406
    [Google Scholar]
  35. Mosseri M. Fingert H.J. Varticovski L. Chokshi S. Isner J.M. In vitro evidence that myocardial ischemia resulting from 5-fluorouracil chemotherapy is due to protein kinase C-mediated vasoconstriction of vascular smooth muscle. Cancer Res. 1993 53 13 3028 3033 8391384
    [Google Scholar]
  36. Kanduri J. More L.A. Godishala A. Asnani A. Fluoropyrimidine-associated cardiotoxicity. Cardiol. Clin. 2019 37 4 399 405 10.1016/j.ccl.2019.07.004 31587781
    [Google Scholar]
  37. Marupudi N.I. Han J.E. Li K.W. Renard V.M. Tyler B.M. Brem H. Paclitaxel: A review of adverse toxicities and novel delivery strategies. Expert Opin. Drug Saf. 2007 6 5 609 621 10.1517/14740338.6.5.609 17877447
    [Google Scholar]
  38. Rowinsky E.K. McGuire W.P. Guarnieri T. Fisherman J.S. Christian M.C. Donehower R.C. Cardiac disturbances during the administration of taxol. J. Clin. Oncol. 1991 9 9 1704 1712 10.1200/JCO.1991.9.9.1704 1678781
    [Google Scholar]
  39. Batra A. Patel B. Addison D. Baldassarre L.A. Desai N. Weintraub N. Deswal A. Hussain Z. Brown S.A. Ganatra S. Agarwala V. Parikh P.M. Fradley M. Ghosh A. Guha A. Cardiovascular safety profile of taxanes and vinca alkaloids: 30 years FDA registry experience. Open Heart 2021 8 2 e001849 10.1136/openhrt‑2021‑001849 34952868
    [Google Scholar]
  40. Gianni L. Viganò L. Locatelli A. Capri G. Giani A. Tarenzi E. Bonadonna G. Human pharmacokinetic characterization and in vitro study of the interaction between doxorubicin and paclitaxel in patients with breast cancer. J. Clin. Oncol. 1997 15 5 1906 1915 10.1200/JCO.1997.15.5.1906 9164201
    [Google Scholar]
  41. Vermorken J.B. Remenar E. van Herpen C. Gorlia T. Mesia R. Degardin M. Stewart J.S. Jelic S. Betka J. Preiss J.H. van den Weyngaert D. Awada A. Cupissol D. Kienzer H.R. Rey A. Desaunois I. Bernier J. Lefebvre J.L. EORTC 24971/TAX 323 Study Group Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N. Engl. J. Med. 2007 357 17 1695 1704 10.1056/NEJMoa071028 17960012
    [Google Scholar]
  42. Schimmel K.J.M. Richel D.J. van den Brink R.B.A. Guchelaar H.J. Cardiotoxicity of cytotoxic drugs. Cancer Treat. Rev. 2004 30 2 181 191 10.1016/j.ctrv.2003.07.003 15023436
    [Google Scholar]
  43. Madeddu C. Deidda M. Piras A. Cadeddu C. Demurtas L. Puzzoni M. Piscopo G. Scartozzi M. Mercuro G. Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy. J. Cardiovasc. Med. 2016 17 Suppl. 1 e12 e18 10.2459/JCM.0000000000000376 27183520
    [Google Scholar]
  44. Pai V.B. Nahata M.C. Cardiotoxicity of chemotherapeutic agents: Incidence, treatment and prevention. Drug Saf. 2000 22 4 263 302 10.2165/00002018‑200022040‑00002 10789823
    [Google Scholar]
  45. Cazin B. Gorin N.C. Laporte J.P. Gallet B. Douay L. Lopez M. Najman A. Duhamel G. Cardiac complications after bone marrow transplantation. A report on a series of 63 consecutive transplantations. Cancer 1986 57 10 2061 2069 10.1002/1097‑0142(19860515)57:10<2061::AID‑CNCR2820571031>3.0.CO;2‑H 3513941
    [Google Scholar]
  46. Livingston R.B. Moore T.N. Heilbrun L. Bottomley R. Lehane D. Rivkin S.E. Thigpen T. Small-cell carcinoma of the lung: Combined chemotherapy and radiation: A Southwest oncology group study. Ann. Intern. Med. 1978 88 2 194 199 10.7326/0003‑4819‑88‑2‑194 204239
    [Google Scholar]
  47. Steinherz L.J. Steinherz P.G. Mangiacasale D. O’Reilly R. Allen J. Sorell M. Miller D.R. Cardiac changes with cyclophosphamide. Med. Pediatr. Oncol. 1981 9 5 417 422 10.1002/mpo.2950090502 7300803
    [Google Scholar]
  48. Dasari S. Bernard Tchounwou P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014 740 364 378 10.1016/j.ejphar.2014.07.025 25058905
    [Google Scholar]
  49. Al-Majed A.A. Sayed-Ahmed M.M. Al-Yahya A.A. Aleisa A.M. Al-Rejaie S.S. Al-Shabanah O.A. Propionyl-l-carnitine prevents the progression of cisplatin-induced cardiomyopathy in a carnitine-depleted rat model. Pharmacol. Res. 2006 53 3 278 286 10.1016/j.phrs.2005.12.005 16436331
    [Google Scholar]
  50. Viani G.A. Afonso S.L. Stefano E.J. De Fendi L.I. Soares F.V. Adjuvant trastuzumab in the treatment of her-2-positive early breast cancer: A meta-analysis of published randomized trials. BMC Cancer 2007 7 1 153 10.1186/1471‑2407‑7‑153 17686164
    [Google Scholar]
  51. Rayson D. Richel D. Chia S. Jackisch C. van der Vegt S. Suter T. Anthracycline–trastuzumab regimens for HER2/neu-overexpressing breast cancer: current experience and future strategies. Ann. Oncol. 2008 19 9 1530 1539 10.1093/annonc/mdn292 18480068
    [Google Scholar]
  52. Martín M. Esteva F.J. Alba E. Khandheria B. Pérez-Isla L. García-Sáenz J.Á. Márquez A. Sengupta P. Zamorano J. Minimizing cardiotoxicity while optimizing treatment efficacy with trastuzumab: Review and expert recommendations. Oncologist 2009 14 1 1 11 10.1634/theoncologist.2008‑0137 19147689
    [Google Scholar]
  53. Di Cosimo S. Heart to heart with trastuzumab: A review on cardiac toxicity. Target. Oncol. 2011 6 4 189 195 10.1007/s11523‑011‑0203‑8 22125051
    [Google Scholar]
  54. Zeglinski M. Ludke A. Jassal D.S. Singal P.K. Trastuzumab-induced cardiac dysfunction: A ‘dual-hit’. Exp. Clin. Cardiol. 2011 16 3 70 74 22065936
    [Google Scholar]
  55. Ewer M.S. Lippman S.M. Type I.I. Type II chemotherapy-related cardiac dysfunction: Time to recognize a new entity. J. Clin. Oncol. 2005 23 13 2900 2902 10.1200/JCO.2005.05.827 15860848
    [Google Scholar]
  56. Kuramochi Y. Guo X. Sawyer D.B. Neuregulin activates erbB2-dependent src/FAK signaling and cytoskeletal remodeling in isolated adult rat cardiac myocytes. J. Mol. Cell. Cardiol. 2006 41 2 228 235 10.1016/j.yjmcc.2006.04.007 16769082
    [Google Scholar]
  57. Lee K.F. Simon H. Chen H. Bates B. Hung M.C. Hauser C. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 1995 378 6555 394 398 10.1038/378394a0 7477377
    [Google Scholar]
  58. Ezaz G. Long J.B. Gross C.P. Chen J. Risk prediction model for heart failure and cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J. Am. Heart Assoc. 2014 3 1 e000472 10.1161/JAHA.113.000472 24584736
    [Google Scholar]
  59. Francis S.A. Cheng S. Arteaga C.L. Moslehi J. Heart failure and breast cancer therapies: moving towards personalized risk assessment. J. Am. Heart Assoc. 2014 3 1 e000780 10.1161/JAHA.113.000780 24584746
    [Google Scholar]
  60. Scappaticci F.A. Skillings J.R. Holden S.N. Gerber H.P. Miller K. Kabbinavar F. Bergsland E. Ngai J. Holmgren E. Wang J. Hurwitz H. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J. Natl. Cancer Inst. 2007 99 16 1232 1239 10.1093/jnci/djm086 17686822
    [Google Scholar]
  61. Miller K. Wang M. Gralow J. Dickler M. Cobleigh M. Perez E.A. Shenkier T. Cella D. Davidson N.E. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 2007 357 26 2666 2676 10.1056/NEJMoa072113 18160686
    [Google Scholar]
  62. Zhu X. Wu S. Dahut W.L. Parikh C.R. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am. J. Kidney Dis. 2007 49 2 186 193 10.1053/j.ajkd.2006.11.039 17261421
    [Google Scholar]
  63. Berardi R. Caramanti M. Savini A. Chiorrini S. Pierantoni C. Onofri A. Ballatore Z. De Lisa M. Mazzanti P. Cascinu S. State of the art for cardiotoxicity due to chemotherapy and to targeted therapies: A literature review. Crit. Rev. Oncol. Hematol. 2013 88 1 75 86 10.1016/j.critrevonc.2013.02.007 23522920
    [Google Scholar]
  64. Dincer M. Altundag K. Angiotensin-converting enzyme inhibitors for bevacizumab-induced hypertension. Ann. Pharmacother. 2006 40 12 2278 2279 10.1345/aph.1H244 17105834
    [Google Scholar]
  65. Suter T.M. Procter M. van Veldhuisen D.J. Muscholl M. Bergh J. Carlomagno C. Perren T. Passalacqua R. Bighin C. Klijn J.G.M. Ageev F.T. Hitre E. Groetz J. Iwata H. Knap M. Gnant M. Muehlbauer S. Spence A. Gelber R.D. Piccart-Gebhart M.J. Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial. J. Clin. Oncol. 2007 25 25 3859 3865 10.1200/JCO.2006.09.1611 17646669
    [Google Scholar]
  66. Perez E.A. Koehler M. Byrne J. Preston A.J. Rappold E. Ewer M.S. Cardiac safety of lapatinib: Pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin. Proc. 2008 83 6 679 686 10.1016/S0025‑6196(11)60896‑3 18533085
    [Google Scholar]
  67. Feldman A.M. Lorell B.H. Reis S.E. Trastuzumab in the treatment of metastatic breast cancer : Anticancer therapy versus cardiotoxicity. Circulation 2000 102 3 272 274 10.1161/01.CIR.102.3.272 10899087
    [Google Scholar]
  68. Yang Y. Bu P. Progress on the cardiotoxicity of sunitinib: Prognostic significance, mechanism and protective therapies. Chem. Biol. Interact. 2016 257 125 131 10.1016/j.cbi.2016.08.006 27531228
    [Google Scholar]
  69. Chu T.F. Rupnick M.A. Kerkela R. Dallabrida S.M. Zurakowski D. Nguyen L. Woulfe K. Pravda E. Cassiola F. Desai J. George S. Harris D.M. Ismail N.S. Chen J-H. Schoen F.J. Van den Abbeele A.D. Demetri G.D. Force T. Chen M.H. Morgan J.A. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 2007 370 9604 2011 2019 10.1016/S0140‑6736(07)61865‑0 18083403
    [Google Scholar]
  70. Ewer M.S. Suter T.M. Lenihan D.J. Niculescu L. Breazna A. Demetri G.D. Motzer R.J. Cardiovascular events among 1090 cancer patients treated with sunitinib, interferon, or placebo: A comprehensive adjudicated database analysis demonstrating clinically meaningful reversibility of cardiac events. Eur. J. Cancer 2014 50 12 2162 2170 10.1016/j.ejca.2014.05.013 24930624
    [Google Scholar]
  71. Hahn V.S. Lenihan D.J. Ky B. Cancer therapy-induced cardiotoxicity: basic mechanisms and potential cardioprotective therapies. J. Am. Heart Assoc. 2014 3 2 e000665 10.1161/JAHA.113.000665 24755151
    [Google Scholar]
  72. Curigliano G. Mayer E.L. Burstein H.J. Winer E.P. Goldhirsch A. Cardiac toxicity from systemic cancer therapy: A comprehensive review. Prog. Cardiovasc. Dis. 2010 53 2 94 104 10.1016/j.pcad.2010.05.006 20728696
    [Google Scholar]
  73. Mourad J.J. Levy B.I. Mechanisms of antiangiogenic-induced arterial hypertension. Curr. Hypertens. Rep. 2011 13 4 289 293 10.1007/s11906‑011‑0206‑y 21479992
    [Google Scholar]
  74. Gorre M.E. Mohammed M. Ellwood K. Hsu N. Paquette R. Rao P.N. Sawyers C.L. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001 293 5531 876 880 10.1126/science.1062538 11423618
    [Google Scholar]
  75. Kerkela R. Woulfe K.C. Durand J.B. Vagnozzi R. Kramer D. Chu T.F. Beahm C. Chen M.H. Force T. Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clin. Transl. Sci. 2009 2 1 15 25 10.1111/j.1752‑8062.2008.00090.x 20376335
    [Google Scholar]
  76. Iqbal N. Iqbal N. Imatinib: A breakthrough of targeted therapy in cancer. Chemother. Res. Pract. 2014 2014 1 9 10.1155/2014/357027 24963404
    [Google Scholar]
  77. Shen X. Zhang K. Kaufman R.J. The unfolded protein response—a stress signaling pathway of the endoplasmic reticulum. J. Chem. Neuroanat. 2004 28 1-2 79 92 10.1016/j.jchemneu.2004.02.006 15363493
    [Google Scholar]
  78. Chambers T.P. Santiesteban L. Gomez D. Chambers J.W. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology 2017 382 24 35 10.1016/j.tox.2017.03.006 28315715
    [Google Scholar]
  79. Kerkelä R. Grazette L. Yacobi R. Iliescu C. Patten R. Beahm C. Walters B. Shevtsov S. Pesant S. Clubb F.J. Rosenzweig A. Salomon R.N. Van Etten R.A. Alroy J. Durand J.B. Force T. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat. Med. 2006 12 8 908 916 10.1038/nm1446 16862153
    [Google Scholar]
  80. Tocchetti C.G. Cadeddu C. Di Lisi D. Femminò S. Madonna R. Mele D. Monte I. Novo G. Penna C. Pepe A. Spallarossa P. Varricchi G. Zito C. Pagliaro P. Mercuro G. From molecular mechanisms to clinical management of antineoplastic drug-induced cardiovascular toxicity: A translational overview. Antioxid. Redox Signal. 2019 30 18 2110 2153 10.1089/ars.2016.6930 28398124
    [Google Scholar]
  81. Patel R.P. Parikh R. Gunturu K.S. Tariq R.Z. Dani S.S. Ganatra S. Nohria A. Cardiotoxicity of immune checkpoint inhibitors. Curr. Oncol. Rep. 2021 23 7 79 10.1007/s11912‑021‑01070‑6 33937956
    [Google Scholar]
  82. Piper-Vallillo A.J. Costa D.B. Sabe M.A. Asnani A. Heart failure associated with the epidermal growth factor receptor inhibitor osimertinib. JACC: CardioOncology 2020 2 1 119 122 10.1016/j.jaccao.2020.01.003 34396216
    [Google Scholar]
  83. Chen J.H. Lenihan D.J. Phillips S.E. Harrell S.L. Cornell R.F. Cardiac events during treatment with proteasome inhibitor therapy for multiple myeloma. Cardiooncology 2017 3 1 4 10.1186/s40959‑017‑0023‑9 32154000
    [Google Scholar]
  84. Wu P. Oren O. Gertz M.A. Yang E.H. Proteasome inhibitor-related cardiotoxicity: Mechanisms, diagnosis, and management. Curr. Oncol. Rep. 2020 22 7 66 10.1007/s11912‑020‑00931‑w 32514632
    [Google Scholar]
  85. Upshaw J.N. Parson S.K. Buchsbaum R.J. Schlam I. Ruddy K.J. Durani U. Epperla N. Leong D.P. Dexrazoxane to prevent cardiotoxicity in adults treated with anthracyclines. JACC: CardioOncology 2024 6 2 322 324 10.1016/j.jaccao.2024.02.004 38773999
    [Google Scholar]
  86. Arola O.J. Saraste A. Pulkki K. Kallajoki M. Parvinen M. Voipio-Pulkki L.M. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res. 2000 60 7 1789 1792 10766158
    [Google Scholar]
  87. Saad S.Y. Najjar T.A.O. Alashari M. Cardiotoxicity of doxorubicin/paclitaxel combination in rats: Effect of sequence and timing of administration. J. Biochem. Mol. Toxicol. 2004 18 2 78 86 10.1002/jbt.20012 15122649
    [Google Scholar]
  88. Freemantle N. Cleland J. Young P. Mason J. Harrison J. beta Blockade after myocardial infarction: Systematic review and meta regression analysis. BMJ 1999 318 7200 1730 1737 10.1136/bmj.318.7200.1730 10381708
    [Google Scholar]
  89. Santos D. Moreno A.J. Leino R.L. Froberg M.K. Wallace K.B. Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicol. Appl. Pharmacol. 2002 185 3 218 227 10.1006/taap.2002.9532 12498738
    [Google Scholar]
  90. Fongemie J. Felix-Getzik E. A review of nebivolol pharmacology and clinical evidence. Drugs 2015 75 12 1349 1371 10.1007/s40265‑015‑0435‑5 26177892
    [Google Scholar]
  91. de Nigris F. Rienzo M. Schiano C. Fiorito C. Casamassimi A. Napoli C. Prominent cardioprotective effects of third generation beta blocker nebivolol against anthracycline-induced cardiotoxicity using the model of isolated perfused rat heart. Eur. J. Cancer 2008 44 3 334 340 10.1016/j.ejca.2007.12.010 18194856
    [Google Scholar]
  92. Kaya M.G. Ozkan M. Gunebakmaz O. Akkaya H. Kaya E.G. Akpek M. Kalay N. Dikilitas M. Yarlioglues M. Karaca H. Berk V. Ardic I. Ergin A. Lam Y.Y. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: A randomized control study. Int. J. Cardiol. 2013 167 5 2306 2310 10.1016/j.ijcard.2012.06.023 22727976
    [Google Scholar]
  93. Cochera F. Dinca D. Bordejevic D.A. Citu I. Mavrea A. Andor M. Trofenciuc M. Tomescu M. Nebivolol effect on doxorubicin-induced cardiotoxicity in breast cancer. Cancer Manag. Res. 2018 10 2071 2081 10.2147/CMAR.S166481 30038521
    [Google Scholar]
  94. Pituskin E. Mackey J.R. Koshman S. Jassal D. Pitz M. Haykowsky M.J. Pagano J.J. Chow K. Thompson R.B. Vos L.J. Ghosh S. Oudit G.Y. Ezekowitz J.A. Paterson D.I. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101–Breast): A randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J. Clin. Oncol. 2017 35 8 870 877 10.1200/JCO.2016.68.7830 27893331
    [Google Scholar]
  95. Sobczuk P. Czerwińska M. Kleibert M. Cudnoch-Jędrzejewska A. Anthracycline-induced cardiotoxicity and renin-angiotensin-aldosterone system—from molecular mechanisms to therapeutic applications. Heart Fail. Rev. 2022 27 1 295 319 10.1007/s10741‑020‑09977‑1 32472524
    [Google Scholar]
  96. Ayuna A. Abidin N. The role of neurohormonal blockers in the primary prevention of acute-, early-, and late-onset anthracycline-induced cardiotoxicity. Egypt. Heart J. 2020 72 1 59 10.1186/s43044‑020‑00090‑0 32915331
    [Google Scholar]
  97. Hullin R. Métrich M. Sarre A. Basquin D. Maillard M. Regamey J. Martin D. Diverging effects of enalapril or eplerenone in primary prevention against doxorubicin-induced cardiotoxicity. Cardiovasc. Res. 2018 114 2 272 281 10.1093/cvr/cvx162 29016737
    [Google Scholar]
  98. Abd El-Aziz M.A. Othman A.I. Amer M. El-Missiry M.A. Potential protective role of angiotensin‐converting enzyme inhibitors captopril and enalapril against adriamycin‐induced acute cardiac and hepatic toxicity in rats. J. Appl. Toxicol. 2001 21 6 469 473 10.1002/jat.782 11746193
    [Google Scholar]
  99. Boucek R.J. Jr Steele A. Miracle A. Atkinson J. Effects of angiotensin-converting enzyme inhibitor on delayed-onset doxorubicin-induced cardiotoxicity. Cardiovasc. Toxicol. 2003 3 4 319 330 10.1385/CT:3:4:319 14734829
    [Google Scholar]
  100. Gulati G. Heck S.L. Ree A.H. Hoffmann P. Schulz-Menger J. Fagerland M.W. Gravdehaug B. von Knobelsdorff-Brenkenhoff F. Bratland Å. Storås T.H. Hagve T.A. Røsjø H. Steine K. Geisler J. Omland T. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): A 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur. Heart J. 2016 37 21 1671 1680 10.1093/eurheartj/ehw022 26903532
    [Google Scholar]
  101. Soga M. Kamal F.A. Watanabe K. Ma M. Palaniyandi S. Prakash P. Veeraveedu P. Mito S. Kunisaki M. Tachikawa H. Kodama M. Aizawa Y. Effects of angiotensin II receptor blocker (candesartan) in daunorubicin-induced cardiomyopathic rats. Int. J. Cardiol. 2006 110 3 378 385 10.1016/j.ijcard.2005.08.061 16324756
    [Google Scholar]
  102. Cadeddu C. Piras A. Mantovani G. Deidda M. Dessì M. Madeddu C. Massa E. Mercuro G. Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am. Heart J. 2010 160 3 487.e1 487.e7 10.1016/j.ahj.2010.05.037 20826257
    [Google Scholar]
  103. Dessì M. Madeddu C. Piras A. Cadeddu C. Antoni G. Mercuro G. Mantovani G. Long-term, up to 18 months, protective effects of the angiotensin II receptor blocker telmisartan on Epirubin-induced inflammation and oxidative stress assessed by serial strain rate. Springerplus 2013 2 1 198 10.1186/2193‑1801‑2‑198 23741643
    [Google Scholar]
  104. Dessì M. Piras A. Madeddu C. Cadeddu C. Deidda M. Massa E. Antoni G. Mantovani G. Mercuro G. Long-term protective effects of the angiotensin receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress and myocardial dysfunction. Exp. Ther. Med. 2011 2 5 1003 1009 10.3892/etm.2011.305 22977612
    [Google Scholar]
  105. Medina-Bolivar F. Condori J. Rimando A.M. Hubstenberger J. Shelton K. O’Keefe S.F. Bennett S. Dolan M.C. Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 2007 68 14 1992 2003 10.1016/j.phytochem.2007.04.039 17574636
    [Google Scholar]
  106. Lançon A. Hanet N. Jannin B. Delmas D. Heydel J.M. Lizard G. Chagnon M.C. Artur Y. Latruffe N. Resveratrol in human hepatoma HepG2 cells: Metabolism and inducibility of detoxifying enzymes. Drug Metab. Dispos. 2007 35 5 699 703 10.1124/dmd.106.013664 17287390
    [Google Scholar]
  107. Tian B. Liu J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric. 2020 100 4 1392 1404 10.1002/jsfa.10152 31756276
    [Google Scholar]
  108. Li L. Qiu R.L. Lin Y. Cai Y. Bian Y. Fan Y. Gao X.J. Resveratrol suppresses human cervical carcinoma cell proliferation and elevates apoptosis via the mitochondrial and p53 signaling pathways. Oncol. Lett. 2018 15 6 9845 9851 10.3892/ol.2018.8571 29928358
    [Google Scholar]
  109. Li D. Wang G. Jin G. Yao K. Zhao Z. Bie L. Guo Y. Li N. Deng W. Chen X. Chen B. Liu Y. Luo S. Guo Z. Resveratrol suppresses colon cancer growth by targeting the AKT/STAT3 signaling pathway. Int. J. Mol. Med. 2018 ••• 10.3892/ijmm.2018.3969 30387805
    [Google Scholar]
  110. Sintuyanon N. Phoolcharoen W. Pavasant P. Sooampon S. Resveratrol demonstrated higher antiproliferative and antiangiogenic efficacy compared with oxyresveratrol on head and neck squamous cell carcinoma cell lines. Nat. Prod. Commun. 2017 12 11 1934578X1701201134 10.1177/1934578X1701201134
    [Google Scholar]
  111. Liu M.H. Lin X.L. Guo D.M. Zhang Y. Yuan C. Tan T.P. Chen Y.D. Wu S.J. Ye Z.F. He J. Resveratrol protects cardiomyocytes from doxorubicin-induced apoptosis through the AMPK/P53 pathway. Mol. Med. Rep. 2016 13 2 1281 1286 10.3892/mmr.2015.4665 26675978
    [Google Scholar]
  112. Dagnon S. Novkova Z. Bojilov D. Nedialkov P. Kouassi C. Development of surrogate standards approach for the determination of polyphenols in Vernonia amygdalina Del. J. Food Compos. Anal. 2019 82 103231 10.1016/j.jfca.2019.06.003
    [Google Scholar]
  113. Panchal S.K. Poudyal H. Arumugam T.V. Brown L. 95 rutin attenuates non-alcoholic steatohepatitis in high carbohydrate-high fat diet-fed rats. J. Hepatol. 2011 54 S42 10.1016/S0168‑8278(11)60097‑4
    [Google Scholar]
  114. Rodrigues P.G. Miranda-Silva D. Costa S.M. Barros C. Hamdani N. Moura C. Mendes M.J. Sousa-Mendes C. Trindade F. Fontoura D. Vitorino R. Linke W.A. Leite-Moreira A.F. Falcão-Pires I. Early myocardial changes induced by doxorubicin in the nonfailing dilated ventricle. Am. J. Physiol. Heart Circ. Physiol. 2019 316 3 H459 H475 10.1152/ajpheart.00401.2018 30525890
    [Google Scholar]
  115. Lee K.H. Cho H. Lee S. Woo J.S. Cho B.H. Kang J.H. Jeong Y.M. Cheng X.W. Kim W. Enhanced-autophagy by exenatide mitigates doxorubicin-induced cardiotoxicity. Int. J. Cardiol. 2017 232 40 47 10.1016/j.ijcard.2017.01.123 28159361
    [Google Scholar]
  116. Wang S.Q. Han X.Z. Li X. Ren D.M. Wang X.N. Lou H.X. Flavonoids from Dracocephalum tanguticum and their cardioprotective effects against doxorubicin-induced toxicity in H9c2 cells. Bioorg. Med. Chem. Lett. 2010 20 22 6411 6415 10.1016/j.bmcl.2010.09.086 20932762
    [Google Scholar]
  117. Singh B.N. Shankar S. Srivastava R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol. 2011 82 12 1807 1821 10.1016/j.bcp.2011.07.093 21827739
    [Google Scholar]
  118. Banerjee S. Inhibition of mackerel (Scomber scombrus) muscle lipoxygenase by green tea polyphenols. Food Res. Int. 2006 39 4 486 491 10.1016/j.foodres.2005.10.002
    [Google Scholar]
  119. Machackova J. Sanganalmath S.K. Elimban V. Dhalla N.S. β-adrenergic blockade attenuates cardiac dysfunction and myofibrillar remodelling in congestive heart failure. J. Cell. Mol. Med. 2011 15 3 545 554 10.1111/j.1582‑4934.2010.01015.x 20082655
    [Google Scholar]
  120. Matchar D.B. McCrory D.C. Orlando L.A. Patel M.R. Patel U.D. Patwardhan M.B. Powers B. Samsa G.P. Gray R.N. Systematic review: Comparative effectiveness of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers for treating essential hypertension. Ann. Intern. Med. 2008 148 1 16 29 10.7326/0003‑4819‑148‑1‑200801010‑00189 17984484
    [Google Scholar]
  121. Paulis L. Foulquier S. Namsolleck P. Recarti C. Steckelings U.M. Unger T. Combined angiotensin receptor modulation in the management of cardio-metabolic disorders. Drugs 2016 76 1 1 12 10.1007/s40265‑015‑0509‑4 26631237
    [Google Scholar]
  122. Morandi P. Ruffini P.A. Benvenuto G.M. Raimondi R. Fosser V. Cardiac toxicity of high-dose chemotherapy. Bone Marrow Transplant. 2005 35 4 323 334 10.1038/sj.bmt.1704763 15543194
    [Google Scholar]
  123. Kojima R. Toyama Y. Ohnishi S.T. Protective effects of an aged garlic extract on doxorubicin‐induced cardiotoxicity in the mouse. Nutr. Cancer 1994 22 2 163 173 10.1080/01635589409514341 14502845
    [Google Scholar]
  124. Ravindran S. Rau C.D. The multifaceted role of mitochondria in cardiac function: insights and approaches. Cell Commun. Signal. 2024 22 1 525 10.1186/s12964‑024‑01899‑x 39472951
    [Google Scholar]
  125. Cardinale D. Iacopo F. Cipolla C.M. Cardiotoxicity of Anthracyclines. Front. Cardiovasc. Med. 2020 7 26 10.3389/fcvm.2020.00026 32258060
    [Google Scholar]
  126. Nowsheen S. Viscuse P.V. O’Sullivan C.C. Sandhu N.P. Haddad T.C. Blaes A. Klemp J. Nhola L. Herrmann J. Ruddy K.J. Incidence, diagnosis, and treatment of cardiac toxicity from trastuzumab in patients with breast cancer. Curr. Breast Cancer Rep. 2017 9 3 173 182 10.1007/s12609‑017‑0249‑4 29225726
    [Google Scholar]
  127. Eaton H. Timm K.N. Mechanisms of trastuzumab induced cardiotoxicity – is exercise a potential treatment? Cardiooncology 2023 9 1 22 10.1186/s40959‑023‑00172‑3 37098605
    [Google Scholar]
  128. Yeh E.T.H. Bickford C.L. Cardiovascular complications of cancer therapy: Incidence, pathogenesis, diagnosis, and management. J. Am. Coll. Cardiol. 2009 53 24 2231 2247 10.1016/j.jacc.2009.02.050 19520246
    [Google Scholar]
  129. Di Lisi D. Leggio G. Vitale G. Arrotti S. Iacona R. Inciardi R.M. Nobile D. Bonura F. Novo G. Russo A. Novo S. Chemotherapy cardiotoxicity. J. Cardiovasc. Med. 2016 17 4 270 275 10.2459/JCM.0000000000000232 25501904
    [Google Scholar]
  130. Sparano J.A. Brown D.L. Wolff A.C. Predicting cancer therapy-induced cardiotoxicity: The role of troponins and other markers. Drug Saf. 2002 25 5 301 311 10.2165/00002018‑200225050‑00001 12020170
    [Google Scholar]
  131. Adamcová M. Šterba M. Šimunek T. Potácová A. Popelová O. Mazurová Y. Geršl V. Troponin as a marker of myocardiac damage in drug-induced cardiotoxicity. Expert Opin. Drug Saf. 2005 4 3 457 472 10.1517/14740338.4.3.457 15934853
    [Google Scholar]
  132. Sawyer D.B. Zuppinger C. Miller T.A. Eppenberger H.M. Suter T.M. Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1β and anti-erbB2: potential mechanism for trastuzumab-induced cardiotoxicity. Circulation 2002 105 13 1551 1554 10.1161/01.CIR.0000013839.41224.1C 11927521
    [Google Scholar]
  133. Eschenhagen T. Force T. Ewer M.S. de Keulenaer G.W. Suter T.M. Anker S.D. Avkiran M. de Azambuja E. Balligand J.L. Brutsaert D.L. Condorelli G. Hansen A. Heymans S. Hill J.A. Hirsch E. Hilfiker-Kleiner D. Janssens S. de Jong S. Neubauer G. Pieske B. Ponikowski P. Pirmohamed M. Rauchhaus M. Sawyer D. Sugden P.H. Wojta J. Zannad F. Shah A.M. Cardiovascular side effects of cancer therapies: A position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2011 13 1 1 10 10.1093/eurjhf/hfq213 21169385
    [Google Scholar]
  134. Cardinale D. Sandri M.T. Colombo A. Colombo N. Boeri M. Lamantia G. Civelli M. Peccatori F. Martinelli G. Fiorentini C. Cipolla C.M. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 2004 109 22 2749 2754 10.1161/01.CIR.0000130926.51766.CC 15148277
    [Google Scholar]
  135. Hequet O. Le Q.H. Moullet I. Pauli E. Salles G. Espinouse D. Dumontet C. Thieblemont C. Arnaud P. Antal D. Bouafia F. Coiffier B. Subclinical late cardiomyopathy after doxorubicin therapy for lymphoma in adults. J. Clin. Oncol. 2004 22 10 1864 1871 10.1200/JCO.2004.06.033 15143078
    [Google Scholar]
  136. Ky B. Putt M. Sawaya H. French B. Januzzi J.L. Jr Sebag I.A. Plana J.C. Cohen V. Banchs J. Carver J.R. Wiegers S.E. Martin R.P. Picard M.H. Gerszten R.E. Halpern E.F. Passeri J. Kuter I. Scherrer-Crosbie M. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J. Am. Coll. Cardiol. 2014 63 8 809 816 10.1016/j.jacc.2013.10.061 24291281
    [Google Scholar]
  137. Lipshultz S.E. Miller T.L. Scully R.E. Lipsitz S.R. Rifai N. Silverman L.B. Colan S.D. Neuberg D.S. Dahlberg S.E. Henkel J.M. Asselin B.L. Athale U.H. Clavell L.A. Laverdière C. Michon B. Schorin M.A. Sallan S.E. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: Associations with long-term echocardiographic outcomes. J. Clin. Oncol. 2012 30 10 1042 1049 10.1200/JCO.2010.30.3404 22370326
    [Google Scholar]
  138. Lipshultz S.E. Scully R.E. Lipsitz S.R. Sallan S.E. Silverman L.B. Miller T.L. Barry E.V. Asselin B.L. Athale U. Clavell L.A. Larsen E. Moghrabi A. Samson Y. Michon B. Schorin M.A. Cohen H.J. Neuberg D.S. Orav E.J. Colan S.D. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol. 2010 11 10 950 961 10.1016/S1470‑2045(10)70204‑7 20850381
    [Google Scholar]
  139. Auner H.W. Tinchon C. Linkesch W. Tiran A. Quehenberger F. Link H. Sill H. Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann. Hematol. 2003 82 4 218 222 10.1007/s00277‑003‑0615‑3 12679885
    [Google Scholar]
  140. Cardinale D. Sandri M.T. Martinoni A. Borghini E. Civelli M. Lamantia G. Cinieri S. Martinelli G. Fiorentini C. Cipolla C.M. Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Ann. Oncol. 2002 13 5 710 715 10.1093/annonc/mdf170 12075738
    [Google Scholar]
  141. Cetin B. Benekli M. Turker I. Koral L. Ulas A. Dane F. Oksuzoglu B. Kaplan M.A. Koca D. Boruban C. Yilmaz B. Sevinc A. Berk V. Uncu D. Harputluoglu H. Coskun U. Buyukberber S. Lapatinib plus capecitabine for HER2-positive advanced breast cancer: A multicentre study of anatolian society of medical oncology (ASMO). J. Chemother. 2014 26 5 300 305 10.1179/1973947813Y.0000000147 24112786
    [Google Scholar]
  142. Redfield M.M. Rodeheffer R.J. Jacobsen S.J. Mahoney D.W. Bailey K.R. Burnett J.C. Jr Plasma brain natriuretic peptide to detect preclinical ventricular systolic or diastolic dysfunction: A community-based study. Circulation 2004 109 25 3176 3181 10.1161/01.CIR.0000130845.38133.8F 15184280
    [Google Scholar]
  143. De Iuliis F. Salerno G. Taglieri L. De Biase L. Lanza R. Cardelli P. Scarpa S. Serum biomarkers evaluation to predict chemotherapy-induced cardiotoxicity in breast cancer patients. Tumour Biol. 2016 37 3 3379 3387 10.1007/s13277‑015‑4183‑7 26449821
    [Google Scholar]
  144. Sandri M.T. Salvatici M. Cardinale D. Zorzino L. Passerini R. Lentati P. Leon M. Civelli M. Martinelli G. Cipolla C.M. N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: A marker predictive of cardiac dysfunction? Clin. Chem. 2005 51 8 1405 1410 10.1373/clinchem.2005.050153 15932966
    [Google Scholar]
  145. Lenihan D.J. Stevens P.L. Massey M. Plana J.C. Araujo D.M. Fanale M.A. Fayad L.E. Fisch M.J. Yeh E.T.H. The utility of point-of-care biomarkers to detect cardiotoxicity during anthracycline chemotherapy: A feasibility study. J. Card. Fail. 2016 22 6 433 438 10.1016/j.cardfail.2016.04.003 27079675
    [Google Scholar]
  146. Novo G. Cadeddu C. Sucato V. Pagliaro P. Romano S. Tocchetti C.G. Zito C. Longobardo L. Nodari S. Penco M. Role of biomarkers in monitoring antiblastic cardiotoxicity. J. Cardiovasc. Med. 2016 17 Suppl. 1 e27 e34 10.2459/JCM.0000000000000379 27183522
    [Google Scholar]
  147. Christenson E.S. James T. Agrawal V. Park B.H. Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity. Clin. Biochem. 2015 48 4-5 223 235 10.1016/j.clinbiochem.2014.10.013 25445234
    [Google Scholar]
  148. Thakur A. Witteles R.M. Cancer therapy-induced left ventricular dysfunction: Interventions and prognosis. J. Card. Fail. 2014 20 3 155 158 10.1016/j.cardfail.2013.12.018 24378722
    [Google Scholar]
  149. Kjær A. Hesse B. Heart failure and neuroendocrine activation: Diagnostic, prognostic and therapeutic perspectives. Clin. Physiol. 2001 21 6 661 672 10.1046/j.1365‑2281.2001.00371.x 11722473
    [Google Scholar]
  150. Groenning B.A. Nilsson J.C. Sondergaard L. Kjaer A. Larsson H.B.W. Hildebrandt P.R. Evaluation of impaired left ventricular ejection fraction and increased dimensions by multiple neurohumoral plasma concentrations. Eur. J. Heart Fail. 2001 3 6 699 708 10.1016/S1388‑9842(01)00181‑7 11738222
    [Google Scholar]
  151. Romano S. Fratini S. Ricevuto E. Procaccini V. Stifano G. Mancini M. Di Mauro M. Ficorella C. Penco M. Serial measurements of NT-proBNP are predictive of not-high-dose anthracycline cardiotoxicity in breast cancer patients. Br. J. Cancer 2011 105 11 1663 1668 10.1038/bjc.2011.439 22068815
    [Google Scholar]
  152. Wieshammer S. Dreyhaupt J. Müller D. Momm F. Jakob A. Limitations of N-Terminal Pro-B-Type natriuretic peptide in the diagnosis of heart disease among cancer patients who present with cardiac or pulmonary symptoms. Oncology 2016 90 3 143 150 10.1159/000443505 26871423
    [Google Scholar]
  153. Geiger S. Stemmler H.J. Suhl P. Stieber P. Lange V. Baur D. Hausmann A. Tischer J. Horster S. Anthracycline-induced cardiotoxicity: Cardiac monitoring by continuous wave-Doppler ultrasound cardiac output monitoring and correlation to echocardiography. Onkologie 2012 35 5 241 246 10.1159/000338335 22868502
    [Google Scholar]
  154. Takase H. Dohi Y. Kidney function crucially affects B‐type natriuretic peptide (BNP), N‐terminal pro BNP and their relationship. Eur. J. Clin. Invest. 2014 44 303 308 10.1111/eci.12234 24372567
    [Google Scholar]
  155. Bando S. Soeki T. Matsuura T. Tobiume T. Ise T. Kusunose K. Yamaguchi K. Yagi S. Fukuda D. Iwase T. Yamada H. Wakatsuki T. Shimabukuro M. Muguruma N. Takayama T. Kishimoto I. Kangawa K. Sata M. Plasma brain natriuretic peptide levels are elevated in patients with cancer. PLoS One 2017 12 6 e0178607 10.1371/journal.pone.0178607 28570595
    [Google Scholar]
  156. Onitilo A.A. Engel J.M. Stankowski R.V. Liang H. Berg R.L. Doi S.A.R. High-sensitivity C-reactive protein (hs-CRP) as a biomarker for trastuzumab-induced cardiotoxicity in HER2-positive early-stage breast cancer: A pilot study. Breast Cancer Res. Treat. 2012 134 1 291 298 10.1007/s10549‑012‑2039‑z 22476854
    [Google Scholar]
  157. Ridker P.M. Lüscher T.F. Anti-inflammatory therapies for cardiovascular disease. Eur. Heart J. 2014 35 27 1782 1791 10.1093/eurheartj/ehu203 24864079
    [Google Scholar]
  158. Morris P.G. Chen C. Steingart R. Fleisher M. Lin N. Moy B. Come S. Sugarman S. Abbruzzi A. Lehman R. Patil S. Dickler M. McArthur H.L. Winer E. Norton L. Hudis C.A. Dang C.T. Troponin I and C-reactive protein are commonly detected in patients with breast cancer treated with dose-dense chemotherapy incorporating trastuzumab and lapatinib. Clin. Cancer Res. 2011 17 10 3490 3499 10.1158/1078‑0432.CCR‑10‑1359 21372222
    [Google Scholar]
  159. Lagoa R. Gañán C. López-Sánchez C. García-Martínez V. Gutierrez-Merino C. The decrease of NAD(P)H:quinone oxidoreductase 1 activity and increase of ROS production by NADPH oxidases are early biomarkers in doxorubicin cardiotoxicity. Biomarkers 2014 19 2 142 153 10.3109/1354750X.2014.885084 24506563
    [Google Scholar]
  160. Baldus S. Heeschen C. Meinertz T. Zeiher A.M. Eiserich J.P. Münzel T. Simoons M.L. Hamm C.W. CAPTURE Investigators Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 2003 108 12 1440 1445 10.1161/01.CIR.0000090690.67322.51 12952835
    [Google Scholar]
  161. Hampton M.B. Kettle A.J. Winterbourn C.C. Inside the neutrophil phagosome: Oxidants, myeloperoxidase, and bacterial killing. Blood 1998 92 9 3007 3017 10.1182/blood.V92.9.3007 9787133
    [Google Scholar]
  162. Fu J. Chen Y. Li F. Attenuation of MicroRNA-495 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy. Cardiology 2018 139 4 245 254 10.1159/000487044 29566365
    [Google Scholar]
  163. Tao L. Bei Y. Chen P. Lei Z. Fu S. Zhang H. Xu J. Che L. Chen X. Sluijter J.P.G. Das S. Cretoiu D. Xu B. Zhong J. Xiao J. Li X. Crucial role of miR-433 in regulating cardiac fibrosis. Theranostics 2016 6 12 2068 2083 10.7150/thno.15007 27698941
    [Google Scholar]
  164. Evans J.D.W. Dobbin S.J.H. Pettit S.J. Di Angelantonio E. Willeit P. High-sensitivity cardiac troponin and new-onset heart failure. JACC Heart Fail. 2018 6 3 187 197 10.1016/j.jchf.2017.11.003 29331272
    [Google Scholar]
  165. Dong Y. Wu Q. Hu C. Early predictive value of nt-probnp combined with echocardiography in anthracyclines induced cardiotoxicity. Front. Surg. 2022 9 898172 10.3389/fsurg.2022.898172 35846969
    [Google Scholar]
  166. Boen H.M. Cherubin M. Franssen C. Gevaert A.B. Witvrouwen I. Bosman M. Guns P.J. Heidbuchel H. Loeys B. Alaerts M. Van Craenenbroeck E.M. Circulating MicroRNA as biomarkers of anthracycline-induced cardiotoxicity. JACC: Cardiooncology state-of-the-art review. JACC: CardioOncology 2024 6 2 183 199 10.1016/j.jaccao.2023.12.009 38774014
    [Google Scholar]
/content/journals/cds/10.2174/0115748863356150250414071307
Loading
/content/journals/cds/10.2174/0115748863356150250414071307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test