Skip to content
2000
image of Clinical Manifestations of Neuropathic Pain and the Deleterious Effects of Chemotherapeutic Agents

Abstract

Neuropathic pain is a type of pain resulting from damage or dysfunction of the nervous system. Chemotherapy-induced peripheral neurotoxicity (CIPN) is a serious complication of cancer treatment, often occurring in a dose-dependent manner. CIPN is a sensory neuropathic syndrome characterized by motor and autonomic alterations of varying intensity and duration. The lack of effective treatment options for CIPN makes it a significant clinical challenge. A variety of chemotherapeutic agents can contribute to the development of CIPN, including vinca alkaloids, platinum-based antineoplastic agents, epothilones (ixabepilone), proteasome inhibitors (bortezomib), taxanes, and immunomodulatory drugs (thalidomide), along with the genetic factors. Single nucleotide polymorphisms (SNPs) in genes, such as CEP72 and EPHA, have been linked to increased susceptibility to CIPN. The treatment options for CIPN are limited and often require careful consideration due to potential side effects and patient comorbidities. Pharmacological interventions, such as anticonvulsants, gabapentin, and pregabalin, are commonly used to manage neuropathic pain. Tricyclic antidepressants like amitriptyline and nortriptyline can be effective, but their use may be limited due to side effects. In severe cases, opioids may be considered, but they should be used cautiously due to the risk of addiction and other adverse effects. The lidocaine or capsaicin creams and patches can provide localized pain relief. The non-pharmacological interventions like physical therapy can help improve strength, balance, and mobility. Transcutaneous electrical nerve stimulation and spinal cord stimulation are invasive procedures that may be considered for severe, intractable pain. Complementary therapies and cognitive-behavioural therapy can help patients cope with pain and improve their quality of life.

Loading

Article metrics loading...

/content/journals/cds/10.2174/0115748863338537250314064501
2025-03-24
2025-11-05
Loading full text...

Full text loading...

References

  1. Derry S Bell RF Straube S Wiffen PJ Aldington D Moore RA Pregabalin for neuropathic pain in adults. Cochrane Database Syst Rev 2019 1 1 CD007076
    [Google Scholar]
  2. Hossain M.Z. Ando H. Unno S. Kitagawa J. Targeting peripherally restricted cannabinoid receptor 1, cannabinoid receptor 2, and endocannabinoid-degrading enzymes for the treatment of neuropathic pain including neuropathic orofacial pain. Int. J. Mol. Sci. 2020 21 4 1423 10.3390/ijms21041423 32093166
    [Google Scholar]
  3. Boland GE Mulvey RM Bennett BI Classification of neuropathic pain in cancer patients. Curr Opin Support Palliat Care 2015 9 2 112 115 10.1097/SPC.0000000000000136
    [Google Scholar]
  4. Zajączkowska R. Kocot-Kępska M. Leppert W. Wrzosek A. Mika J. Wordliczek J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int. J. Mol. Sci. 2019 20 6 1451 1480 10.3390/ijms20061451 30909387
    [Google Scholar]
  5. Baron R. Gierthmühlen J. Neuropathic pain. Semin. Neurol. 2016 36 5 462 468 10.1055/s‑0036‑1584950 27704502
    [Google Scholar]
  6. Smith F.P. Chemotherapy-induced neuropathic pain. Wolters Kluwer Health 2011 1 7
    [Google Scholar]
  7. Kocot-Kępska M. Zajączkowska R. Mika J. Kopsky D.J. Wordliczek J. Dobrogowski J. Przeklasa-Muszyńska A. Topical treatments and their molecular/cellular mechanisms in patients with peripheral neuropathic pain—Narrative review. Pharmaceutics 2021 13 4 450 10.3390/pharmaceutics13040450 33810493
    [Google Scholar]
  8. Calhoun E.A. Welshman E.E. Chang C.H. Lurain J.R. Fishman D.A. Hunt T.L. Cella D. Psychometric evaluation of thefunctional assessment of cancer therapy/gynecologic oncology group-neurotoxicity (Fact/GOG-Ntx) questionnaire for patients receiving systemic chemotherapy. Int. J. Gynecol. Cancer 2003 13 6 741 748 14675309
    [Google Scholar]
  9. Barohn R.J. Amato A.A. Pattern-recognition approach to neuropathy and neuronopathy. Neurol. Clin. 2013 31 2 343 361 10.1016/j.ncl.2013.02.001 23642713
    [Google Scholar]
  10. Sumitani M. Sakai T. Matsuda Y. Abe H. Yamaguchi S. Hosokawa T. Fukui S. Executive summary of the clinical guidelines of pharmacotherapy for neuropathic pain: By the Japanese society of pain clinicians. J. Anesth. 2018 32 3 463 478 10.1007/s00540‑018‑2501‑0 29737410
    [Google Scholar]
  11. Wang N. Zhang Y.H. Wang J.Y. Luo F. Current understanding of the involvement of the insular cortex in neuropathic pain: A narrative review. Int. J. Mol. Sci. 2021 22 5 2648 10.3390/ijms22052648 33808020
    [Google Scholar]
  12. Hanewinckel R. van Oijen M. Ikram M.A. van Doorn P.A. The epidemiology and risk factors of chronic polyneuropathy. Eur. J. Epidemiol. 2016 31 1 5 20 10.1007/s10654‑015‑0094‑6 26700499
    [Google Scholar]
  13. Rosenberger D.C. Blechschmidt V. Timmerman H. Wolff A. Treede R.D. Challenges of neuropathic pain: Focus on diabetic neuropathy. J. Neural Transm. 2020 127 4 589 624 10.1007/s00702‑020‑02145‑7 32036431
    [Google Scholar]
  14. Mücke M Phillips T Radbruch L Petzke F Häuser W Cannabis-based medicines for chronic neuropathic pain in adults. Cochrane Database Syst Rev 2018 3 3 CD012182
    [Google Scholar]
  15. Sharma J.K. Rohatgi A. Sharma D. Diabetic autonomic neuropathy: A clinical update. J. R. Coll. Phys. Edinb. 2020 50 3 269 273 10.4997/jrcpe.2020.310 32936100
    [Google Scholar]
  16. Albariqi M. Engelsman S. Eijkelkamp N. Höppener J. Amyloid proteins and peripheral neuropathy. Cells 2020 9 6 1553 10.3390/cells9061553 32604774
    [Google Scholar]
  17. Kapoor M. Rossor A.M. Jaunmuktane Z. Lunn M.P.T. Reilly M.M. Diagnosis of amyloid neuropathy. Pract. Neurol. 2019 19 3 250 258 10.1136/practneurol‑2018‑002098 30598431
    [Google Scholar]
  18. Gaballah A. Shafik A. Elhusseiny K. Ashraf M. Chemotherapy-induced peripheral neuropathy in Egyptian patients: Single institution retrospective analysis. Asian Pacific journal of cancer prevention. APJCP 2018 19 8 2223 2227 30139229
    [Google Scholar]
  19. Cohen S.P. Liao W. Gupta A. Plunkett A. Ketamine in pain management. Adv. Psychosom. Med. 2011 30 139 161 10.1159/000324071 21508630
    [Google Scholar]
  20. Cohen S.P. White R.L. Kurihara C. Larkin T.M. Chang A. Griffith S.R. Gilligan C. Larkin R. Morlando B. Pasquina P.F. Yaksh T.L. Nguyen C. Epidural steroids, etanercept, or saline in subacute sciatica: A multicenter, randomized trial. Ann. Intern. Med. 2012 156 8 551 559 10.7326/0003‑4819‑156‑8‑201204170‑00397 22508732
    [Google Scholar]
  21. Meacham K. Shepherd A. Mohapatra D.P. Haroutounian S. Neuropathic pain: Central vs. Peripheral Mechanisms. Curr. Pain Headache Rep. 2017 21 6 28 10.1007/s11916‑017‑0629‑5
    [Google Scholar]
  22. Hu L.Y. Mi W.L. Wu G.C. Wang Y.Q. Mao-Ying Q.L. Prevention and treatment for chemotherapy-induced peripheral neuropathy: Therapies based on CIPN mechanisms. Curr. Neuropharmacol. 2019 17 2 184 196 10.2174/1570159X15666170915143217 28925884
    [Google Scholar]
  23. Larsson M. Broman J. Synaptic plasticity and pain: Role of ionotropic glutamate receptors. Neuroscientist 2011 17 3 256 273 10.1177/1073858409349913 20360599
    [Google Scholar]
  24. Woolf C.J. Pain: Moving from symptom control toward mechanism-specific pharmacologic management. Ann. Intern. Med. 2004 140 6 441 451 10.7326/0003‑4819‑140‑8‑200404200‑00010 15023710
    [Google Scholar]
  25. Malacrida A. Meregalli C. Rodriguez-Menendez V. Nicolini G. Chemotherapy-induced peripheral neuropathy and changes in cytoskeleton. Int. J. Mol. Sci. 2019 20 9 2287 10.3390/ijms20092287 31075828
    [Google Scholar]
  26. Woolf C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011 152 3 Suppl. S2 S15 10.1016/j.pain.2010.09.030 20961685
    [Google Scholar]
  27. Bakogeorgos M. Georgoulias V. Risk-reduction and treatment of chemotherapy-induced peripheral neuropathy. Expert Rev. Anticancer Ther. 2017 17 11 1045 1060 10.1080/14737140.2017.1374856 28868935
    [Google Scholar]
  28. Vallejo R. Tilley D.M. Vogel L. Benyamin R. The role of glia and the immune system in the development and maintenance of neuropathic pain. Pain Pract. 2010 10 3 167 184 10.1111/j.1533‑2500.2010.00367.x 20384965
    [Google Scholar]
  29. Coull J.A.M. Beggs S. Boudreau D. Boivin D. Tsuda M. Inoue K. Gravel C. Salter M.W. De Koninck Y. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005 438 7070 1017 1021 10.1038/nature04223 16355225
    [Google Scholar]
  30. Inoue K. Tsuda M. Microglia and neuropathic pain. Glia 2009 57 14 1469 1479 10.1002/glia.20871 19306358
    [Google Scholar]
  31. Zhuo M. Wu G. Wu L.J. Neuronal and microglial mechanisms of neuropathic pain. Mol. Brain 2011 4 1 31 10.1186/1756‑6606‑4‑31 21801430
    [Google Scholar]
  32. Vranken J.H. Elucidation of pathophysiology and treatment of neuropathic pain. Cent. Nerv. Syst. Agents Med. Chem. 2012 12 4 304 314 10.2174/187152412803760645 23033930
    [Google Scholar]
  33. Gwak Y.S. Hulsebosch C.E. GABA and central neuropathic pain following spinal cord injury. Neuropharmacology 2011 60 5 799 808 10.1016/j.neuropharm.2010.12.030 21216257
    [Google Scholar]
  34. Storey D.J. Sakala M. McLean C.M. Phillips H.A. Dawson L.K. Wall L.R. Fallon M.T. Clive S. Capecitabine combined with oxaliplatin (CapOx) in clinical practice: How significant is peripheral neuropathy? Ann. Oncol. 2010 21 8 1657 1661 10.1093/annonc/mdp594 20089559
    [Google Scholar]
  35. Altassan R. Saud H.A. Masoodi T.A. Dosssari H.A. Khalifa O. Al-Zaidan H. Sakati N. Rhabeeni Z. Al-Hassnan Z. Binamer Y. Alhashemi N. Wade W. Al-Zayed Z. Al-Sayed M. Al-Muhaizea M.A. Meyer B. Al-Owain M. Wakil S.M. Exome sequencing identifies novel NTRK1 mutations in patients with HSAN‐IV phenotype. Am. J. Med. Genet. A. 2017 173 4 1009 1016 10.1002/ajmg.a.38120 28328124
    [Google Scholar]
  36. Chiabrando D. Castori M. di Rocco M. Ungelenk M. Gießelmann S. Di Capua M. Madeo A. Grammatico P. Bartsch S. Hübner C.A. Altruda F. Silengo L. Tolosano E. Kurth I. Mutations in the heme exporter FLVCR1 cause sensory neurodegeneration with loss of pain perception. PLoS Genet. 2016 12 12 e1006461 10.1371/journal.pgen.1006461 27923065
    [Google Scholar]
  37. Chung H.Y. Song E.Y. Yoon J.A. Suh D.H. Lee S.C. Kim Y.C. Park M.H. Association of human leukocyte antigen with postherpetic neuralgia in Koreans. Acta Pathol. Microbiol. Scand. Suppl. 2016 124 10 865 871 10.1111/apm.12575 27457498
    [Google Scholar]
  38. Cruccu G. Finnerup N.B. Jensen T.S. Scholz J. Sindou M. Svensson P. Treede R.D. Zakrzewska J.M. Nurmikko T. Trigeminal neuralgia. Neurology 2016 87 2 220 228 10.1212/WNL.0000000000002840 27306631
    [Google Scholar]
  39. Dabby R. Sadeh M. Broitman Y. Yosovich K. Dickman R. Leshinsky-Silver E. Painful small fiber neuropathy with gastroparesis: A new phenotype with a novel mutation in the SCN10A gene. J. Clin. Neurosci. 2016 26 84 88 10.1016/j.jocn.2015.05.071 26711856
    [Google Scholar]
  40. de Greef B.T.A. Hoeijmakers J.G.J. Wolters E.E. Smeets H.J.M. van den Wijngaard A. Merkies I.S.J. Faber C.G. Gerrits M.M. No Fabry disease in patients presenting with isolated small fiber neuropathy. PLoS One 2016 11 2 e0148316 10.1371/journal.pone.0148316 26866599
    [Google Scholar]
  41. Finnerup N.B. Haroutounian S. Kamerman P. Baron R. Bennett D.L.H. Bouhassira D. Cruccu G. Freeman R. Hansson P. Nurmikko T. Raja S.N. Rice A.S.C. Serra J. Smith B.H. Treede R.D. Jensen T.S. Neuropathic pain: an updated grading system for research and clinical practice. Pain 2016 157 8 1599 1606 10.1097/j.pain.0000000000000492 27115670
    [Google Scholar]
  42. Hendry L.M. Wadley A.L. Cherry C.L. Price P. Lombard Z. Kamerman P.R. TNF block gene variants associate with pain intensity in black Southern Africans with HIV-associated sensory neuropathy. Clin. J. Pain 2016 32 1 45 50 10.1097/AJP.0000000000000224 25756557
    [Google Scholar]
  43. Kurth I. Baumgartner M. Schabhüttl M. Tomni C. Windhager R. Strom T.M. Wieland T. Gremel K. Auer-Grumbach M. Whole exome sequencing in congenital pain insensitivity identifies a novel causative intronic NTRK1‐ mutation due to uniparental disomy. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2016 171 6 875 878 10.1002/ajmg.b.32458 27184211
    [Google Scholar]
  44. Leng X.R. Qi X.H. Zhou Y.T. Wang Y.P. Gain-of-function mutation p.Arg225Cys in SCN11A causes familial episodic pain and contributes to essential tremor. J. Hum. Genet. 2017 62 6 641 646 10.1038/jhg.2017.21 28298626
    [Google Scholar]
  45. Lv F. Xu X. Song Y. Li L. Wang O. Jiang Y. Xia W. Xing X. Gao P. Li M. Recurrent and novel mutations in the NTRK1 gene lead to rare congenital insensitivity to pain with anhidrosis in two Chinese patients. Clin. Chim. Acta 2017 468 39 45 10.1016/j.cca.2017.02.007 28192073
    [Google Scholar]
  46. Ngassa Mbenda H.G. Wadley A. Lombard Z. Cherry C. Price P. Kamerman P. Genetics of HIV-associated sensory neuropathy and related pain in Africans. J. Neurovirol. 2017 23 4 511 519 10.1007/s13365‑017‑0532‑1 28560631
    [Google Scholar]
  47. Phatarakijnirund V. Mumm S. McAlister W.H. Novack D.V. Wenkert D. Clements K.L. Whyte M.P. Congenital insensitivity to pain: Fracturing without apparent skeletal pathobiology caused by an autosomal dominant, second mutation in SCN11A encoding voltage-gated sodium channel 1.9. Bone 2016 84 289 298 10.1016/j.bone.2015.11.022 26746779
    [Google Scholar]
  48. Reyes-Gibby C.C. Wang J. Silvas M.R.T. Yu R. Yeung S.C.J. Shete S. MAPK1/ERK2 as novel target genes for pain in head and neck cancer patients. BMC Genet. 2016 17 1 40 10.1186/s12863‑016‑0348‑7 26872611
    [Google Scholar]
  49. Tanaka B.S. Zhao P. Dib-Hajj F.B. Morisset V. Tate S. Waxman S.G. Dib-Hajj S.D. A gain-of-function mutation in Nav1.6 in a case of trigeminal neuralgia. Mol. Med. 2016 22 1 338 348 10.2119/molmed.2016.00131 27496104
    [Google Scholar]
  50. Warner S.C. van Meurs J.B.J. Schiphof D. Bierma-Zeinstra S.M. Hofman A. Uitterlinden A.G. Richardson H. Jenkins W. Doherty M. Valdes A.M. Genome-wide association scan of neuropathic pain symptoms post total joint replacement highlights a variant in the protein-kinase C gene. Eur. J. Hum. Genet. 2017 25 4 446 451 10.1038/ejhg.2016.196 28051079
    [Google Scholar]
  51. Zorina-Lichtenwalter K. Meloto C.B. Khoury S. Diatchenko L. Genetic predictors of human chronic pain conditions. Neuroscience 2016 338 36 62 10.1016/j.neuroscience.2016.04.041 27143481
    [Google Scholar]
  52. Cavaletti G. Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Nat. Rev. Neurol. 2010 6 12 657 666 10.1038/nrneurol.2010.160 21060341
    [Google Scholar]
  53. Sánchez-Barroso L. Apellaniz-Ruiz M. Gutiérrez-Gutiérrez G. Santos M. Roldán-Romero J.M. Curras M. Remacha L. Calsina B. Calvo I. Sereno M. Merino M. García-Donas J. Castelo B. Guerra E. Letón R. Montero-Conde C. Cascón A. Inglada-Pérez L. Robledo M. Rodríguez-Antona C. Concomitant medications and risk of chemotherapy‐induced peripheral neuropathy. Oncologist 2019 24 8 e784 e792 10.1634/theoncologist.2018‑0418 30470691
    [Google Scholar]
  54. Krarup-Hansen A. Helweg-Larsen S. Schmalbruch H. Rørth M. Krarup C. Neuronal involvement in cisplatin neuropathy: Prospective clinical and neurophysiological studies. Brain 2007 130 Pt 4 1076 1088 17301082
    [Google Scholar]
  55. Hausheer F.H. Schilsky R.L. Bain S. Berghorn E.J. Lieberman F. Diagnosis, management, and evaluation of chemotherapy-induced peripheral neuropathy. Semin. Oncol. 2006 33 1 15 49 10.1053/j.seminoncol.2005.12.010 16473643
    [Google Scholar]
  56. Leonard G.D. Wright M.A. Quinn M.G. Fioravanti S. Harold N. Schuler B. Thomas R.R. Grem J.L. Survey of oxaliplatin-associated neurotoxicity using an interview-based questionnaire in patients with metastatic colorectal cancer. BMC Cancer 2005 5 1 116 10.1186/1471‑2407‑5‑116 16168057
    [Google Scholar]
  57. Gebremedhn E.G. Shortland P.J. Mahns D.A. The incidence of acute oxaliplatin-induced neuropathy and its impact on treatment in the first cycle: A systematic review. BMC Cancer 2018 18 1 410 10.1186/s12885‑018‑4185‑0 29649985
    [Google Scholar]
  58. Magnowska M. Iżycka N. Kapoła-Czyż J. Romała A. Lorek J. Spaczyński M. Nowak-Markwitz E. Effectiveness of gabapentin pharmacotherapy in chemotherapy-induced peripheral neuropathy. Ginekol. Pol. 2018 89 4 201 205 10.5603/GP.a2018.0034 29781075
    [Google Scholar]
  59. Jaggi A.S. Singh N. Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology 2012 291 1-3 1 9 10.1016/j.tox.2011.10.019 22079234
    [Google Scholar]
  60. McQuade R.M. Stojanovska V. Bornstein J.C. Nurgali K. PARP inhibition in platinum-based chemotherapy: Chemopotentiation and neuroprotection. Pharmacol. Res. 2018 137 104 113 10.1016/j.phrs.2018.09.031 30278221
    [Google Scholar]
  61. Joseph E.K. Chen X. Bogen O. Levine J.D. Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy. J. Pain 2008 9 5 463 472 10.1016/j.jpain.2008.01.335 18359667
    [Google Scholar]
  62. Di Cesare Mannelli L. Zanardelli M. Failli P. Ghelardini C. Oxaliplatin-induced oxidative stress in nervous system-derived cellular models: Could it correlate with in vivo neuropathy? Free Radic. Biol. Med. 2013 61 143 150 10.1016/j.freeradbiomed.2013.03.019 23548635
    [Google Scholar]
  63. Waseem M. Kaushik P. Tabassum H. Parvez S. Role of mitochondrial mechanism in chemotherapy-induced peripheral neuropathy. Curr. Drug Metab. 2018 19 1 47 54 10.2174/1389200219666171207121313 29219049
    [Google Scholar]
  64. Carozzi V.A. Canta A. Chiorazzi A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neurosci. Lett. 2015 596 90 107 10.1016/j.neulet.2014.10.014 25459280
    [Google Scholar]
  65. Jin X. Gereau R.W. IV Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J. Neurosci. 2006 26 1 246 255 10.1523/JNEUROSCI.3858‑05.2006 16399694
    [Google Scholar]
  66. Xu D. Zhao H. Gao H. Zhao H. Liu D. Li J. Participation of pro-inflammatory cytokines in neuropathic pain evoked by chemotherapeutic oxaliplatin via central GABAergic pathway. Mol. Pain 2018 14 1744806918783535 10.1177/1744806918783535 29900804
    [Google Scholar]
  67. Sharma M.R. Mehrotra S. Gray E. Wu K. Barry W.T. Hudis C. Winer E.P. Lyss A.P. Toppmeyer D.L. Moreno-Aspitia A. Lad T.E. Velasco M. Overmoyer B. Rugo H.S. Ratain M.J. Gobburu J.V. Personalized management of chemotherapy‐induced peripheral neuropathy based on a patient reported outcome: CALGB 40502 (Alliance). J. Clin. Pharmacol. 2020 60 4 444 452 10.1002/jcph.1559 31802506
    [Google Scholar]
  68. Richardson P. Hideshima T. Anderson K. Thalidomide in multiple myeloma. Biomed. Pharmacother. 2002 56 3 115 128 10.1016/S0753‑3322(02)00168‑3 12046682
    [Google Scholar]
  69. Curcio K. Instruments for assessing chemotherapy-induced peripheral neuropathy: A review of the literature. Clin. J. Oncol. Nurs. 2016 20 2 144 151 10.1188/16.CJON.20‑01AP 26991707
    [Google Scholar]
  70. Mohty B. El-Cheikh J. Yakoub-Agha I. Moreau P. Harousseau J.L. Mohty M. Peripheral neuropathy and new treatments for multiple myeloma: Background and practical recommendations. Haematologica 2010 95 2 311 319 10.3324/haematol.2009.012674 20139393
    [Google Scholar]
  71. Nascimento F.P. Macedo-Júnior S.J. Borges F.R.M. Cremonese R.P. da Silva M.D. Luiz-Cerutti M. Martins D.F. Rodrigues A.L.S. Santos A.R.S. Thalidomide reduces mechanical hyperalgesia and depressive-like behavior induced by peripheral nerve crush in mice. Neuroscience 2015 303 51 58 10.1016/j.neuroscience.2015.06.044 26126925
    [Google Scholar]
  72. Eckhoff L. Knoop A.S. Jensen M.B. Ewertz M. Persistence of docetaxel-induced neuropathy and impact on quality of life among breast cancer survivors. Eur. J. Cancer 2015 51 3 292 300 10.1016/j.ejca.2014.11.024 25541155
    [Google Scholar]
  73. Peng L. Bu Z. Ye X. Zhou Y. Zhao Q. Incidence and risk of peripheral neuropathy with nab-paclitaxel in patients with cancer: A meta-analysis. Eur. J. Cancer Care 2017 26 5 e12407 10.1111/ecc.12407 26537178
    [Google Scholar]
  74. Gornstein E. Schwarz T.L. The paradox of paclitaxel neurotoxicity: Mechanisms and unanswered questions. Neuropharmacology 2014 76 Pt A 175 183 10.1016/j.neuropharm.2013.08.016 23978385
    [Google Scholar]
  75. Raffa R.B. Pergolizzi J.V. Chemotherapy-Induced Neuropathic Pain. CRC Press Boca Raton 2013
    [Google Scholar]
  76. Boyette-Davis J.A. Hou S. Abdi S. Dougherty P.M. An updated understanding of the mechanisms involved in chemotherapy-induced neuropathy. Pain Manag. 2018 8 5 363 375 10.2217/pmt‑2018‑0020 30212277
    [Google Scholar]
  77. Cioroiu C. Weimer L.H. Update on chemotherapy-induced peripheral neuropathy. Curr. Neurol. Neurosci. Rep. 2017 17 6 47 10.1007/s11910‑017‑0757‑7 28421360
    [Google Scholar]
  78. Wang M. Cheng H.L. Lopez V. Sundar R. Yorke J. Molassiotis A. Redefining chemotherapy-induced peripheral neuropathy through symptom cluster analysis and patient-reported outcome data over time. BMC Cancer 2019 19 1 1151 10.1186/s12885‑019‑6352‑3 31775665
    [Google Scholar]
  79. Saifee T.A. Elliott K.J. Lunn M.P. Blake J. Reilly M.M. Rabin N. Yong K.L. D’Sa S. Brandner S. Bortezomib‐induced inflammatory neuropathy. J. Peripher. Nerv. Syst. 2010 15 4 366 368 10.1111/j.1529‑8027.2010.00287.x 21199108
    [Google Scholar]
  80. Wolf S. Barton D. Kottschade L. Grothey A. Loprinzi C. Chemotherapy-induced peripheral neuropathy: Prevention and treatment strategies. Eur. J. Cancer 2008 44 11 1507 1515 10.1016/j.ejca.2008.04.018 18571399
    [Google Scholar]
  81. Argyriou A.A. Chroni E. Koutras A. Ellul J. Papapetropoulos S. Katsoulas G. Iconomou G. Kalofonos H.P. Vitamin E for prophylaxis against chemotherapy-induced neuropathy. Neurology 2005 64 1 26 31 10.1212/01.WNL.0000148609.35718.7D 15642899
    [Google Scholar]
  82. Finnerup N.B. Attal N. Haroutounian S. McNicol E. Baron R. Dworkin R.H. Gilron I. Haanpää M. Hansson P. Jensen T.S. Kamerman P.R. Lund K. Moore A. Raja S.N. Rice A.S.C. Rowbotham M. Sena E. Siddall P. Smith B.H. Wallace M. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015 14 2 162 173 10.1016/S1474‑4422(14)70251‑0 25575710
    [Google Scholar]
  83. Dworkin R.H. O’Connor A.B. Audette J. Baron R. Gourlay G.K. Haanpää M.L. Kent J.L. Krane E.J. LeBel A.A. Levy R.M. Mackey S.C. Mayer J. Miaskowski C. Raja S.N. Rice A.S.C. Schmader K.E. Stacey B. Stanos S. Treede R.D. Turk D.C. Walco G.A. Wells C.D. Recommendations for the pharmacological management of neuropathic pain: An overview and literature update. Mayo Clin. Proc. 2010 85 3 Suppl. S3 S14 10.4065/mcp.2009.0649 20194146
    [Google Scholar]
  84. Frampton J.E. Foster R.H. Pregabalin: In the treatment of generalised anxiety disorder. CNS Drugs 2006 20 8 685 693 10.2165/00023210‑200620080‑00010 16863276
    [Google Scholar]
  85. Stahl S.M. Grady M.M. Moret C. Briley M. SNRIs: Their pharmacology, clinical efficacy, and tolerability in comparison with other classes of antidepressants. CNS Spectr. 2005 10 9 732 747 10.1017/S1092852900019726 16142213
    [Google Scholar]
  86. Abalo R. Uranga J.A. Pérez-García I. de Andrés R. Girón R. Vera G. López-Pérez A.E. Martín-Fontelles M.I. May cannabinoids prevent the development of chemotherapy‐induced diarrhea and intestinal mucositis? Experimental study in the rat. Neurogastroenterol. Motil. 2017 29 3 e12952 10.1111/nmo.12952 27686064
    [Google Scholar]
  87. Binder A. Baron R. The pharmacological therapy of chronic neuropathic pain. Dtsch. Arztebl. Int. 2016 113 37 616 625 10.3238/arztebl.2016.0616 27697147
    [Google Scholar]
  88. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  89. Carvalho L.F. Silva A.M.F. Carvalho A.A. The use of antioxidant agents for chemotherapy‐induced peripheral neuropathy treatment in animal models. Clin. Exp. Pharmacol. Physiol. 2017 44 10 971 979 10.1111/1440‑1681.12803 28649767
    [Google Scholar]
  90. Ciaramella V. Sasso F.C. Di Liello R. Corte C.M.D. Barra G. Viscardi G. Esposito G. Sparano F. Troiani T. Martinelli E. Orditura M. De Vita F. Ciardiello F. Morgillo F. Activity and molecular targets of pioglitazone via blockade of proliferation, invasiveness and bioenergetics in human NSCLC. J. Exp. Clin. Cancer Res. 2019 38 1 178 10.1186/s13046‑019‑1176‑1 31027492
    [Google Scholar]
  91. Duggett N.A. Griffiths L.A. Flatters S.J.L. Paclitaxel-induced painful neuropathy is associated with changes in mitochondrial bioenergetics, glycolysis, and an energy deficit in dorsal root ganglia neurons. Pain 2017 158 8 1499 1508 10.1097/j.pain.0000000000000939 28541258
    [Google Scholar]
  92. Ferlay J. Colombet M. Soerjomataram I. Mathers C. Parkin D.M. Piñeros M. Znaor A. Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019 144 8 1941 1953 10.1002/ijc.31937 30350310
    [Google Scholar]
  93. Ferret-Sena V. Capela C. Sena A. Metabolic dysfunction and peroxisome proliferator-activated receptors (PPAR) in multiple sclerosis. Int. J. Mol. Sci. 2018 19 6 1639 10.3390/ijms19061639 29865151
    [Google Scholar]
  94. Fukuda Y. Li Y. Segal R.A. A mechanistic understanding of axon degeneration in chemotherapy-induced peripheral neuropathy. Front. Neurosci. 2017 11 481 10.3389/fnins.2017.00481 28912674
    [Google Scholar]
  95. Gong S.S. Li Y.X. Zhang M.T. Du J. Ma P.S. Yao W.X. Zhou R. Niu Y. Sun T. Yu J.Q. Neuroprotective effect of matrine in mouse model of vincristine-induced neuropathic pain. Neurochem. Res. 2016 41 11 3147 3159 10.1007/s11064‑016‑2040‑8 27561290
    [Google Scholar]
  96. Han L. Shen W.J. Bittner S. Kraemer F.B. Azhar S. PPARs: Regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ. Future Cardiol. 2017 13 3 279 296 10.2217/fca‑2017‑0019 28581362
    [Google Scholar]
  97. Hou S. Huh B. Kim H.K. Kim K.H. Abdi S. Treatment of chemotherapy-induced peripheral neuropathy: Systematic review and recommendations. Pain Physician 2018 21 6 571 592 30508986
    [Google Scholar]
  98. Fallon M.T. Storey D.J. Krishan A. Weir C.J. Mitchell R. Fleetwood-Walker S.M. Scott A.C. Colvin L.A. Cancer treatment-related neuropathic pain: proof of concept study with menthol—A TRPM8 agonist. Support. Care Cancer 2015 23 9 2769 2777 10.1007/s00520‑015‑2642‑8 25680765
    [Google Scholar]
  99. Areti A. Yerra V.G. Naidu V.G.M. Kumar A. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biol. 2014 2 289 295 10.1016/j.redox.2014.01.006 24494204
    [Google Scholar]
  100. Aziz M.T. Good B.L. Lowe D.K. Serotonin-norepinephrine reuptake inhibitors for the management of chemotherapy-induced peripheral neuropathy. Ann. Pharmacother. 2014 48 5 626 632 10.1177/1060028014525033 24577146
    [Google Scholar]
  101. Ewertz M. Qvortrup C. Eckhoff L. Chemotherapy-induced peripheral neuropathy in patients treated with taxanes and platinum derivatives. Acta Oncol. 2015 54 5 587 591 10.3109/0284186X.2014.995775 25751757
    [Google Scholar]
  102. Popović J. Klajn A. Paunesku T. Ma Q. Chen S. Lai B. Stevanović M. Woloschak G.E. Neuroprotective role of selected antioxidant agents in preventing cisplatin-induced damage of human neurons in vitro. Cell. Mol. Neurobiol. 2019 39 5 619 636 10.1007/s10571‑019‑00667‑7 30874981
    [Google Scholar]
  103. Carrasco C. Naziroǧlu M. Rodríguez A.B. Pariente J.A. Neuropathic pain: Delving into the oxidative origin and the possible implication of transient receptor potential channels. Front. Physiol. 2018 9 95 10.3389/fphys.2018.00095 29491840
    [Google Scholar]
  104. Chien T.J. Liu C.Y. Fang C.J. Kuo C.Y. The efficacy of acupuncture in chemotherapy-induced peripheral neuropathy: Systematic review and meta-analysis. Integr. Cancer Ther. 2019 18 1534735419886662 10.1177/1534735419886662 31833790
    [Google Scholar]
  105. Noh H. Yoon S.W. Park B. A systematic review of herbal medicine for chemotherapy induced peripheral neuropathy. Evid. Based Complement. Alternat. Med. 2018 2018 1 6194184 10.1155/2018/6194184 29636782
    [Google Scholar]
  106. Liu Y. May B.H. Zhang A.L. Guo X. Lu C. Xue C.C. Zhang H. Integrative herbal medicine for chemotherapy-induced peripheral neuropathy and hand-foot syndrome in colorectal cancer: A systematic review and meta-analysis. Integr. Cancer Ther. 2019 18 1534735418817833 10.1177/1534735418817833 30526124
    [Google Scholar]
  107. Bao T. Patil S. Chen C. Zhi I.W. Li Q.S. Piulson L. Mao J.J. Effect of acupuncture vs sham procedure on chemotherapy-induced peripheral neuropathy symptoms: A randomized clinical trial. JAMA Netw. Open 2020 3 3 e200681 10.1001/jamanetworkopen.2020.0681 32159808
    [Google Scholar]
  108. Kim J.H. Kim E.J. Seo B.K. Lee S. Lee S. Jung S.Y. Lee M.H. Kim A.R. Park H.J. Shin M.S. Choi S.M. Electroacupuncture for chemotherapy-induced peripheral neuropathy: Study protocol for a pilot multicentre randomized, patient-assessor-blinded, controlled trial. Trials 2013 14 1 254 10.1186/1745‑6215‑14‑254 23945074
    [Google Scholar]
  109. Tender T. Rahangdale R.R. Balireddy S. Nampoothiri M. Sharma K.K. Raghu Chandrashekar H. Melittin, a honeybee venom derived peptide for the treatment of chemotherapy-induced peripheral neuropathy. Med. Oncol. 2021 38 5 52 10.1007/s12032‑021‑01496‑9 33796975
    [Google Scholar]
  110. Yoon J. Jeon J.H. Lee Y.W. Cho C.K. Kwon K.R. Shin J.E. Sagar S. Wong R. Yoo H.S. Sweet bee venom pharmacopuncture for chemotherapy-induced peripheral neuropathy. J. Acupunct. Meridian Stud. 2012 5 4 156 165 10.1016/j.jams.2012.05.003 22898064
    [Google Scholar]
  111. Rostock M. Jaroslawski K. Guethlin C. Ludtke R. Schröder S. Bartsch H.H. Chemotherapy-induced peripheral neuropathy in cancer patients: A four-arm randomized trial on the effectiveness of electroacupuncture. Evid. Based Complement. Alternat. Med. 2013 2013 1 9 10.1155/2013/349653 24066010
    [Google Scholar]
  112. Bae I.H. Jung W.S. Kwon S. Lee H.G. Cho S.Y. Park S.U. Moon S.K. Park J.M. Ko C.N. Cho K.H. Investigation of the adverse events associated with bee venom pharmacopuncture in patients hospitalized in a Korean hospital: A retrospective chart review study. Toxins 2022 14 10 662 10.3390/toxins14100662 36287931
    [Google Scholar]
/content/journals/cds/10.2174/0115748863338537250314064501
Loading
/content/journals/cds/10.2174/0115748863338537250314064501
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test