Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8863
  • E-ISSN: 2212-3911

Abstract

Background

The concomitant use of herbal remedies in conjunction with conventional cardiac medications has increased significantly in recent years, primarily due to improvements in the quality standards of herbal medicines and the pervasive belief that natural products pose no harm to the human body. Contrary to this belief, multiple phytoconstituents found in herbal products have the potential to interact with conventional cardiac drugs, potentially resulting in severe adverse effects.

Objective

This review aimed to elucidate the intricacies of these interactions highlighting herbal medications that interact with established pharmaceuticals used for the treatment of cardiovascular disorders. Moreover, the review draws attention to safety concerns and preventative steps that should be taken by patients and medical professionals. This endeavor is vital to avert adverse events stemming from such interactions.

Methods

Our approach entailed a comprehensive literature review employing keywords such as “mechanisms of herb-drug interactions,” “herbal medications,” and “cardiovascular disorders”. The drugs presented in this review were selected based on their popularity among the general population, frequency of their employability, and potential to manifest drug interactions. We sourced pertinent information from reputable databases, including PubMed, Scopus, and Elsevier.

Results

Heart or blood vessel disorders are referred to as cardiovascular diseases (CVDs), which include conditions such as heart failure, stroke, hypertensive heart disease, and peripheral arterial disease. The primary underlying factor for the development of CVDs is dyslipidemia, which can be treated with classical antihyperlipidemic drugs such as statins, ezetimibe, and PCSK9-inhibitors. The use of herbal remedies is often unregulated, and there is a lack of scientific evidence supporting their use, particularly in the management of heart failure. Patients may not disclose their use of herbal remedies to health care practitioners, which can result in potential harm.

Conclusion

Uncontrolled dyslipidemia leads to hypercholesterolemia, which can result in atherosclerotic plaques and blocked arteries and veins. Herbal remedies and botanical products are also used to prevent or treat illnesses, and many prescription pharmaceuticals are made from plant compounds. Herbal remedies are often preferred because of the belief that they are safe and have no potential to cause harm. However, there is insufficient scientific data to support the use of herbal remedies, especially when treating heart disease. Using herbal remedies in conjunction with medicinal pharmaceuticals may result in unfavorable effects.

Loading

Article metrics loading...

/content/journals/cds/10.2174/0115748863289321240424063819
2025-05-01
2025-10-06
Loading full text...

Full text loading...

References

  1. CaoG. XuanX. ZhangR. HuJ. DongH. Gene therapy for cardiovascular disease: Basic research and clinical prospects.Front. Cardiovasc. Med.2021876014010.3389/fcvm.2021.76014034805315
    [Google Scholar]
  2. FrąkW. WojtasińskaA. LisińskaW. MłynarskaE. FranczykB. RyszJ. Pathophysiology of cardiovascular diseases: New insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease.Biomedicines2022108193810.3390/biomedicines1008193836009488
    [Google Scholar]
  3. Olvera LopezE. BallardB.D. JanA. Cardiovascular disease.In: StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  4. KalraA. JoseA.P. PrabhakaranP. KumarA. AgrawalA. RoyA. BhargavaB. TandonN. PrabhakaranD. The burgeoning cardiovascular disease epidemic in Indians: Perspectives on contextual factors and potential solutions.Lancet Reg. Health Southeast Asia20231210015610.1016/j.lansea.2023.10015637384064
    [Google Scholar]
  5. KumarAS SinhaN Cardiovascular disease in India: A 360-degree overview.Med. J. armed forces india202076113
    [Google Scholar]
  6. Global status report on noncommunicable diseases 2014.Available from: https://www.who.int/publications/i/item/9789241564854 (Accessed on 21st Sep 2023).
  7. OlabiyiA.A. de Castro BrásL.E. Cardiovascular remodeling post-ischemia: Herbs, diet, and drug interventions.Biomedicines2023116169710.3390/biomedicines1106169737371792
    [Google Scholar]
  8. XuM. ZhangK. SongJ. Targeted therapy in cardiovascular disease: A precision therapy era.Front. Pharmacol.20211262367410.3389/fphar.2021.62367433935716
    [Google Scholar]
  9. Cardiovascular drugs market.Available from: https://www.precedenceresearch.com/cardiovascular-drugs-market#:~:text=The%20global%20cardiovascular%20drugs%20market%20size%20was%20accounted%20at%20USD,USD%20200.9%20billion%20by%202032 (Accessed on 07-10-2023).
  10. India cardiovascular diseases therapeutics market analysis.Available from: https://www.insights10.com/report/india-cardiovascular-diseases-therapeutics-market-analysis/#:~:text=Market%20Executive%20Analysis-,India's%20cardiovascular%20disease%20therapeutics%20market%20is%20projected%20to%20grow%20from,%241.04%20Bn%20for%202022%2D23 (Accessed on 07-10-2023).
  11. DybiecJ. BaranW. DąbekB. FularskiP. MłynarskaE. RadziochE. RyszJ. FranczykB. Advances in treatment of dyslipidemia.Int. J. Mol. Sci.202324171328810.3390/ijms24171328837686091
    [Google Scholar]
  12. MorgovanC. DobreaC.M. ChisA.A. JuncanA.M. ArseniuA.M. RusL.L. GligorF.G. ArdeleanS.A. StoicescuL. GhibuS. FrumA. A descriptive analysis of direct oral anticoagulant drugs dosing errors based on spontaneous reports from the eudravigilance database.Pharmaceuticals202316345510.3390/ph1603045536986554
    [Google Scholar]
  13. Di MinnoA. FrigerioB. SpadarellaG. RavaniA. SansaroD. AmatoM. KitzmillerJ.P. PepiM. TremoliE. BaldassarreD. Old and new oral anticoagulants: Food, herbal medicines and drug interactions.Blood Rev.201731419320310.1016/j.blre.2017.02.00128196633
    [Google Scholar]
  14. BauersachsJ. Heart failure drug treatment: The fantastic four.Eur. Heart J.202142668168310.1093/eurheartj/ehaa101233447845
    [Google Scholar]
  15. MacDonaldB.J. ViraniS.A. ZierothS. TurgeonR. Heart failure management in 2023: A pharmacotherapy and lifestyle-focused comparison of current international guidelines.CJC Open20235862964010.1016/j.cjco.2023.05.00837720183
    [Google Scholar]
  16. FrąkW. HajdysJ. RadziochE. SzlagorM. MłynarskaE. RyszJ. FranczykB. Cardiovascular diseases: Therapeutic potential of SGLT-2 inhibitors.Biomedicines2023117208510.3390/biomedicines1107208537509724
    [Google Scholar]
  17. FurhadS. BokhariA.A. Herbal supplements.In: StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  18. EkorM. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety.Front. Pharmacol.2014417710.3389/fphar.2013.0017724454289
    [Google Scholar]
  19. WelzA.N. Emberger-KleinA. MenradK. Why people use herbal medicine: Insights from a focus-group study in Germany.BMC Complement. Altern. Med.20181819210.1186/s12906‑018‑2160‑629544493
    [Google Scholar]
  20. ChowS.L. BozkurtB. BakerW.L. BleskeB.E. BreathettK. FonarowG.C. GreenbergB. KhazanieP. LeclercJ. MorrisA.A. RezaN. YancyC.W. American Heart Association Clinical Pharmacology Committee and Heart Failure and Transplantation Committee of the Council on Clinical Cardiology; Council on Epidemiology and Prevention; and Council on Cardiovascular and Stroke Nursing Complementary and alternative medicines in the management of heart failure: A scientific statement from the american heart association.Circulation20231472e4e3010.1161/CIR.000000000000111036475715
    [Google Scholar]
  21. LiperotiR. VetranoD.L. BernabeiR. OnderG. Herbal medications in cardiovascular medicine.J. Am. Coll. Cardiol.20176991188119910.1016/j.jacc.2016.11.07828254182
    [Google Scholar]
  22. RasheedH. AhmedS. SharmaA. Changing trends towards herbal supplements: Need an insight into safety and herb-drug interaction.Curr. Pharm. Biotechnol.202337464829
    [Google Scholar]
  23. Prieto-GarciaJ.M. GrahamL. AlkhabbazO. MazzariA.L.D.A. Potential pharmacokinetic interactions of common cardiovascular drugs and selected european and latin american herbal medicines: A scoping review.Plants202312362310.3390/plants1203062336771707
    [Google Scholar]
  24. WheltonP.K. CareyR.M. ManciaG. KreutzR. BundyJ.D. WilliamsB. Harmonization of the american college of cardiology/american heart association and european society of cardiology/european society of hypertension blood pressure/hypertension guidelines: Comparisons, reflections, and recommendations.Eur. Heart J.202243353302331110.1093/eurheartj/ehac43236100239
    [Google Scholar]
  25. KhalilH. ZeltserR. Antihypertensive medications.In: StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  26. GaoQ. XuL. CaiJ. New drug targets for hypertension: A literature review.Biochim. Biophys. Acta Mol. Basis Dis.20211867316603710.1016/j.bbadis.2020.16603733309796
    [Google Scholar]
  27. DeringtonC.G. BressA.P. HerrickJ.S. JacobsJ.A. ZheutlinA.R. BerchieR.O. ConroyM.B. CushmanW.C. KingJ.B. Antihypertensive medication regimens used by us adults with hypertension and the potential for fixed‐dose combination products: The national health and nutrition examination surveys 2015 to 2020.J. Am. Heart Assoc.20231211e02857310.1161/JAHA.122.02857337158068
    [Google Scholar]
  28. OjhaU. RuddarajuS. SabapathyN. RavindranV. WorapongsatitayaP. HaqJ. MohammedR. PatelV. Current and emerging classes of pharmacological agents for the management of hypertension.Am. J. Cardiovasc. Drugs202222327128510.1007/s40256‑021‑00510‑934878631
    [Google Scholar]
  29. MalikA. BritoD. VaqarS. Congestive heart failure.In: StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  30. D’AmarioD. RodolicoD. DelviniotiA. LaboranteR. IacominiC. MasciocchiC. RestivoA. CilibertiG. GalliM. PaglianitiA.D. IaconelliA. ZitoA. LenkowiczJ. PatarnelloS. CesarioA. ValentiniV. CreaF. Eligibility for the 4 pharmacological pillars in heart failure with reduced ejection fraction at discharge.J. Am. Heart Assoc.20231213e02907110.1161/JAHA.122.02907137382176
    [Google Scholar]
  31. DavidM.N.V. ShettyM. Digoxin.In: StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  32. ErkkiläO. HernesniemiJ. TynkkynenJ. The association between digoxin use and long-term mortality after acute coronary syndrome.Am. J. Cardiol.202320437738210.1016/j.amjcard.2023.06.12537573617
    [Google Scholar]
  33. KhanZ.M. BriereJ.B. OlewinskaE. KhroufF. NikodemM. Ivabradine in patients with heart failure: A systematic literature review.J. Mark. Access Health Policy2023111226207310.1080/20016689.2023.226207337808119
    [Google Scholar]
  34. ShaitoA. ThuanD.T.B. PhuH.T. NguyenT.H.D. HasanH. HalabiS. AbdelhadyS. NasrallahG.K. EidA.H. PintusG. Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety.Front. Pharmacol.20201142210.3389/fphar.2020.0042232317975
    [Google Scholar]
  35. MichaeliD.T. MichaeliJ.C. AlbersS. BochT. MichaeliT. Established and emerging lipid-lowering drugs for primary and secondary cardiovascular prevention.Am. J. Cardiovasc. Drugs202323547749510.1007/s40256‑023‑00594‑537486464
    [Google Scholar]
  36. TomaM.M. BungauS.G. TitD.M. MoisiM.I. BusteaC. VesaC.M. BehlT. StoicescuM. BriscC.M. PurzaL.A. GiteaD. DiaconuC.C. Use of anticoagulant drugs in patients with atrial fibrillation. Does adherence to therapy have a prognostic impact?Biomed. Pharmacother.202215011300210.1016/j.biopha.2022.11300235462339
    [Google Scholar]
  37. ChenA. SteckerE. A WardenB. Direct oral anticoagulant use: A practical guide to common clinical challenges.J. Am. Heart Assoc.2020913e01755910.1161/JAHA.120.01755932538234
    [Google Scholar]
  38. YehC.H. HoggK. WeitzJ.I. Overview of the new oral anticoagulants: Opportunities and challenges.Arterioscler. Thromb. Vasc. Biol.20153551056106510.1161/ATVBAHA.115.30339725792448
    [Google Scholar]
  39. Koenig-OberhuberV. FilipovicM. New antiplatelet drugs and new oral anticoagulants.Br. J. Anaesth.2016117ii74ii8410.1093/bja/aew21427566810
    [Google Scholar]
  40. ThachilJ. Antiplatelet therapy: A summary for the general physicians.Clin. Med.201616215216010.7861/clinmedicine.16‑2‑15227037385
    [Google Scholar]
  41. ChaughuleR.S. BarveR.S. Role of herbal medicines in the treatment of infectious diseases.Vegetos2023371415110.1007/s42535‑022‑00549‑236687385
    [Google Scholar]
  42. KhanMS AhmadI Herbal medicine: Current trends and future prospects.InNew look to phytomedicineAcademic Press2019313
    [Google Scholar]
  43. ShakyaA.K. Medicinal plants: Future source of new drugs.Int. J. Herb. Med.2016445964
    [Google Scholar]
  44. DemekeC.A. WoldeyohaninsA.E. KifleZ.D. Herbal medicine use for the management of COVID-19: A review article.Metab. Open20211210014110.1016/j.metop.2021.10014134693242
    [Google Scholar]
  45. LiL. ZhouX. LiN. SunM. LvJ. XuZ. Herbal drugs against cardiovascular disease: Traditional medicine and modern development.Drug Discov. Today20152091074108610.1016/j.drudis.2015.04.00925956424
    [Google Scholar]
  46. CambriaC. SabirS. ShorterI.C. Ginseng.In: StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  47. RatanZ.A. HaidereM.F. HongY.H. ParkS.H. LeeJ.O. LeeJ. ChoJ.Y. Pharmacological potential of ginseng and its major component ginsenosides.J. Ginseng Res.202145219921010.1016/j.jgr.2020.02.00433841000
    [Google Scholar]
  48. KhanS TosunA KimYS Ginsenosides as food supplements and their potential role in immunological and neurodegenerative disorders.In: InBioactive nutraceuticals and dietary supplements in neurological and brain diseaseAcademic Press201530330910.1016/B978‑0‑12‑411462‑3.00031‑X
    [Google Scholar]
  49. RameshP. PalaniappanA. Terminalia arjuna, a cardioprotective herbal medicine–relevancy in the modern era of pharmaceuticals and green nanomedicine: A review.Pharmaceuticals202316112610.3390/ph1601012636678623
    [Google Scholar]
  50. AmalrajA. GopiS. Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: A review.J. Tradit. Complement. Med.201771657810.1016/j.jtcme.2016.02.00328053890
    [Google Scholar]
  51. KasanganaP.B. StevanovicT. Studies of pentacyclic triterpenoids structures and antidiabetic properties of Myrianthus genus.Stud. Nat. Prod. Chem.20216812710.1016/B978‑0‑12‑819485‑0.00014‑1
    [Google Scholar]
  52. BansalT. ChatterjeeE. SinghJ. RayA. KunduB. ThankamaniV. SenguptaS. SarkarS. Arjunolic acid, a peroxisome proliferator-activated receptor α agonist, regresses cardiac fibrosis by inhibiting non-canonical TGF-β signaling.J. Biol. Chem.201729240164401646210.1074/jbc.M117.78829928821620
    [Google Scholar]
  53. El-SaadonyM.T. YangT. KormaS.A. SitohyM. Abd El-MageedT.A. SelimS. Al JaouniS.K. SalemH.M. MahmmodY. SolimanS.M. Mo’menS.A.A. MosaW.F.A. El-WafaiN.A. Abou-AlyH.E. SitohyB. Abd El-HackM.E. El-TarabilyK.A. SaadA.M. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review.Front. Nutr.20239104025910.3389/fnut.2022.104025936712505
    [Google Scholar]
  54. Pourbagher-ShahriA.M. FarkhondehT. AshrafizadehM. TalebiM. SamargahndianS. Curcumin and cardiovascular diseases: Focus on cellular targets and cascades.Biomed. Pharmacother.202113611121410.1016/j.biopha.2020.11121433450488
    [Google Scholar]
  55. Safranal.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Safranal (Accessed on 12th Jan 2024).
  56. AnaeigoudariF. AnaeigoudariA. Kheirkhah-VakilabadA. A review of therapeutic impacts of saffron ( Crocus sativus L.) and its constituents.Physiol. Rep.20231115e1578510.14814/phy2.1578537537722
    [Google Scholar]
  57. Crocin.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Crocin (Accessed on 14th Jan 2024).
  58. BiernackaP. AdamskaI. FelisiakK. The potential of Ginkgo biloba as a source of biologically active compounds—a review of the recent literature and patents.Molecules20232810399310.3390/molecules2810399337241734
    [Google Scholar]
  59. LiD. MaJ. WeiB. GaoS. LangY. WanX. Effectiveness and safety of ginkgo biloba preparations in the treatment of Alzheimer’s disease: A systematic review and meta-analysis.Front. Aging Neurosci.202315112471010.3389/fnagi.2023.112471036960422
    [Google Scholar]
  60. AnsaryJ. Forbes-HernándezT.Y. GilE. CianciosiD. ZhangJ. Elexpuru-ZabaletaM. Simal-GandaraJ. GiampieriF. BattinoM. Potential health benefit of garlic based on human intervention studies: A brief overview.Antioxidants20209761910.3390/antiox907061932679751
    [Google Scholar]
  61. OkoroB.C. DokunmuT.M. OkaforE. SokoyaI.A. IsraelE.N. OlusegunD.O. Bella-OmunagbeM. EbubechiU.M. UgboguE.A. IwealaE.E.J. The ethnobotanical, bioactive compounds, pharmacological activities and toxicological evaluation of garlic (Allium sativum): A review.Pharmacol. Res. Mod. Chin. Med.2023810027310.1016/j.prmcm.2023.100273
    [Google Scholar]
  62. Sánchez-GloriaJ.L. Arellano-BuendíaA.S. Juárez-RojasJ.G. García-ArroyoF.E. Argüello-GarcíaR. Sánchez-MuñozF. Sánchez-LozadaL.G. Osorio-AlonsoH. Cellular mechanisms underlying the cardioprotective role of allicin on cardiovascular diseases.Int. J. Mol. Sci.20222316908210.3390/ijms2316908236012349
    [Google Scholar]
  63. Bonnefont-RousselotD. Resveratrol and cardiovascular diseases.Nutrients20168525010.3390/nu805025027144581
    [Google Scholar]
  64. GambiniJ InglésM Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans.Oxidat. med. cell. longev.20152015837042
    [Google Scholar]
  65. MattioliR. FranciosoA. MoscaL. SilvaP. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases.Molecules20202517380910.3390/molecules2517380932825684
    [Google Scholar]
  66. VeisiP. RostamkhaniH. NiknafsB. Effect of zingiber officinale on lipid profile and some inflammatory markers in diabetic hemodialysis patients: A randomized double-blind placebo-controlled clinical trial.Evid. Based Complement. Alternat. Med.20237154172
    [Google Scholar]
  67. MaoQ.Q. XuX.Y. CaoS.Y. GanR.Y. CorkeH. BetaT. LiH.B. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe).Foods20198618510.3390/foods806018531151279
    [Google Scholar]
  68. Gallic acid.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Gallic-Acid (Accessed on 13th Jan 2024).
  69. AkbariG. Molecular mechanisms underlying gallic acid effects against cardiovascular diseases: An update review.Avicenna J. Phytomed.2020101112331921604
    [Google Scholar]
  70. ZhangJ. ChaiX. ZhaoF. HouG. MengQ. Food applications and potential health benefits of hawthorn.Foods20221118286110.3390/foods1118286136140986
    [Google Scholar]
  71. Oestreich-JanzenS.H. Chemistry of coffee.Available from: https://www.researchgate.net/profile/Dalia_Pokutta/post/Can_anyone_point_me_to_publications_on_early_coffee_consumption_in_Africa_and_Arabia/attachment/59d64558c49f478072eadc87/AS:273824174542848@1442296178257/download/Coffee+chemistry+early+cultivation+and+consumption.pdf (Accessed on14th Jan 2024).
  72. Cinnamic acid.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Cinnamic-Acid (Accessed on14th Jan 2024).
  73. ZinnS. BetzT. MedcraftC. SchnellM. Structure determination of trans-cinnamaldehyde by broadband microwave spectroscopy.Phys. Chem. Chem. Phys.20151724160801608510.1039/C5CP02582F26030313
    [Google Scholar]
  74. ShangC. LinH. FangX. WangY. JiangZ. QuY. XiangM. ShenZ. XinL. LuY. GaoJ. CuiX. Beneficial effects of cinnamon and its extracts in the management of cardiovascular diseases and diabetes.Food Funct.20211224121941222010.1039/D1FO01935J34752593
    [Google Scholar]
  75. LudwiczukA Skalicka-WoźniakK GeorgievMI Terpenoids.In: InPharmacognosyAcademic Press2017233266
    [Google Scholar]
  76. Epigallocatechin.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Epigallocatechin (Accessed on 14th Jan 2024).
  77. MengJ. MaA. ZhangS. LinD. LinS. LiM. ZhouH. YangB. Ganoderma lucidum polysaccharide peptide attenuates post myocardial infarction fibrosis via down-regulating TGF-β1/SMAD and relieving oxidative stress.Pharmacol. Res. Mod. Chin. Med.2022410015210.1016/j.prmcm.2022.100152
    [Google Scholar]
  78. SuC. LiN. RenR. WangY. SuX. LuF. ZongR. YangL. MaX. Progress in the medicinal value, bioactive compounds, and pharmacological activities of Gynostemmapentaphyllum.Molecules20212620624910.3390/molecules2620624934684830
    [Google Scholar]
  79. MegalliS. AktanF. DaviesN.M. RoufogalisB.D. Phytopreventative anti-hyperlipidemic effects of gynostemma pentaphyllum in rats.J. Pharm. Pharm. Sci.20058350751516401396
    [Google Scholar]
  80. Showing compound charantin.Available from: https://foodb.ca/compounds/FDB006198 (Accessed on 14th Jan 2024).
  81. BortolottiM. MercatelliD. PolitoL. Momordicacharantia, a nutraceutical approach for inflammatory related diseases.Front. Pharmacol.20191048610.3389/fphar.2019.0048631139079
    [Google Scholar]
  82. GayathryK.S. JohnJ.A. A comprehensive review on bitter gourd (Momordicacharantia L.) as a gold mine of functional bioactive components for therapeutic foods. Food Production.Processing and Nutrition.20224114
    [Google Scholar]
  83. Aloe emodin.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Aloe-emodin (Accessed on 14th Jan 2024).
  84. SánchezM. González-BurgosE. IglesiasI. Gómez-SerranillosM.P. Pharmacological update properties of Aloe vera and its major active constituents.Molecules2020256132410.3390/molecules2506132432183224
    [Google Scholar]
  85. RadhaM.H. LaxmipriyaN.P. Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review.J. Tradit. Complement. Med.201551212610.1016/j.jtcme.2014.10.00626151005
    [Google Scholar]
  86. HęśM. DziedzicK. GóreckaD. Jędrusek-GolińskaA. GujskaE. Aloe vera (L.) Webb.: Natural sources of antioxidants–a review.Plant Foods Hum. Nutr.201974325526510.1007/s11130‑019‑00747‑531209704
    [Google Scholar]
  87. Showing compound emblicanin.Available from: https://foodb.ca/compounds/FDB002301 (Accessed on 14th Jan 2024).
  88. GulM. LiuZ.W. Iahtisham-Ul-Haq RabailR. FaheemF. WalayatN. NawazA. ShabbirM.A. MunekataP.E.S. LorenzoJ.M. AadilR.M. Functional and nutraceutical significance of Amla (Phyllanthusemblica L.): A review.Antioxidants202211581610.3390/antiox1105081635624683
    [Google Scholar]
  89. BhartiVK MalikJK GuptaRC Ashwagandha: Multiple health benefits.In: InNutraceuticalsAcademic Press.2016717733
    [Google Scholar]
  90. MoshawihS. Abdullah JuperiR.N.A. PaneerselvamG.S. MingL.C. LiewK.B. GohB.H. Al-WorafiY.M. ChooC.Y. ThuraisingamS. GohH.P. KifliN. General health benefits and pharmacological activities of Triticum aestivum L.Molecules2022276194810.3390/molecules2706194835335312
    [Google Scholar]
  91. Withaferin A.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Withaferin-A (Accessed on 14th Jan 2024).
  92. MikulskaP. MalinowskaM. IgnacykM. SzustowskiP. NowakJ. PestaK. SzelągM. SzklannyD. JudaszE. KaczmarekG. EjiohuoO.P. Paczkowska-WalendowskaM. GościniakA. Cielecka-PiontekJ. Ashwagandha (Withaniasomnifera)—Current research on the health-promoting activities: A narrative review.Pharmaceutics2023154105710.3390/pharmaceutics1504105737111543
    [Google Scholar]
  93. Tanshinone IIA.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Tanshinone-IIA (Accessed on 14th Jan 2024).
  94. MaL. TangL. YiQ. Salvianolic acids: Potential source of natural drugs for the treatment of fibrosis disease and cancer.Front. Pharmacol.2019109710.3389/fphar.2019.0009730842735
    [Google Scholar]
  95. RenJ. FuL. NileS.H. ZhangJ. KaiG. Salvia miltiorrhiza in treating cardiovascular diseases: A review on its pharmacological and clinical applications.Front. Pharmacol.20191075310.3389/fphar.2019.0075331338034
    [Google Scholar]
  96. ChengY.C. HungI.L. LiaoY.N. HuW.L. HungY.C. Salvia miltiorrhiza protects endothelial dysfunction against mitochondrial oxidative stress.Life20211111125710.3390/life1111125734833133
    [Google Scholar]
  97. SeifertJ. Role of quercetin in sports nutrition.In: InNutrition and Enhanced Sports PerformanceAcademic Press.201349750010.1016/B978‑0‑12‑396454‑0.00052‑7
    [Google Scholar]
  98. MarefatiN. GhoraniV. ShakeriF. BoskabadyM. KianianF. RezaeeR. BoskabadyM.H. A review of anti-inflammatory, antioxidant, and immunomodulatory effects of Allium cepa and its main constituents.Pharm. Biol.202159128530010.1080/13880209.2021.187402833645419
    [Google Scholar]
  99. RohaniA.S. SitorusP. Hypocholesterolaemic effects of fermented red onion.In: InIOP Conference Series: Earth and Environmental ScienceIOP Publishing2020454012103
    [Google Scholar]
  100. FitzpatrickLR WoldemariamT Small-molecule drugs for the treatment of inflammatory bowel disease.Reference Module in Chemistry, Molecular Sciences and Chemical Engineering201610.1016/B978‑0‑12‑409547‑2.12404‑7
    [Google Scholar]
  101. ZhangM. FengL. LiJ. ChenL. Therapeutic potential and mechanisms of berberine in cardiovascular disease.Curr. Pharmacol. Rep.20162628129210.1007/s40495‑016‑0070‑1
    [Google Scholar]
  102. WuJ. LuoY. DengD. SuS. LiS. XiangL. HuY. WangP. MengX. Coptisine from Coptis chinensis exerts diverse beneficial properties: A concise review.J. Cell. Mol. Med.201923127946796010.1111/jcmm.1472531622015
    [Google Scholar]
  103. Linolenic acid.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Linolenic-Acid (Accessed on 14th Jan 2024).
  104. ParikhM NetticadanT PierceGN Mining natural products for cardiovascular benefits flaxseed: Its bioactive components and their cardiovascular benefits.Am J Physiol Heart Circ Physiol20183142146159
    [Google Scholar]
  105. NanduriS. NyavanandiV.K. Sanjeeva Rao ThunuguntlaS. KasuS. PallerlaM.K. Sai RamP. RajagopalS. Ajaya KumarR. RamanujamR. Moses BabuJ. VyasK. Sivalakshmi DeviA. Om ReddyG. AkellaV. Synthesis and structure–activity relationships of andrographolide analogues as novel cytotoxic agents.Bioorg. Med. Chem. Lett.200414184711471710.1016/j.bmcl.2004.06.09015324893
    [Google Scholar]
  106. JayakumarT HsiehCY LeeJJ SheuJR Experimental and clinical pharmacology of Andrographis paniculata and its major bioactive phytoconstituent andrographolide.Evid Based Complement Alternat Med.20132013846740
    [Google Scholar]
  107. LiX. YuanW. WuJ. ZhenJ. SunQ. YuM. Andrographolide, a natural anti-inflammatory agent: An Update.Front. Pharmacol.20221392043510.3389/fphar.2022.92043536238575
    [Google Scholar]
  108. Luteolin.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Luteolin (Accessed on 14th Jan 2024).
  109. SapianS. Ibrahim MzeA.A. JubaidiF.F. Mohd NorN.A. TaibI.S. Abd HamidZ. ZainalabidinS. Mohamad AnuarN.N. KatasH. LatipJ. JalilJ. Abu BakarN.F. BudinS.B. Therapeutic potential of hibiscus sabdariffa linn. in attenuating cardiovascular risk factors.Pharmaceuticals202316680710.3390/ph1606080737375755
    [Google Scholar]
  110. Puerarin.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Puerarin (Accessed on 14th Jan 2024).
  111. LiJ. LiY. YuanX. YaoD. GaoZ. NiuZ. WangZ. ZhangY. The effective constituent puerarin, from Pueraria lobata, inhibits the proliferation and inflammation of vascular smooth muscle in atherosclerosis through the miR-29b-3p/IGF1 pathway.Pharm. Biol.202361111110.1080/13880209.2022.209943036537316
    [Google Scholar]
  112. JiangZ. CuiX. QuP. ShangC. XiangM. WangJ. Roles and mechanisms of puerarin on cardiovascular disease: A review.Biomed. Pharmacother.202214711265510.1016/j.biopha.2022.11265535066299
    [Google Scholar]
  113. WangM. LiY. HuX. Chebulinic acid derived from triphala is a promising antitumour agent in human colorectal carcinoma cell lines.BMC Complement. Altern. Med.201818134210.1186/s12906‑018‑2412‑530587184
    [Google Scholar]
  114. KopustinskieneDM BernatonieneJ JakstasV MorkunieneR Catechins, neuroprotection, and brain mitochondria.In: Mitochondrial physiology and vegetal molecules mitochondrial physiology and vegetal moleculesAcademic press202145547010.1016/B978‑0‑12‑821562‑3.00014‑9
    [Google Scholar]
  115. Hassan BulbulM.R. Uddin ChowdhuryM.N. NaimaT.A. SamiS.A. ImtiajM.S. HudaN. UddinM.G. A comprehensive review on the diverse pharmacological perspectives of Terminalia chebula Retz.Heliyon202288e1022010.1016/j.heliyon.2022.e1022036051270
    [Google Scholar]
  116. Auraptene.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Auraptene (Accessed on 14th Jan 2024).
  117. MonikaS. ThirumalM. KumarP.R. Phytochemical and biological review of Aegle marmelos Linn.Future Sci. OA202393FSO84910.2144/fsoa‑2022‑006837026028
    [Google Scholar]
  118. SrinivasanN MuraliR SivakrishnanS. Sidacordifolia-an update on its traditional use, phytochemistry, and pharmacological importance.Int. J. Pharm Res. Allied Sci.20221117486
    [Google Scholar]
  119. Vasicine.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Vasicine(Accessed on 14th Jan 2024).
  120. SinghI. ChoudharyA. Piperine and derivatives: Trends in structure-activity relationships.Curr. Top. Med. Chem.201515171722173410.2174/156802661566615042712321325915609
    [Google Scholar]
  121. WangD. ZhangL. HuangJ. HimabinduK. TewariD. HorbańczukJ.O. XuS. ChenZ. AtanasovA.G. Cardiovascular protective effect of black pepper (Piper nigrum L.) and its major bioactive constituent piperine.Trends Food Sci. Technol.2021117344510.1016/j.tifs.2020.11.024
    [Google Scholar]
  122. RautN.A. DhoreP.W. SaojiS.D. KokareD.M. Selected bioactive natural products for diabetes mellitus.Stud. Nat. Prod. Chem.20164828732210.1016/B978‑0‑444‑63602‑7.00009‑6
    [Google Scholar]
  123. SharmaV. KatiyarA. AgrawalR.C. Glycyrrhiza glabra: Chemistry and pharmacological activity.Sweeteners201887
    [Google Scholar]
  124. LimT.K. LimT.K. Glycyrrhiza glabra. Edible Medicinal and Non-Medicinal Plants.Modified Stems, Roots, Bulbs20161035445710.1007/978‑94‑017‑7276‑1_18
    [Google Scholar]
  125. ȘtefănescuR. Laczkó-ZöldE. ŐszB.E. VariC.E. An updated systematic review of vaccinium myrtillus leaves: Phytochemistry and pharmacology.Pharmaceutics20221511610.3390/pharmaceutics1501001636678645
    [Google Scholar]
  126. HuangH. LuoY. WangQ. ZhangY. LiZ. HeR. ChenX. DongZ. Vaccinium as potential therapy for diabetes and microvascular complications.Nutrients2023159203110.3390/nu1509203137432140
    [Google Scholar]
  127. IzzoA.A. Hoon-KimS. RadhakrishnanR. WilliamsonE.M. A critical approach to evaluating clinical efficacy, adverse events and drug interactions of herbal remedies.Phytother. Res.201630569170010.1002/ptr.559126887532
    [Google Scholar]
  128. BorseS.P. SinghD.P. NivsarkarM. Understanding the relevance of herb–drug interaction studies with special focus on interplays: A prerequisite for integrative medicine.Porto Biomed. J.201942e1510.1016/j.pbj.000000000000001531595257
    [Google Scholar]
  129. GouwsC. HammanJ.H. What are the dangers of drug interactions with herbal medicines?Expert Opin. Drug Metab. Toxicol.202016316516710.1080/17425255.2020.173396932079422
    [Google Scholar]
  130. AsherG.N. CorbettA.H. HawkeR.L. Common herbal dietary supplement–drug interactions.Am. Fam. Physician201796210110728762712
    [Google Scholar]
  131. ShahS.M.A. AkramM. RiazM. MunirN. RasoolG. Cardioprotective potential of plant-derived molecules: A scientific and medicinal approach.Dose Response201917210.1177/155932581985224331205459
    [Google Scholar]
  132. LiuC. HuangY. Chinese herbal medicine on cardiovascular diseases and the mechanisms of action.Front. Pharmacol.2016746910.3389/fphar.2016.0046927990122
    [Google Scholar]
  133. PasiA.K. Herb-drug interaction: An overview.Int. J. Pharm. Sci. Res.20134103770
    [Google Scholar]
  134. BhadraR. RavakhahK. GhoshR. Herb-drug interaction: The importance of communicating with primary care physicians.Australas. Med. J.201581031531910.4066/AMJ.2015.247926576202
    [Google Scholar]
  135. ParvezM.K. RishiV. Herb-drug interactions and hepatotoxicity.Curr. Drug Metab.201920427528210.2174/138920022066619032514142230914020
    [Google Scholar]
  136. GuengerichF.P. Roles of cytochrome P450 enzymes in pharmacology and toxicology: Past, present, and future.Adv. Pharmacol.20229514710.1016/bs.apha.2021.12.00135953152
    [Google Scholar]
  137. SuroowanS. MahomoodallyF. Common phyto-remedies used against cardiovascular diseases and their potential to induce adverse events in cardiovascular patients.Clinical Phytoscience2015111310.1186/s40816‑015‑0002‑3
    [Google Scholar]
  138. ShaikhA.S. ThomasA.B. ChitlangeS.S. Herb–drug interaction studies of herbs used in treatment of cardiovascular disorders—A narrative review of preclinical and clinical studies.Phytother. Res.20203451008102610.1002/ptr.658531908085
    [Google Scholar]
  139. BrantleyS.J. ArgikarA.A. LinY.S. NagarS. PaineM.F. Herb-drug interactions: Challenges and opportunities for improved predictions.Drug Metab. Dispos.201442330131710.1124/dmd.113.05523624335390
    [Google Scholar]
  140. ChoiY.H. ChinY.W. Multifaceted factors causing conflicting outcomes in herb-drug interactions.Pharmaceutics20201314310.3390/pharmaceutics1301004333396770
    [Google Scholar]
  141. ChenX.W.B. SneedK.B. PanS.Y. CaoC. KanwarJ.R. ChewH. ZhouS.F. Herb-drug interactions and mechanistic and clinical considerations.Curr. Drug Metab.201213564065110.2174/138920021120905064022292789
    [Google Scholar]
  142. Sanchez-DominguezC. Gallardo-BlancoH. Salinas-SantanderM. Ortiz-LopezR. Uridine 5′‑diphospho‑glucronosyltrasferase: Its role in pharmacogenomics and human disease (Review).Exp. Ther. Med.201816131110.3892/etm.2018.618429896223
    [Google Scholar]
  143. LiuMZ ZhangYL ZengMZ Pharmacogenomics and herb-drug interactions: Merge of future and tradition.Evid Based Complement Alternat Med.2015201532109110.1155/2015/321091
    [Google Scholar]
  144. LiJ. WangS. TianF. ZhangS.Q. JinH. Advances in pharmacokinetic mechanisms of transporter-mediated herb-drug interactions.Pharmaceuticals2022159112610.3390/ph1509112636145347
    [Google Scholar]
  145. YeZ. LuY. WuT. The impact of ATP-binding cassette transporters on metabolic diseases.Nutr. Metab.20201716110.1186/s12986‑020‑00478‑432774439
    [Google Scholar]
  146. OgaE.F. SekineS. ShitaraY. HorieT. Pharmacokinetic herb-drug interactions: Insight into mechanisms and consequences.Eur. J. Drug Metab. Pharmacokinet.20164129310810.1007/s13318‑015‑0296‑z26311243
    [Google Scholar]
  147. SuranaA.R. AgrawalS.P. KumbhareM.R. GaikwadS.B. Current perspectives in herbal and conventional drug interactions based on clinical manifestations.Future J. Pharm. Sci.20217110310.1186/s43094‑021‑00256‑w
    [Google Scholar]
  148. PavekP. Pregnane X receptor (PXR)-mediated gene repression and cross-talk of PXR with other nuclear receptors via coactivator interactions.Front. Pharmacol.2016745610.3389/fphar.2016.0045627932985
    [Google Scholar]
  149. HonkakoskiP. Searching for constitutive androstane receptor modulators.Drug Metab. Dispos.20225071002100910.1124/dmd.121.00048235184042
    [Google Scholar]
  150. YangX. PengY. HeY. HuangX. XuA. BiX. XieY. P-glycoprotein mediated interactions between Chinese materia medica and pharmaceutical drugs.Digit. Chin. Med.20214425126110.1016/j.dcmed.2021.12.001
    [Google Scholar]
  151. PathakL.M. KothiyalP. Antihypertensive drugs interaction with herbal medicine-Review.Int J Pharm Phytopharmacol Res2013313943
    [Google Scholar]
  152. TrabertM. SeifertR. Critical analysis of ginkgo preparations: Comparison of approved drugs and dietary supplements marketed in Germany.Naunyn Schmiedebergs Arch. Pharmacol.20231137470803
    [Google Scholar]
  153. Grapefruit juice and some drugs don't mix.Available from: https://www.fda.gov/consumers/consumer-updates/grapefruit-juice-and-some-drugs-dont-mix (Accessed on 09th Oct 2023).
  154. AzizahN. HalimahE. PuspitasariI.M. HasanahA.N. Simultaneous use of herbal medicines and antihypertensive drugs among hypertensive patients in the community: A review.J. Multidiscip. Healthc.20211425927010.2147/JMDH.S28915633568913
    [Google Scholar]
  155. AbebeW. Review of herbal medications with the potential to cause bleeding: dental implications, and risk prediction and prevention avenues.EPMA J.2019101516410.1007/s13167‑018‑0158‑230984314
    [Google Scholar]
  156. LiverTox: Clinical and research information on drug-induced liver injury.2012Available from: https://www.ncbi.nlm.nih.gov/books/NBK548250/ (Accessed on 2019 Feb 20).
  157. Medication interactions: Food, supplements and other drugs.Available from: https://www.heart.org/en/health-topics/consumer-healthcare/medication-information/medication-interactions-food-supplements-and-other-drugs (Accessed on 10 oct 2023).
  158. IzzoA.A. Herb–drug interactions: An overview of the clinical evidence.Fundam. Clin. Pharmacol.200519111610.1111/j.1472‑8206.2004.00301.x15660956
    [Google Scholar]
  159. PanH.Y. WuL.W. WangP.C. ChiuP.H. WangM.T. Real-world evidence of the herb-drug interactions.Yao Wu Shi Pin Fen Xi202230331633010.38212/2224‑6614.3428
    [Google Scholar]
  160. ShakeelF. FangF. KidwellK.M. MarcathL.A. HertzD.L. Comparison of eight screening tools to detect interactions between herbal supplements and oncology agents.J. Oncol. Pharm. Pract.20202681843184910.1177/107815522090500932075508
    [Google Scholar]
  161. SenS ChakrabortyR. Herbal medicine in India: Indigenous knowledge.In: Practice, Innovation and Its ValueSpringer Nature201911
    [Google Scholar]
  162. GariM. MajheeL. KumariK. Herbal drug-induced adverse drug reaction: A case report.Asian J. Pharm. Clin. Res.201811291110.22159/ajpcr.2018.v11i2.22208
    [Google Scholar]
  163. ColemanJ.J. PontefractS.K. Adverse drug reactions.Clin. Med.201616548148510.7861/clinmedicine.16‑5‑48127697815
    [Google Scholar]
  164. BunchorntavakulC. ReddyK.R. Review article: Herbal and dietary supplement hepatotoxicity.Aliment. Pharmacol. Ther.201337131710.1111/apt.1210923121117
    [Google Scholar]
  165. StournarasE. TziomalosK. Herbal medicine-related hepatotoxicity.World J. Hepatol.20157192189219310.4254/wjh.v7.i19.218926380043
    [Google Scholar]
  166. AmadiC. OrisakweO. Herb-induced liver injuries in developing nations: An update.Toxics2018622410.3390/toxics602002429673137
    [Google Scholar]
  167. SprouseA.A. van BreemenR.B. Pharmacokinetic interactions between drugs and botanical dietary supplements.Drug Metab. Dispos.201644216217110.1124/dmd.115.06690226438626
    [Google Scholar]
  168. NunesDR MonteiroCS Dos SantosJL Herb-induced liver injury: A challenging diagnosis.In Healthcare20221021278
    [Google Scholar]
  169. TeschkeR. FrenzelC. GlassX. SchulzeJ. EickhoffA. Herbal hepatotoxicity: A critical review.Br. J. Clin. Pharmacol.201375363063610.1111/j.1365‑2125.2012.04395.x22831551
    [Google Scholar]
  170. FontanaR.J. LiouI. ReubenA. SuzukiA. FielM.I. LeeW. NavarroV. AASLD practice guidance on drug, herbal, and dietary supplement–induced liver injury.Hepatology20237731036106510.1002/hep.3268935899384
    [Google Scholar]
  171. FrenzelC. TeschkeR. Herbal hepatotoxicity: Clinical characteristics and listing compilation.Int. J. Mol. Sci.201617558810.3390/ijms1705058827128912
    [Google Scholar]
  172. BritzaS.M. ByardR.W. MusgraveI.F. Traditional Chinese medicine-associated nephrotoxicity and the importance of herbal interactions: An overview.Pharmacol. Res. Mod. Chin. Med.2022310009910.1016/j.prmcm.2022.100099
    [Google Scholar]
  173. BadriS. MohammadiS. AsghariG. Emami-NainiA. MansourianM. Herbal supplement use and herb–drug interactions among patients with kidney disease.J. Res. Pharm. Pract.202092616710.4103/jrpp.JRPP_20_3033102379
    [Google Scholar]
  174. Kiliś-PstrusińskaK. Wiela-HojeńskaA. Nephrotoxicity of herbal products in europe—a review of an underestimated problem.Int. J. Mol. Sci.2021228413210.3390/ijms2208413233923686
    [Google Scholar]
  175. XuX. ZhuR. YingJ. ZhaoM. WuX. CaoG. WangK. Nephrotoxicity of herbal medicine and its prevention.Front. Pharmacol.20201156955110.3389/fphar.2020.56955133178019
    [Google Scholar]
  176. GidwaniB TiwariS JainV Herbal drug interaction and effects on phytopharmaceuticals.In: InPhytopharmaceuticals and Herbal DrugsAcademic Press202324926410.1016/B978‑0‑323‑99125‑4.00015‑9
    [Google Scholar]
  177. SuroowanS. AbdallahH.H. MahomoodallyM.F. Herb-drug interactions and toxicity: Underscoring potential mechanisms and forecasting clinically relevant interactions induced by common phytoconstituents via data mining and computational approaches.Food Chem. Toxicol.202115611243210.1016/j.fct.2021.11243234293424
    [Google Scholar]
  178. Fugh-BermanA. ErnstE. Herb–drug interactions: Review and assessment of report reliability.Br. J. Clin. Pharmacol.200152558759510.1046/j.0306‑5251.2001.01469.x11736868
    [Google Scholar]
  179. AwortweC. MakiwaneM. ReuterH. MullerC. LouwJ. RosenkranzB. Critical evaluation of causality assessment of herb–drug interactions in patients.Br. J. Clin. Pharmacol.201884467969310.1111/bcp.1349029363155
    [Google Scholar]
  180. Souza-PeresJ.V. FloresK. UmloffB. HeinanM. HerscuP. BabosM.B. Everyday evaluation of herb/dietary supplement–drug interaction: A pilot study.Medicines20231032010.3390/medicines1003002036976309
    [Google Scholar]
  181. PremchandR.K. SamnaniN. Case report on interaction of warfarin with herbal medicine “kadha”.IHJ Cardiovascular Case Reports (CVCR)202152116118[CVCR].10.1016/j.ihjccr.2021.06.001
    [Google Scholar]
  182. SileI. TeterovskaR. OnzevsO. ArdavaE. Safety concerns related to the simultaneous use of prescription or over-the-counter medications and herbal medicinal products: Survey results among Latvian citizens.Int. J. Environ. Res. Public Health20232016655110.3390/ijerph2016655137623137
    [Google Scholar]
  183. MoreiraD.L. TeixeiraS.S. MonteiroM.H.D. De-OliveiraA.C.A.X. PaumgarttenF.J.R. Traditional use and safety of herbal medicines1.Rev. Bras. Farmacogn.201424224825710.1016/j.bjp.2014.03.006
    [Google Scholar]
  184. MehmoodZ KhanMS QaisFA AhmadI Herb and modern drug interactions: efficacy, quality, and safety aspects.In: InNew look to phytomedicineAcademic Press.2019503520
    [Google Scholar]
  185. SinkevichD. Health risks of herbal medicine in the US: Recommendations to improve awareness and advance safety2023Available from: https://repository.usfca.edu/capstone/1571(Accessed on 13th Oct 2023).
    [Google Scholar]
  186. MamindlaS. PrasadK.V. KogantiB. Herb-drug interactions: An overview of mechanisms and clinical aspects.Int. J. Pharm. Sci. Res.2016793576
    [Google Scholar]
  187. HussainM.S. Patient counseling about herbal-drug interactions.Afr. J. Tradit. Complement. Altern. Med.201185Suppl.15216322754069
    [Google Scholar]
  188. SaiyedF. MaheshwariR. GohilD. JoshiK. Herbs used in cardiovascular diseases.Intern. J. Ayurvedic Med.2023141424910.47552/ijam.v14i1.3382
    [Google Scholar]
  189. KahramanC. AritulukZ.C. CankayaI.I. The clinical importance of herb-drug interactions and toxicological risks of plants and herbal products.Med. Toxicol.2020131
    [Google Scholar]
/content/journals/cds/10.2174/0115748863289321240424063819
Loading
/content/journals/cds/10.2174/0115748863289321240424063819
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test