Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

The connection between COVID-19 and DM unveils a multifaceted interplay that significantly impacts disease severity and management strategies. Initial studies reveal that people with DM had higher severity rates of COVID-19 due to the infection by SARS-CoV-2. The virus solely induces hyperglycemia and, at the same time, profoundly influences the immune and inflammatory reactions, increasing the rate of severe complications and death among diabetes patients. Therefore, understanding the underlying mechanisms behind this interplay is critical for effective treatment. Furthermore, COVID-19 also brings new factors to the equation of managing diabetes. Although the virus thoroughly relies on the ACE2 receptor for viral entry, DPP4 is a substitute receptor. However, glucose-lowering DPP4 inhibitors provide only a minor association with COVID-19 vulnerability. Also, the SGLT2 inhibitors are contraindicated in certain conditions with COVID-19, and hence, insulin is generally recommended as a first-line treatment for acute glycemic control in hospitalized or critically ill COVID-19 patients, particularly those with severe hyperglycemia or diabetic ketoacidosis. COVID-19-associated aggravating factors, such as cardiovascular disease, chronic kidney disease, and neuropathy, predispose people with diabetes to severe conditions. Thus, it is important to explore this speculation, and the present review aims to understand this complex interaction during patient care models and specify the therapeutic approaches to address this problematic convergence of two substantial health concerns.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998341202241202103725
2025-01-27
2026-02-21
Loading full text...

Full text loading...

/deliver/fulltext/cdr/22/2/CDR-22-2-03.html?itemId=/content/journals/cdr/10.2174/0115733998341202241202103725&mimeType=html&fmt=ahah

References

  1. FerreyA.J. ChoiG. HannaR.M. ChangY. TantisattamoE. IvaturiK. ParkE. NguyenL. WangB. TonthatS. RheeC.M. ReddyU. LauW.L. HuangS.S. GohilS. AminA.N. HsiehL. ChengT.T. LeeR.A. Kalantar-ZadehK. A Case of Novel Coronavirus Disease 19 in a Chronic Hemodialysis Patient Presenting with Gastroenteritis and Developing Severe Pulmonary Disease.Am. J. Nephrol.202051533734210.1159/00050741732222713
    [Google Scholar]
  2. VerityR. OkellL.C. DorigattiI. WinskillP. WhittakerC. ImaiN. Cuomo-DannenburgG. ThompsonH. WalkerP.G.T. FuH. DigheA. GriffinJ.T. BaguelinM. BhatiaS. BoonyasiriA. CoriA. CucunubáZ. FitzJohnR. GaythorpeK. GreenW. HamletA. HinsleyW. LaydonD. Nedjati-GilaniG. RileyS. van ElslandS. VolzE. WangH. WangY. XiX. DonnellyC.A. GhaniA.C. FergusonN.M. Estimates of the severity of coronavirus disease 2019: A model-based analysis.Lancet Infect. Dis.202020666967710.1016/S1473‑3099(20)30243‑732240634
    [Google Scholar]
  3. Perez-SaezJ. LauerS.A. KaiserL. RegardS. DelaporteE. GuessousI. StringhiniS. AzmanA.S. AliouchaD. Arm-VernezI. BahtaS. BarboliniJ. BayssonH. ButzbergerR. CattaniS. ChappuisF. ChioviniA. CollombetP. CourvoisierD. De RidderD. De WeckE. D’ippolitoP. DaenikerA. DesvachezO. DibnerY. DubasC. DucJ. EckerleI. EelbodeC. El MerjaniN. EmeryB. FavreB. FlahaultA. FrancioliN. GétazL. GilsonA. GonulA. GuérinJ. HassarL. HepnerA. HovagemyanF. HurstS. KeiserO. KirM. LamourG. LescuyerP. LombardF. MachA. MalimY. MarchettiE. MarcusK. MaretS. MartinezC. MassihaK. Mathey-DoretV. MatteraL. MatuteP. MaugeyJ-M. MeyerB. MembrezT. MichelN. MitrovicA. MohbatE.M. NehmeM. NoëlN. OuleveyH-K. PardoF. PennacchioF. PetrovicD. PicazioA. PiumattiG. PittetD. PortierJ. PoulainG. Posfay-BarbeK. PradeauJ-F. PuginC. RakotomiaramananaR.B. RichardA. Rocchia FineC. SakvarelidzeI. Salzmann-BellardL. SchellongovaM. SchrempftS. Seixas MirandaM. StimecM. TacchinoM. TheurillatS. TomasiniM. TorusluK-G. TounsiN. TronoD. VincentN. ViolotG. VuilleumierN. WaldmannZ. WelkerS. WillM. WisniakA. YerlyS. ZaballaM-E. Zeballos ValleA. Serology-informed estimates of SARS-CoV-2 infection fatality risk in Geneva, Switzerland.Lancet Infect. Dis.2021214e69e7010.1016/S1473‑3099(20)30584‑332679085
    [Google Scholar]
  4. SaljeH. Tran KiemC. LefrancqN. CourtejoieN. BosettiP. PaireauJ. AndronicoA. HozéN. RichetJ. DubostC.L. Le StratY. LesslerJ. Levy-BruhlD. FontanetA. OpatowskiL. BoelleP.Y. CauchemezS. Estimating the burden of SARS-CoV-2 in France.Science2020369650020821110.1126/science.abc351732404476
    [Google Scholar]
  5. WeinbergerD.M. ChenJ. CohenT. CrawfordF.W. MostashariF. OlsonD. PitzerV.E. ReichN.G. RussiM. SimonsenL. WatkinsA. ViboudC. Estimation of excess deaths associated with the COVID-19 pandemic in the United States.JAMA Intern. Med.2020180101336134410.1001/jamainternmed.2020.339132609310
    [Google Scholar]
  6. FaustJ.S. del RioC. Assessment of deaths from COVID-19 and from seasonal influenza.JAMA Intern. Med.202018081045104610.1001/jamainternmed.2020.230632407441
    [Google Scholar]
  7. ChenN. ZhouM. DongX. QuJ. GongF. HanY. QiuY. WangJ. LiuY. WeiY. XiaJ. YuT. ZhangX. ZhangL. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study.Lancet20203951022350751310.1016/S0140‑6736(20)30211‑732007143
    [Google Scholar]
  8. ZhangH. PenningerJ.M. LiY. ZhongN. SlutskyA.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target.Intensive Care Med.202046458659010.1007/s00134‑020‑05985‑932125455
    [Google Scholar]
  9. HuangC. WangY. LiX. RenL. ZhaoJ. HuY. ZhangL. FanG. XuJ. GuX. ChengZ. YuT. XiaJ. WeiY. WuW. XieX. YinW. LiH. LiuM. XiaoY. GaoH. GuoL. XieJ. WangG. JiangR. GaoZ. JinQ. WangJ. CaoB. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑531986264
    [Google Scholar]
  10. WuZ. McGooganJ.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention.JAMA2020323131239124210.1001/jama.2020.264832091533
    [Google Scholar]
  11. HolmanN. KnightonP. KarP. O’KeefeJ. CurleyM. WeaverA. BarronE. BakhaiC. KhuntiK. WarehamN.J. SattarN. YoungB. ValabhjiJ. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study.Lancet Diabetes Endocrinol.202081082383310.1016/S2213‑8587(20)30271‑032798471
    [Google Scholar]
  12. GoyalP. ChoiJ.J. PinheiroL.C. SchenckE.J. ChenR. JabriA. SatlinM.J. CampionT.R.Jr NahidM. RingelJ.B. HoffmanK.L. AlshakM.N. LiH.A. WehmeyerG.T. RajanM. ReshetnyakE. HupertN. HornE.M. MartinezF.J. GulickR.M. SaffordM.M. Clinical characteristics of COVID-19 in New York city.N. Engl. J. Med.2020382242372237410.1056/NEJMc201041932302078
    [Google Scholar]
  13. PivaS. FilippiniM. TurlaF. CattaneoS. MargolaA. De FulviisS. NardielloI. BerettaA. FerrariL. TrottaR. ErbiciG. FocàE. CastelliF. RasuloF. LanspaM.J. LatronicoN. Clinical presentation and initial management critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Brescia, Italy.J. Crit. Care202058293310.1016/j.jcrc.2020.04.00432330817
    [Google Scholar]
  14. Lopez-LeonS. Wegman-OstroskyT. PerelmanC. SepulvedaR. RebolledoP.A. CuapioA. VillapolS. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis.Sci. Rep.20211111614410.1038/s41598‑021‑95565‑834373540
    [Google Scholar]
  15. AlimohamadiY. SepandiM. TaghdirM. HosamirudsariH. Determine the most common clinical symptoms in COVID-19 patients: a systematic review and meta-analysis.J. Prev. Med. Hyg.2020613E304E31233150219
    [Google Scholar]
  16. JohnsonA.M. OoZ.T. OoT.S. HunterD.A. HtetZ.M. BejugamV.R. PuriceG. A rare and unique complication of uncontrolled type 2 diabetes mellitus: A case report and literature review of spontaneous diabetic myonecrosis.Cureus2023154e3709910.7759/cureus.3709937168143
    [Google Scholar]
  17. KleinS.J. FriesD. KaserS. MathisS. ThoméC. JoannidisM. Unrecognized diabetes in critically ill COVID-19 patients.Crit. Care202024140610.1186/s13054‑020‑03139‑332646467
    [Google Scholar]
  18. MishraD. DeyC.S. Type-2 diabetes, a co-morbidity in Covid-19: does insulin signaling matter?Biochem. Soc. Trans.202149298799510.1042/BST2020106233666220
    [Google Scholar]
  19. RojasA. LindnerC. GonzàlezI. MoralesM.A. Advanced-glycation end-products axis: A contributor to the risk of severe illness from COVID-19 in diabetes patients.World J. Diabetes202112559060210.4239/wjd.v12.i5.59033995847
    [Google Scholar]
  20. DwivediS. ChoudharyP. GuptaA. SinghS. The cross-talk between mucormycosis, steroids and diabetes mellitus amidst the global contagion of COVID-19.Crit. Rev. Microbiol.202349331833310.1080/1040841X.2022.205279535324372
    [Google Scholar]
  21. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  22. NigroE. PerrottaF. PolitoR. D’AgnanoV. ScialoF. BiancoA. DanieleA. Metabolic perturbations and severe COVID-19 disease: Implication of molecular pathways.Int. J. Endocrinol.202020208896536
    [Google Scholar]
  23. KulcsarK.A. ColemanC.M. BeckS.E. FriemanM.B. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection.JCI Insight2019420e13177410.1172/jci.insight.13177431550243
    [Google Scholar]
  24. MafortT.T. RufinoR. CostaC.H. LopesA.J. Obesity: systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function.Multidiscip. Respir. Med.20161112810.1186/s40248‑016‑0066‑z27408717
    [Google Scholar]
  25. RodriguesR. Costa de OliveiraS. The impact of angiotensin-converting enzyme 2 (ACE2) expression levels in patients with comorbidities on COVID-19 severity: a comprehensive review.Microorganisms202198169210.3390/microorganisms908169234442770
    [Google Scholar]
  26. ConteC. CipponeriE. RodenM. Diabetes Mellitus, Energy Metabolism, and COVID-19.Endocr. Rev.202445228130810.1210/endrev/bnad03237934800
    [Google Scholar]
  27. ShiQ. ZhangX. JiangF. ZhangX. HuN. BimuC. FengJ. YanS. GuanY. XuD. HeG. ChenC. XiongX. LiuL. LiH. TaoJ. PengZ. WangW. Clinical characteristics and risk factors for mortality of COVID-19 patients with diabetes in Wuhan, China: a two-center, retrospective study.Diabetes Care20204371382139110.2337/dc20‑059832409504
    [Google Scholar]
  28. LiB. YangJ. ZhaoF. ZhiL. WangX. LiuL. BiZ. ZhaoY. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China.Clin. Res. Cardiol.2020109553153810.1007/s00392‑020‑01626‑932161990
    [Google Scholar]
  29. GuanW. LiangW. HeJ. ZhongN. Cardiovascular comorbidity and its impact on patients with COVID-19.Eur. Respir. J.2020556200122710.1183/13993003.01227‑202032341104
    [Google Scholar]
  30. CpereN. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China].Zhonghua Liu Xing Bing Xue Za Zhi202041214515132064853
    [Google Scholar]
  31. FadiniG.P. MorieriM.L. LongatoE. AvogaroA. Prevalence and impact of diabetes among people infected with SARS-CoV-2.J. Endocrinol. Invest.202043686786910.1007/s40618‑020‑01236‑232222956
    [Google Scholar]
  32. LiY. TengD. ShiX. QinG. QinY. QuanH. ShiB. SunH. BaJ. ChenB. DuJ. HeL. LaiX. LiY. ChiH. LiaoE. LiuC. LiuL. TangX. TongN. WangG. ZhangJ. WangY. XueY. YanL. YangJ. YangL. YaoY. YeZ. ZhangQ. ZhangL. ZhuJ. ZhuM. NingG. MuY. ZhaoJ. TengW. ShanZ. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study.BMJ2020369m99710.1136/bmj.m99732345662
    [Google Scholar]
  33. LandstraC.P. de KoningE.J.P. COVID-19 and diabetes: understanding the interrelationship and risks for a severe course.Front. Endocrinol. (Lausanne)20211264952510.3389/fendo.2021.64952534220706
    [Google Scholar]
  34. PalR. BanerjeeM. YadavU. BhattacharjeeS. ResearchM.S.C. Clinical profile and outcomes in COVID-19 patients with diabetic ketoacidosis: A systematic review of literature.Diabetes Metab. Syndr.20201461563156910.1016/j.dsx.2020.08.01532853901
    [Google Scholar]
  35. BanerjeeY. Pantea StoianA. Silva-NunesJ. SonmezA. RizviA.A. JanezA. RizzoM. The role of GLP-1 receptor agonists during COVID-19 pandemia: a hypothetical molecular mechanism.Expert Opin. Drug Saf.202120111309131510.1080/14740338.2021.197074434424130
    [Google Scholar]
  36. AgrahariR. MohantyS. VishwakarmaK. NayakS.K. SamantarayD. MohapatraS. “Update vision on COVID-19: Structure, immune pathogenesis, treatment and safety assessment”.Sens. Int.2021210007310.1016/j.sintl.2020.10007334766048
    [Google Scholar]
  37. VermaJ. SubbaraoN. A comparative study of human betacoronavirus spike proteins: structure, function and therapeutics.Arch. Virol.2021166369771410.1007/s00705‑021‑04961‑y33483791
    [Google Scholar]
  38. PervushinK. TanE. ParthasarathyK. LinX. JiangF.L. YuD. VararattanavechA. SoongT.W. LiuD.X. TorresJ. Structure and inhibition of the SARS coronavirus envelope protein ion channel.PLoS Pathog.200957e100051110.1371/journal.ppat.100051119593379
    [Google Scholar]
  39. KumarS. NyoduR. MauryaV.K. SaxenaS.K. Morphology, genome organization, replication, and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).Coronavirus Disease 2019 (COVID-19).Springer2020233110.1007/978‑981‑15‑4814‑7_3
    [Google Scholar]
  40. ChenY. LiuQ. GuoD. Emerging coronaviruses: Genome structure, replication, and pathogenesis.J. Med. Virol.202092441842310.1002/jmv.2568131967327
    [Google Scholar]
  41. DarbyA.C. HiscoxJ.A. COVID-19: variants and vaccination.BMJ2021372n77110.1136/bmj.n77133757984
    [Google Scholar]
  42. HalimM. A Report on COVID-19 Variants, COVID-19 Vaccines and the Impact of the Variants on the Efficacy of the Vaccines.J. Clin. Med. Res.202133119
    [Google Scholar]
  43. FernandesQ. InchakalodyV.P. MerhiM. MestiriS. TaibN. Moustafa Abo El-EllaD. BedhiafiT. RazaA. Al-ZaidanL. MohsenM.O. Yousuf Al-NesfM.A. HssainA.A. YassineH.M. BachmannM.F. UddinS. DermimeS. Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines.Ann. Med.202254152454010.1080/07853890.2022.203127435132910
    [Google Scholar]
  44. ZouJ. XieX. Fontes-GarfiasC.R. SwansonK.A. KanevskyI. TompkinsK. CutlerM. CooperD. DormitzerP.R. ShiP.Y. The effect of SARS-CoV-2 D614G mutation on BNT162b2 vaccine-elicited neutralization.NPJ Vaccines2021614410.1038/s41541‑021‑00313‑833767200
    [Google Scholar]
  45. EyreD.W. TaylorD. PurverM. ChapmanD. FowlerT. PouwelsK.B. WalkerA.S. PetoT.E.A. Effect of COVID-19 vaccination on transmission of alpha and delta variants.N. Engl. J. Med.2022386874475610.1056/NEJMoa211659734986294
    [Google Scholar]
  46. ShenX. TangH. McDanalC. WaghK. FischerW. TheilerJ. YoonH. LiD. HaynesB. F. SandersK. O. SARS-CoV-2 variant B. 1.1. 7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines.Cell Host Microbe.2021294529539
    [Google Scholar]
  47. PlanasD. BruelT. GrzelakL. Guivel-BenhassineF. StaropoliI. PorrotF. PlanchaisC. BuchrieserJ. RajahM.M. BishopE. AlbertM. DonatiF. ProtM. BehillilS. EnoufV. MaquartM. Smati-LafargeM. VaronE. SchortgenF. YahyaouiL. GonzalezM. De SèzeJ. PéréH. VeyerD. SèveA. Simon-LorièreE. Fafi-KremerS. SteficK. MouquetH. HocquelouxL. van der WerfS. PrazuckT. SchwartzO. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies.Nat. Med.202127591792410.1038/s41591‑021‑01318‑533772244
    [Google Scholar]
  48. ZhouH. DcostaB.M. SamanovicM.I. MulliganM.J. LandauN.R. TadaT. 1.526 SARS-CoV-2 variants identified in New York City are neutralized by vaccine-elicited and therapeutic monoclonal antibodies.MBio2021124e01386-2110.1128/mBio.01386‑2134311587
    [Google Scholar]
  49. SinghJ. SamalJ. KumarV. SharmaJ. AgrawalU. EhteshamN.Z. SundarD. RahmanS.A. HiraS. HasnainS.E. Structure-function analyses of new SARS-CoV-2 variants B. 1.1. 7, B. 1.351 and B. 1.1. 28.1: clinical, diagnostic, therapeutic and public health implications.Viruses202113343910.3390/v1303043933803400
    [Google Scholar]
  50. FirestoneM.J. LorentzA.J. MeyerS. WangX. Como-SabettiK. VetterS. SmithK. HolzbauerS. BeaudoinA. GarfinJ. EhresmannK. DanilaR. LynfieldR. First identified cases of SARS-CoV-2 variant P. 1 in the United States—Minnesota, January 2021.MMWR Morb. Mortal. Wkly. Rep.2021701034634710.15585/mmwr.mm7010e133705367
    [Google Scholar]
  51. del RioC. MalaniP.N. OmerS.B. Confronting the delta variant of SARS-CoV-2, summer 2021.JAMA2021326111001100210.1001/jama.2021.1481134406361
    [Google Scholar]
  52. KannanS.R. SprattA.N. CohenA.R. NaqviS.H. ChandH.S. QuinnT.P. LorsonC.L. ByrareddyS.N. SinghK. Evolutionary analysis of the Delta and Delta Plus variants of the SARS-CoV-2 viruses.J. Autoimmun.202112410271510.1016/j.jaut.2021.10271534399188
    [Google Scholar]
  53. KarimS.S.A. KarimQ.A. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic.Lancet2021398103172126212810.1016/S0140‑6736(21)02758‑634871545
    [Google Scholar]
  54. HeX. HongW. PanX. LuG. WeiX. SARS-CoV-2 Omicron variant: Characteristics and prevention.MedComm20212483884510.1002/mco2.11034957469
    [Google Scholar]
  55. TorresC. MojsiejczukL. AcuñaD. AlexayS. AmadioA. AulicinoP. DebatH. FayF. FernándezF. GiriA.A. GoyaS. KönigG. LuceroH. Nabaes JodarM. PianciolaL. SfalcinJ.A. AcevedoR.M. Bengoa LuoniS. BolattiE.M. BrusésB. CacciabueM. CasalP.E. CerriA. ChouhyD. Dus SantosM.J. EberhardtM.F. FernandezA. FernándezP.C. Fernández Do PortoD. FormichelliL. GismondiM.I. IrazoquiM. CamposM.L. LussoS. MarquezN. MuñozM. MussinJ. NataleM. OriaG. PisanoM.B. PosnerV. PueblaA. ReV. SosaE. VillanovaG.V. ZaiatJ. ZuninoS. AcevedoM.E. AcostaJ. Alvarez LopezC. ÁlvarezM.L. AngeleriP. AngellettiA. ArcaM. AyalaN.A. BarbasG. BertoneA. BonnetA. BourlotI. CabassiV. CastelloA. CastroG. CavatortaA.L. CerianiC. CimminoC. CipelliJ. ColmeiroM. CorderoA. CristinaC. Di BellaS. DolciniG. ErcoleR. EspasandinY. EspulC. FalaschiA. Fernandez MollF. FoussalM.D. GatelliA. GoñiS. JofréM.E. JaramilloJ. LabartaN. LacazeM.A. LarrecheR. LeivaV. LevinG. LuczakE. MandileM. MarinoG. MassoneC. MazzeoM. MedinaC. MonacoB. MontotoL. MugnaV. MustoA. NadalichV. NietoM.V. OjedaG. PiedrabuenaA.C. PintosC. PozzatiM. RahhalM. RechimontC. Remes LenicovF. RompatoG. SeeryV. SiriL. SpinaJ. StreitenbergerC. SuárezA. SuárezJ. SujanskyP. TaliaJ.M. TheauxC. ThomasG. TiceiraM. TittarelliE. ToroR. UezO. ZaffanellaM.B. ZiehmC. ZubietaM. MistchenkoA.S. ValinottoL. ViegasM. Cost-effective method to perform SARS-CoV-2 variant surveillance: detection of alpha, gamma, lambda, delta, epsilon, and zeta in Argentina.Front. Med. (Lausanne)2021875546310.3389/fmed.2021.75546334957143
    [Google Scholar]
  56. CarrollT. FoxD. van DoremalenN. BallE. MorrisM.K. Sotomayor-GonzalezA. ServellitaV. RustagiA. YindaC.K. FrittsL. PortJ.R. MaZ.M. HolbrookM.G. SchulzJ. BlishC.A. HansonC. ChiuC.Y. MunsterV. StanleyS. MillerC.J. The B.1.427/1.429 (epsilon) SARS-CoV-2 variants are more virulent than ancestral B.1 (614G) in Syrian hamsters.PLoS Pathog.2022182e100991410.1371/journal.ppat.100991435143587
    [Google Scholar]
  57. SinghJ. MalhotraA.G. BiswasD. ShankarP. LokhandeL. YadavA.K. RaghuvanshiA. KaleD. NemaS. SaigalS. SinghS. Relative Consolidation of the Kappa Variant Pre-Dates the Massive Second Wave of COVID-19 in India.Genes (Basel)20211211180310.3390/genes1211180334828410
    [Google Scholar]
  58. SetzC. GroßeM. FröbaM. AuthJ. RauchP. HerrmannA. CordsmeierA. EnsserA. SchindlerM. Morokutti-KurzM. GrafP. EngelB. Prieschl-GrassauerE. GrassauerA. SchubertU. Iota-Carrageenan Inhibits Replication of the SARS-CoV-2 Variants of Concern Omicron BA.1, BA.2 and BA.5.Nutraceuticals (Basel)20233331532810.3390/nutraceuticals3030025
    [Google Scholar]
  59. MelnykA. MohebbiF. KnyazevS. SahooB. HosseiniR. SkumsP. ZelikovskyA. PattersonM. From alpha to zeta: Identifying variants and subtypes of SARS-CoV-2 via clustering.J. Comput. Biol.202128111113112910.1089/cmb.2021.030234698508
    [Google Scholar]
  60. GoswamiB. SarkarM.M.H. AkterS. BanuT.A. JahanI. HossainM.S. UddinM.M. NafisaT. MollaM.M.A. YeasminM. OsmanE. UzzamanM.S. MahmudA.S.M. HabibA. KhanS. Emergence of SARS- CoV-2 variant of interest B.1.525 (Eta) in Bangladesh.Biologicals20238410171410.1016/j.biologicals.2023.10171437804694
    [Google Scholar]
  61. HawN.J. CañalE.M. ZuasulaJ.Jr LorecheM.J. BernadasJ. Epidemiological characteristics of the SARS-CoV-2 Theta variant (P.3) in the Central Visayas region, Philippines, 30 October 2020–16 February 2021.Western Pac. Surveill. Response J.2022131606210.5365/wpsar.2022.13.1.88335355903
    [Google Scholar]
  62. LiuJ. LiuY. XiaH. ZouJ. WeaverS.C. SwansonK.A. CaiH. CutlerM. CooperD. MuikA. JansenK.U. SahinU. XieX. DormitzerP.R. ShiP.Y. BNT162b2-elicited neutralization of Delta plus, Lambda, Mu, B.1.1.519, and Theta SARS-CoV-2 variants.NPJ Vaccines2022714110.1038/s41541‑022‑00462‑435396516
    [Google Scholar]
  63. HirotsuY. OmataM. Detection of R.1 lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with spike protein W152L/E484K/G769V mutations in Japan.PLoS Pathog.2021176e100961910.1371/journal.ppat.100961934097716
    [Google Scholar]
  64. HalfmannP.J. KurodaM. ArmbrustT. TheilerJ. BalaramA. MorenoG.K. AccolaM.A. Iwatsuki-HorimotoK. ValdezR. StonemanE. BraunK. YamayoshiS. SomsenE. BaczenasJ.J. MitamuraK. HagiharaM. AdachiE. KogaM. McLaughlinM. RehrauerW. ImaiM. YamamotoS. TsutsumiT. SaitoM. FriedrichT.C. O’ConnorS.L. O’ConnorD.H. GordonA. KorberB. KawaokaY. Characterization of the SARS-CoV-2 B.1.621 (Mu) variant.Sci. Transl. Med.202214657eabm490810.1126/scitranslmed.abm490835579540
    [Google Scholar]
  65. WulandariS. SupartiS. Analysis of stunting phenomenon in sragen regency during the COVID-19 pandemic from economic perspective.Media Kesehatan Masyarakat Indonesia20228117
    [Google Scholar]
  66. LimS. BaeJ.H. KwonH.S. NauckM.A. COVID-19 and diabetes mellitus: from pathophysiology to clinical management.Nat. Rev. Endocrinol.2021171113010.1038/s41574‑020‑00435‑433188364
    [Google Scholar]
  67. FlemingN. SacksL.J. PhamC.T. NeohS.L. EkinciE.I. An overview of COVID-19 in people with diabetes: Pathophysiology and considerations in the inpatient setting.Diabet. Med.2021383e1450910.1111/dme.1450933377213
    [Google Scholar]
  68. SharmaP. BehlT. SharmaN. SinghS. GrewalA.S. AlbarratiA. AlbrattyM. MerayaA.M. BungauS. COVID-19 and diabetes: Association intensify risk factors for morbidity and mortality.Biomed. Pharmacother.202215111308910.1016/j.biopha.2022.11308935569351
    [Google Scholar]
  69. NagS. MandalS. MukherjeeO. MukherjeeS. KunduR. DPP-4 Inhibitors as a savior for COVID-19 patients with diabetes.Future Virol.202318532133310.2217/fvl‑2022‑011237064327
    [Google Scholar]
  70. ZouZ. YanY. ShuY. GaoR. SunY. LiX. JuX. LiangZ. LiuQ. ZhaoY. GuoF. BaiT. HanZ. ZhuJ. ZhouH. HuangF. LiC. LuH. LiN. LiD. JinN. PenningerJ.M. JiangC. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections.Nat. Commun.201451359410.1038/ncomms459424800825
    [Google Scholar]
  71. WenzhongL. HualanL. COVID-19: attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism.Chemrxiv202010.26434/chemrxiv.11938173.v9
    [Google Scholar]
  72. MehtaP. McAuleyD.F. BrownM. SanchezE. TattersallR.S. MansonJ.J. HLH Across Speciality Collaboration, UK COVID-19: consider cytokine storm syndromes and immunosuppression.Lancet2020395102291033103410.1016/S0140‑6736(20)30628‑032192578
    [Google Scholar]
  73. GozmanL. PerryK. NikogosovD. KlabukovI. ShevlyakovA. BaranovaA. A role of variance in interferon genes to disease severity in COVID-19 patients.Front. Genet.20211270938810.3389/fgene.2021.70938834603376
    [Google Scholar]
  74. McGonagleD. SharifK. O’ReganA. BridgewoodC. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease.Autoimmun. Rev.202019610253710.1016/j.autrev.2020.10253732251717
    [Google Scholar]
  75. LiuY. DuX. ChenJ. JinY. PengL. WangH.H.X. LuoM. ChenL. ZhaoY. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19.J. Infect.2020811e6e1210.1016/j.jinf.2020.04.00232283162
    [Google Scholar]
  76. PaliwalV.K. GargR.K. GuptaA. TejanN. Neuromuscular presentations in patients with COVID-19.Neurol. Sci.202041113039305610.1007/s10072‑020‑04708‑832935156
    [Google Scholar]
  77. GargR. Spectrum of neurological manifestations in COVID-19: a review.Neurol. India202068356057210.4103/0028‑3886.28900032643664
    [Google Scholar]
  78. HelmsJ. KremerS. MerdjiH. Clere-JehlR. SchenckM. KummerlenC. CollangeO. BoulayC. Fafi-KremerS. OhanaM. AnheimM. MezianiF. Neurologic features in severe SARS-CoV-2 infection.N. Engl. J. Med.2020382232268227010.1056/NEJMc200859732294339
    [Google Scholar]
  79. PuellesV.G. LütgehetmannM. LindenmeyerM.T. SperhakeJ.P. WongM.N. AllweissL. ChillaS. HeinemannA. WannerN. LiuS. BraunF. LuS. PfefferleS. SchröderA.S. EdlerC. GrossO. GlatzelM. WichmannD. WiechT. KlugeS. PueschelK. AepfelbacherM. HuberT.B. Multiorgan and renal tropism of SARS-CoV-2.N. Engl. J. Med.2020383659059210.1056/NEJMc201140032402155
    [Google Scholar]
  80. WidiastaA. SribudianiY. NugrahaprajaH. HilmantoD. SekarwanaN. RachmadiD. Potential role of ACE2-related microRNAs in COVID-19-associated nephropathy.Noncoding RNA Res.20205415316610.1016/j.ncrna.2020.09.00132923747
    [Google Scholar]
  81. ChengY. Kidney disease is associated with in-hospital death of patients with COVID-19.Kidney Int.202097582983810.1016/j.kint.2020.03.005
    [Google Scholar]
  82. CostaR.L.d. Acute kidney injury in patients with COVID-19 in a Brazilian ICU: incidence, predictors and in-hospital mortality.J Bras Nefrol.202143334935810.1590/2175‑8239‑jbn‑2020‑0144
    [Google Scholar]
  83. BertoliF. Ocular findings in COVID-19 patients: A review of direct manifestations and indirect effects on the eye.J. Ophthalmol.202020204827304
    [Google Scholar]
  84. WangD. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China.JAMA2020323111061106910.1001/jama.2020.1585
    [Google Scholar]
  85. MartínezA.C. Peripheral neuropathies derived from COVID-19: New perspectives for treatment.Biomedicines20221051051
    [Google Scholar]
  86. LiH.F. HaoH.J. ChenX.J. Provisional case definitions for COVID-19-associated neurological disease.Lancet Neurol.2020191189089110.1016/S1474‑4422(20)30373‑233098793
    [Google Scholar]
  87. QinC. ZhouL. HuZ. ZhangS. YangS. TaoY. XieC. MaK. ShangK. WangW. TianD.S. Dysregulation of immune response in patients with COVID-19 in Wuhan, China.Clin. Infect. Dis.2020711576276810.1093/cid/ciaa24832161940
    [Google Scholar]
  88. PitoccoD. FusoL. ConteE.G. ZaccardiF. CondoluciC. ScavoneG. IncalziR.A. GhirlandaG. The diabetic lung--a new target organ?Rev. Diabet. Stud.201291233510.1900/RDS.2012.9.2322972442
    [Google Scholar]
  89. Antonelli IncalziR. FusoL. GiordanoA. PitoccoD. MaioloC. CalcagniM.L. GhirlandaG. Neuroadrenergic denervation of the lung in type I diabetes mellitus complicated by autonomic neuropathy.Chest2002121244345110.1378/chest.121.2.44311834655
    [Google Scholar]
  90. SilverS.A. SoulignyW.B. ShahP.S. HarelS. BlumD. KishibeT. MunozA.M. WaldR. HarelZ. The prevalence of acute kidney injury in patients hospitalized with COVID-19 infection: A systematic review and meta-analysis.Kidney Med.202131839810.1016/j.xkme.2020.11.008
    [Google Scholar]
  91. KantS. MenezS.P. HanounehM. FineD.M. CrewsD.C. BrennanD.C. SperatiC.J. JaarB.G. The COVID-19 nephrology compendium: AKI, CKD, ESKD and transplantation.BMC Nephrol.202021144910.1186/s12882‑020‑02112‑033109103
    [Google Scholar]
  92. PostA. den DeurwaarderE.S.G. BakkerS.J.L. de HaasR.J. van MeursM. GansevoortR.T. BergerS.P. Kidney infarction in patients with COVID-19.Am. J. Kidney Dis.202076343143510.1053/j.ajkd.2020.05.00432479921
    [Google Scholar]
  93. Mohamadi YarijaniZ. NajafiH. Kidney injury in COVID-19 patients, drug development and their renal complications: Review study.Biomed. Pharmacother.202114211196610.1016/j.biopha.2021.11196634333286
    [Google Scholar]
  94. ThomasG. Renin-angiotensin system inhibitors in COVID-19.Crit. Care Clin.20203645947632409434
    [Google Scholar]
  95. FaourW.H. ChoaibA. IssaE. ChoueiryF.E. ShbakloK. AlhajjM. SawayaR.T. HarhousZ. AlefishatE. NaderM. Mechanisms of COVID-19-induced kidney injury and current pharmacotherapies.Inflamm. Res.2022711395610.1007/s00011‑021‑01520‑834802072
    [Google Scholar]
  96. HoffmannM. WeberH.K. SchroederS. KrügerN. HerrlerT. ErichsenS. SchiergensT.S. HerrlerG. WuN.H. NitscheA. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell20201812271280
    [Google Scholar]
  97. RansickA. LindströmN.O. LiuJ. ZhuQ. GuoJ.J. AlvaradoG.F. KimA.D. BlackH.G. KimJ. McMahonA.P. Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney.Develop. Cell201951339941310.1016/j.devcel.2019.10.005
    [Google Scholar]
  98. HacheyS.J. MovsesyanS. NguyenQ.H. Burton-SojoG. TankazyanA. WuJ. HoangT. ZhaoD. WangS. HatchM.M. CelayaE. GomezS. ChenG.T. DavisR.T. NeeK. PervolarakisN. LawsonD.A. KessenbrockK. LeeA.P. LowengrubJ. WatermanM.L. HughesC.C.W. An in vitro vascularized micro-tumor model of human colorectal cancer recapitulates in vivo responses to standard-of-care therapy.Lab Chip20212171333135110.1039/D0LC01216E33605955
    [Google Scholar]
  99. Cantuti-CastelvetriL. OjhaR. PedroL.D. DjannatianM. FranzJ. KuivanenS. van der MeerF. KallioK. KayaT. AnastasinaM. SmuraT. LevanovL. SziroviczaL. TobiA. Kallio-KokkoH. ÖsterlundP. JoensuuM. MeunierF.A. ButcherS.J. WinklerM.S. MollenhauerB. HeleniusA. GokceO. TeesaluT. HepojokiJ. VapalahtiO. StadelmannC. BalistreriG. SimonsM. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity.Science2020370651885686010.1126/science.abd298533082293
    [Google Scholar]
  100. LarsenC.P. BourneT.D. WilsonJ.D. SaqqaO. SharshirM.A. Collapsing glomerulopathy in a patient with COVID-19.Kidney Int. Rep.20205693593910.1016/j.ekir.2020.04.00232292867
    [Google Scholar]
  101. TanakaT. NarazakiM. KishimotoT. Immunotherapeutic implications of IL-6 blockade for cytokine storm.Immunotherapy20168895997010.2217/imt‑2016‑002027381687
    [Google Scholar]
  102. YeeJ. Diabetic kidney disease: chronic kidney disease and diabetes.Diabetes Spectr.200821181010.2337/diaspect.21.1.8
    [Google Scholar]
  103. SrivastavaS.P. LiJ. KitadaM. FujitaH. YamadaY. GoodwinJ.E. KanasakiK. KoyaD. SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic kidney with fibrosis.Cell Death Dis.201891099710.1038/s41419‑018‑1057‑030250024
    [Google Scholar]
  104. KangH.M. AhnS.H. ChoiP. KoY.A. HanS.H. ChingaF. ParkA.S.D. TaoJ. SharmaK. PullmanJ. BottingerE.P. GoldbergI.J. SusztakK. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development.Nat. Med.2015211374610.1038/nm.376225419705
    [Google Scholar]
  105. SrivastavaS.P. SrivastavaR. ChandS. GoodwinJ.E. Coronavirus disease (COVID)-19 and diabetic kidney disease.Pharmaceuticals (Basel)202114875110.3390/ph1408075134451848
    [Google Scholar]
  106. ZhangY. XiaoM. ZhangS. XiaP. CaoW. JiangW. ChenH. DingX. ZhaoH. ZhangH. WangC. ZhaoJ. SunX. TianR. WuW. WuD. MaJ. ChenY. ZhangD. XieJ. YanX. ZhouX. LiuZ. WangJ. DuB. QinY. GaoP. QinX. XuY. ZhangW. LiT. ZhangF. ZhaoY. LiY. ZhangS. Coagulopathy and antiphospholipid antibodies in patients with COVID-19.N. Engl. J. Med.202038217e3810.1056/NEJMc200757532268022
    [Google Scholar]
  107. Krogh-MadsenR. ThyfaultJ.P. BroholmC. MortensenO.H. OlsenR.H. MounierR. PlomgaardP. van HallG. BoothF.W. PedersenB.K. A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity.J. Appl. Physiol.201010851034104010.1152/japplphysiol.00977.200920044474
    [Google Scholar]
  108. YaguchiS. OgawaY. ShimmuraS. HatouS. NakamuraS. InabaT. ImadaT. OzawaY. KawakamiY. IshidaS. TsubotaK. Presence and physiologic function of the renin-angiotensin system in mouse lacrimal gland.Invest. Ophthalmol. Vis. Sci.20125395416542510.1167/iovs.12‑989122786901
    [Google Scholar]
  109. Kharel SitaulaR. KhatriA. JananiM.K. MandageR. SadhuS. MadhavanH.N. UpadhyayM.P. BiswasJ. Unfolding COVID-19: Lessons-in-Learning in Ophthalmology.Clin. Ophthalmol.2020142807282010.2147/OPTH.S25985733061265
    [Google Scholar]
  110. VaajanenA. KalesnykasG. VapaataloH. UusitaloH. The expression of Mas-receptor of the renin–angiotensin system in the human eye.Graefes Arch. Clin. Exp. Ophthalmol.201525371053105910.1007/s00417‑015‑2952‑z25677099
    [Google Scholar]
  111. DanserA.H.J. Van Den DorpelM.A. DeinumJ. DerkxF.H.M. FrankenA.A.M. PeperkampE. De JongP.T.V.M. SchalekampM.A.D.H. Renin, prorenin, and immunoreactive renin in vitreous fluid from eyes with and without diabetic retinopathy.J. Clin. Endocrinol. Metab.198968116016710.1210/jcem‑68‑1‑1602642484
    [Google Scholar]
  112. WagnerJ. Jan DanserA.H. DerkxF.H. de JongT.V. PaulM. MullinsJ.J. SchalekampM.A. GantenD. Demonstration of renin mRNA, angiotensinogen mRNA, and angiotensin converting enzyme mRNA expression in the human eye: evidence for an intraocular renin-angiotensin system.Br. J. Ophthalmol.199680215916310.1136/bjo.80.2.1598814748
    [Google Scholar]
  113. HolappaM. VapaataloH. VaajanenA. Many faces of renin-angiotensin system-focus on eye.Open Ophthalmol. J.201711112214210.2174/187436410171101012228761566
    [Google Scholar]
  114. CheungN. MitchellP. WongT.Y. Diabetic retinopathy.Lancet2010376973512413610.1016/S0140‑6736(09)62124‑320580421
    [Google Scholar]
  115. WangW. LoA.C.Y. Diabetic retinopathy: pathophysiology and treatments.Int. J. Mol. Sci.2018196181610.3390/ijms1906181629925789
    [Google Scholar]
  116. SohnE.H. van DijkH.W. JiaoC. KokP.H.B. JeongW. DemirkayaN. GarmagerA. WitF. KucukevciliogluM. van VelthovenM.E.J. DeVriesJ.H. MullinsR.F. KuehnM.H. SchlingemannR.O. SonkaM. VerbraakF.D. AbràmoffM.D. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus.Proc. Natl. Acad. Sci. USA201611319E2655E266410.1073/pnas.152201411327114552
    [Google Scholar]
  117. CasagrandeM. FitzekA. PüschelK. AleshchevaG. SchultheissH.P. BernekingL. SpitzerM.S. SchultheissM. Detection of SARS-CoV-2 in human retinal biopsies of deceased COVID-19 patients.Ocul. Immunol. Inflamm.202028572172510.1080/09273948.2020.177030132469258
    [Google Scholar]
  118. TikellisC. JohnstonC.I. ForbesJ.M. BurnsW.C. ThomasM.C. LewR.A. YarskiM. SmithA.I. CooperM.E. Identification of angiotensin converting enzyme 2 in the rodent retina.Curr. Eye Res.200429641942710.1080/0271368049051794415764086
    [Google Scholar]
  119. HamashimaK. GautamP. LauK.A. KhiongC.W. BlenkinsopT.A. LiH. LohY. Potential modes of COVID-19 transmission from human eye revealed by single-cell atlas.BioRxiv; 05.09.085613202010.1101/2020.05.09.085613
    [Google Scholar]
  120. JafarN. EdrissH. NugentK. The effect of short-term hyperglycemia on the innate immune system.Am. J. Med. Sci.2016351220121110.1016/j.amjms.2015.11.01126897277
    [Google Scholar]
  121. CristeloC. AzevedoC. MarquesJ.M. NunesR. SarmentoB. SARS-CoV-2 and diabetes: New challenges for the disease.Diabetes Res. Clin. Pract.202016410822810.1016/j.diabres.2020.10822832446801
    [Google Scholar]
  122. PalR. BhansaliA. COVID-19, diabetes mellitus and ACE2: The conundrum.Diabetes Res. Clin. Pract.202016210813210.1016/j.diabres.2020.10813232234504
    [Google Scholar]
  123. WangK. ChenW. ZhouS. LianJ.Q. ZhangZ. DuP. GongL. ZhangY. CuiH.Y. GengJ. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein.Biorxiv; 03.14.988345202010.1101/2020.03.14.988345
    [Google Scholar]
  124. ArimaM. CuiD. KimuraT. SonodaK.H. IshibashiT. MatsudaS. IkedaE. Basigin can be a therapeutic target to restore the retinal vascular barrier function in the mouse model of diabetic retinopathy.Sci. Rep.2016613844510.1038/srep3844527917946
    [Google Scholar]
  125. RoyS. MazumderT. BanikS. The Association of Cardiovascular Diseases and Diabetes Mellitus with COVID-19 (SARS-CoV-2) and Their Possible Mechanisms.SN Compr. Clin. Med.2020281077108210.1007/s42399‑020‑00376‑z32838148
    [Google Scholar]
  126. Ali RazaJ. MovahedA. Current concepts of cardiovascular diseases in diabetes mellitus.Int. J. Cardiol.2003892-312313410.1016/S0167‑5273(02)00510‑712767534
    [Google Scholar]
  127. DufourJ.F. MarjotT. BecchettiC. TilgH. COVID-19 and liver disease.Gut202271112350236210.1136/gutjnl‑2021‑32679235701093
    [Google Scholar]
  128. Müller-WielandD. MarxN. DreherM. FritzenK. SchnellO. COVID-19 and Cardiovascular Comorbidities.Exp. Clin. Endocrinol. Diabetes2022130317818910.1055/a‑1269‑140533157558
    [Google Scholar]
  129. ApicellaM. CampopianoM.C. MantuanoM. MazoniL. CoppelliA. Del PratoS. COVID-19 in people with diabetes: understanding the reasons for worse outcomes.Lancet Diabetes Endocrinol.20208978279210.1016/S2213‑8587(20)30238‑232687793
    [Google Scholar]
  130. BatabyalR. FreishtatN. HillE. RehmanM. FreishtatR. KoutroulisI. Metabolic dysfunction and immunometabolism in COVID-19 pathophysiology and therapeutics.Int. J. Obes.20214561163116910.1038/s41366‑021‑00804‑733727631
    [Google Scholar]
  131. CostaF.F. RosárioW.R. Ribeiro FariasA.C. de SouzaR.G. Duarte GondimR.S. BarrosoW.A. Metabolic syndrome and COVID-19: An update on the associated comorbidities and proposed therapies.Diabetes Metab. Syndr.202014580981410.1016/j.dsx.2020.06.01632540733
    [Google Scholar]
  132. JorgensenS.C.J. TseC.L.Y. BurryL. DresserL.D. Baricitinib: a review of pharmacology, safety, and emerging clinical experience in COVID-19.Pharmacotherapy202040884385610.1002/phar.243832542785
    [Google Scholar]
  133. AzevedoR.B. BotelhoB.G. HollandaJ.V.G. FerreiraL.V.L. Junqueira de AndradeL.Z. OeiS.S.M.L. MelloT.S. MuxfeldtE.S. Covid-19 and the cardiovascular system: a comprehensive review.J. Hum. Hypertens.202135141110.1038/s41371‑020‑0387‑432719447
    [Google Scholar]
  134. BansalM. Cardiovascular disease and COVID-19.Diabetes Metab. Syndr.202014324725010.1016/j.dsx.2020.03.01332247212
    [Google Scholar]
  135. LiuF. LongX. ZhangB. ZhangW. ChenX. ZhangZ. ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS- CoV-2 Infection.Clin. Gastroenterol. Hepatol.202018921282130.e210.1016/j.cgh.2020.04.04032334082
    [Google Scholar]
  136. TipnisS.R. HooperN.M. HydeR. KarranE. ChristieG. TurnerA.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase.J. Biol. Chem.200027543332383324310.1074/jbc.M00261520010924499
    [Google Scholar]
  137. FerrarioC.M. AhmadS. JoynerJ. VaragicJ. Advances in the renin angiotensin system focus on angiotensin-converting enzyme 2 and angiotensin-(1-7).Adv. Pharmacol.20105919723310.1016/S1054‑3589(10)59007‑020933203
    [Google Scholar]
  138. SteenblockC. SchwarzP.E.H. LudwigB. LinkermannA. ZimmetP. KulebyakinK. TkachukV.A. MarkovA.G. LehnertH. de AngelisM.H. RietzschH. RodionovR.N. KhuntiK. HopkinsD. BirkenfeldA.L. BoehmB. HoltR.I.G. SkylerJ.S. DeVriesJ.H. RenardE. EckelR.H. AlbertiK.G.M.M. GelonezeB. ChanJ.C. MbanyaJ.C. OnyegbutulemH.C. RamachandranA. BasitA. HassaneinM. BewickG. SpinasG.A. BeuschleinF. LandgrafR. RubinoF. MingroneG. BornsteinS.R. COVID-19 and metabolic disease: mechanisms and clinical management.Lancet Diabetes Endocrinol.202191178679810.1016/S2213‑8587(21)00244‑834619105
    [Google Scholar]
  139. KumarA. FaiqM.A. PareekV. RazaK. NarayanR.K. PrasoonP. KumarP. KulandhasamyM. KumariC. KantK. SinghH.N. QadriR. PandeyS.N. KumarS. Relevance of SARS-CoV-2 related factors ACE2 and TMPRSS2 expressions in gastrointestinal tissue with pathogenesis of digestive symptoms, diabetes-associated mortality, and disease recurrence in COVID-19 patients.Med. Hypotheses202014411027110.1016/j.mehy.2020.11027133254575
    [Google Scholar]
  140. BindomS.M. LazartiguesE. The sweeter side of ACE2: Physiological evidence for a role in diabetes.Mol. Cell. Endocrinol.2009302219320210.1016/j.mce.2008.09.02018948167
    [Google Scholar]
  141. BadimonL. RobinsonE.L. JusicA. CarpuscaI. deWindtL.J. EmanueliC. FerdinandyP. GuW. GyöngyösiM. HacklM. Karaduzovic-HadziabdicK. LustrekM. MartelliF. NhamE. PotočnjakI. SatagopamV. SchneiderR. ThumT. DevauxY. Cardiovascular RNA markers and artificial intelligence may improve COVID-19 outcome: a position paper from the EU-CardioRNA COST Action CA17129.Cardiovasc. Res.202111781823184010.1093/cvr/cvab09433839767
    [Google Scholar]
  142. XiongT.Y. RedwoodS. PrendergastB. ChenM. Coronaviruses and the cardiovascular system: acute and long-term implications.Eur. Heart J.202041191798180010.1093/eurheartj/ehaa23132186331
    [Google Scholar]
  143. DouQ. WeiX. ZhouK. YangS. JiaP. Cardiovascular Manifestations and Mechanisms in Patients with COVID-19.Trends Endocrinol. Metab.2020311289390410.1016/j.tem.2020.10.00133172748
    [Google Scholar]
  144. SouthA.M. DizD.I. ChappellM.C. COVID-19, ACE2, and the cardiovascular consequences.Am. J. Physiol. Heart Circ. Physiol.20203185H1084H109010.1152/ajpheart.00217.202032228252
    [Google Scholar]
  145. SiripanthongB. NazarianS. MuserD. DeoR. SantangeliP. KhanjiM.Y. CooperL.T.Jr ChahalC.A.A. Recognizing COVID-19–related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management.Heart Rhythm20201791463147110.1016/j.hrthm.2020.05.00132387246
    [Google Scholar]
  146. BonaventuraA. VecchiéA. DagnaL. MartinodK. DixonD.L. Van TassellB.W. DentaliF. MontecuccoF. MassbergS. LeviM. AbbateA. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19.Nat. Rev. Immunol.202121531932910.1038/s41577‑021‑00536‑933824483
    [Google Scholar]
  147. ToblerD.L. PruzanskyA.J. NaderiS. AmbrosyA.P. SladeJ.J. Long-Term Cardiovascular Effects of COVID-19: Emerging Data Relevant to the Cardiovascular Clinician.Curr. Atheroscler. Rep.202224756357010.1007/s11883‑022‑01032‑835507278
    [Google Scholar]
  148. MahroozA. MuscogiuriG. BuzzettiR. MaddaloniE. The complex combination of COVID-19 and diabetes: pleiotropic changes in glucose metabolism.Endocrine202172231732510.1007/s12020‑021‑02729‑733886062
    [Google Scholar]
  149. RheeE.J. KimJ.H. MoonS.J. LeeW.Y. Encountering COVID-19 as Endocrinologists.Endocrinol. Metab. (Seoul)202035219720510.3803/EnM.2020.35.2.19732372573
    [Google Scholar]
  150. KuanI.H.S. SavageR.L. DuffullS.B. WalkerR.J. WrightD.F.B. The association between metformin therapy and lactic acidosis.Drug Saf.201942121449146910.1007/s40264‑019‑00854‑x31372935
    [Google Scholar]
  151. BornsteinS.R. RubinoF. KhuntiK. MingroneG. HopkinsD. BirkenfeldA.L. BoehmB. AmielS. HoltR.I.G. SkylerJ.S. DeVriesJ.H. RenardE. EckelR.H. ZimmetP. AlbertiK.G. VidalJ. GelonezeB. ChanJ.C. JiL. LudwigB. Practical recommendations for the management of diabetes in patients with COVID-19.Lancet Diabetes Endocrinol.20208654655010.1016/S2213‑8587(20)30152‑232334646
    [Google Scholar]
  152. GianchandaniR. EsfandiariN.H. AngL. IyengarJ. KnottsS. ChoksiP. Pop-BusuiR. Managing hyperglycemia in the COVID-19 inflammatory storm.Diabetes202069102048205310.2337/dbi20‑002232778570
    [Google Scholar]
  153. DanneT. Axel SchweitzerM. KeuthageW. KipperS. KretzschmarY. SimonJ. WiedenmannT. ZieglerR. Therapeutics, Impact of fast-acting insulin aspart on glycemic control in patients with type 1 diabetes using intermittent-scanning continuous glucose monitoring within a real-world setting: the GoBolus study.Diabetes Technol. Ther.202123320321210.1089/dia.2020.036032924568
    [Google Scholar]
  154. HasanS.S. KowC.S. BainA. KavanaghS. MerchantH.A. HadiM.A. Pharmacotherapeutic considerations for the management of diabetes mellitus among hospitalized COVID-19 patients.Expert Opin. Pharmacother.202122222924010.1080/14656566.2020.183711433054481
    [Google Scholar]
  155. BallaniP. TranM.T. NavarM.D. DavidsonM.B. Clinical experience with U-500 regular insulin in obese, markedly insulin-resistant type 2 diabetic patients.Diabetes Care200629112504250510.2337/dc06‑147817065692
    [Google Scholar]
  156. LiY. ZhangZ. YangL. LianX. XieY. LiS. XinS. CaoP. LuJ. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike.iScience202023610116010.1016/j.isci.2020.10116032405622
    [Google Scholar]
  157. Kleine-WeberH. SchroederS. KrügerN. ProkschaA. NaimH.Y. MüllerM.A. DrostenC. PöhlmannS. HoffmannM. Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus.Emerg. Microbes Infect.20209115516810.1080/22221751.2020.171370531964246
    [Google Scholar]
  158. InnK.S. KimY. AigerimA. ParkU. HwangE.S. ChoiM.S. KimY.S. ChoN.H. Reduction of soluble dipeptidyl peptidase 4 levels in plasma of patients infected with Middle East respiratory syndrome coronavirus.Virology201851832432710.1016/j.virol.2018.03.01529587190
    [Google Scholar]
  159. BaggioL.L. VarinE.M. KoehlerJ.A. CaoX. LokhnyginaY. StevensS.R. HolmanR.R. DruckerD.J. Plasma levels of DPP4 activity and sDPP4 are dissociated from inflammation in mice and humans.Nat. Commun.2020111376610.1038/s41467‑020‑17556‑z32724076
    [Google Scholar]
  160. KitagawaN. HamaguchiM. MajimaS. FukudaT. KimuraT. HashimotoY. TanakaM. YamazakiM. NakamuraN. FukuiM. Dipeptidyl peptidase-4 inhibitors have adverse effects for the proliferation of human T cells.J. Clin. Biochem. Nutr.201863210611210.3164/jcbn.17‑6430279621
    [Google Scholar]
  161. DalanR. AngL.W. TanW.Y.T. FongS.W. TayW.C. ChanY.H. ReniaL. NgL.F.P. LyeD.C. ChewD.E.K. YoungB.E. The association of hypertension and diabetes pharmacotherapy with COVID-19 severity and immune signatures: an observational study.Eur. Heart J. Cardiovasc. Pharmacother.202173e48e5110.1093/ehjcvp/pvaa09832766831
    [Google Scholar]
  162. CerielloA. NovialsA. OrtegaE. CanivellS. La SalaL. PujadasG. EspositoK. GiuglianoD. GenoveseS. Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes.Diabetes Care20133682346235010.2337/dc12‑246923564922
    [Google Scholar]
  163. LimS. LeeG.Y. ParkH.S. LeeD.H. Tae JungO. Kyoung MinK. KimY.B. JunH.S. Hak ChulJ. ParkK.S. Attenuation of carotid neointimal formation after direct delivery of a recombinant adenovirus expressing glucagon-like peptide-1 in diabetic rats.Cardiovasc. Res.2017113218319410.1093/cvr/cvw21327702762
    [Google Scholar]
  164. AthaudaD. MaclaganK. SkeneS.S. Bajwa-JosephM. LetchfordD. ChowdhuryK. HibbertS. BudnikN. ZampedriL. DicksonJ. LiY. Aviles-OlmosI. WarnerT.T. LimousinP. LeesA.J. GreigN.H. TebbsS. FoltynieT. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial.Lancet2017390101031664167510.1016/S0140‑6736(17)31585‑428781108
    [Google Scholar]
  165. ZhouF. YuT. DuR. FanG. LiuY. LiuZ. XiangJ. WangY. SongB. GuX. GuanL. WeiY. LiH. WuX. XuJ. TuS. ZhangY. ChenH. CaoB. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.Lancet2020395102291054106210.1016/S0140‑6736(20)30566‑332171076
    [Google Scholar]
  166. PrattichizzoF. La SalaL. RydénL. MarxN. FerriniM. ValensiP. CerielloA. Glucose-lowering therapies in patients with type 2 diabetes and cardiovascular diseases.Eur. J. Prev. Cardiol.2019262_supplSuppl.738010.1177/204748731988004031766918
    [Google Scholar]
  167. CerielloA. StoianA.P. RizzoM. COVID-19 and diabetes management: What should be considered?Diabetes Res. Clin. Pract.202016310815110.1016/j.diabres.2020.10815132305399
    [Google Scholar]
  168. LimS. ShinS.M. NamG.E. JungC.H. KooB.K. Proper management of people with obesity during the COVID-19 pandemic.J. Obes. Metab. Syndr.2020292849810.7570/jomes2005632544885
    [Google Scholar]
  169. StoianA.P. PapanasN. PraznyM. RizviA.A. RizzoM. Incretin-based therapies role in COVID-19 era: evolving insights.J. Cardiovasc. Pharmacol. Ther.202025649449610.1177/107424842093786832618198
    [Google Scholar]
  170. NauckM.A. MeierJ.J. MANAGEMENT OF ENDOCRINE DISEASE: Are all GLP-1 agonists equal in the treatment of type 2 diabetes?Eur. J. Endocrinol.20191816R211R23410.1530/EJE‑19‑056631600725
    [Google Scholar]
  171. BramanteC.T. IngrahamN.E. MurrayT.A. MarmorS. HovertsenS. GronskiJ. McNeilC. FengR. GuzmanG. AbdelwahabN. KingS. TamarizL. MeehanT. PendletonK.M. BensonB. VojtaD. TignanelliC.J. Metformin and risk of mortality in patients hospitalised with COVID-19: a retrospective cohort analysis.Lancet Healthy Longev.202121e34e4110.1016/S2666‑7568(20)30033‑733521772
    [Google Scholar]
  172. SchopmanJ.E. SimonA.C.R. HoefnagelS.J.M. HoekstraJ.B.L. ScholtenR.J.P.M. HollemanF. The incidence of mild and severe hypoglycaemia in patients with type 2 diabetes mellitus treated with sulfonylureas: a systematic review and meta-analysis.Diabetes Metab. Res. Rev.2014301112210.1002/dmrr.247024030920
    [Google Scholar]
  173. HanJ.H. OhT.J. LeeG. MaengH.J. LeeD.H. KimK.M. ChoiS.H. JangH.C. LeeH.S. ParkK.S. KimY.B. LimS. The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE −/− mice fed a western diet.Diabetologia201760236437610.1007/s00125‑016‑4158‑227866224
    [Google Scholar]
  174. GarveyW.T. Van GaalL. LeiterL.A. VijapurkarU. ListJ. CuddihyR. RenJ. DaviesM.J. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes.Metabolism201885323710.1016/j.metabol.2018.02.00229452178
    [Google Scholar]
  175. HahnK. EjazA.A. KanbayM. LanaspaM.A. JohnsonR.J. Acute kidney injury from SGLT2 inhibitors: potential mechanisms.Nat. Rev. Nephrol.2016121271171210.1038/nrneph.2016.15927847389
    [Google Scholar]
  176. KosiborodM.N. EsterlineR. FurtadoR.H.M. OscarssonJ. GasparyanS.B. KochG.G. MartinezF. MukhtarO. VermaS. ChopraV. BuenconsejoJ. LangkildeA.M. AmberyP. TangF. GoschK. WindsorS.L. AkinE.E. SoaresR.V.P. MoiaD.D.F. AboudaraM. Hoffmann FilhoC.R. FeitosaA.D.M. FonsecaA. GarlaV. GordonR.A. JavaheriA. JaegerC.P. LeaesP.E. NassifM. PursleyM. SilveiraF.S. BarrosoW.K.S. Lazcano SotoJ.R. Nigro MaiaL. BerwangerO. Dapagliflozin in patients with cardiometabolic risk factors hospitalised with COVID-19 (DARE-19): a randomised, double-blind, placebo-controlled, phase 3 trial.Lancet Diabetes Endocrinol.20219958659410.1016/S2213‑8587(21)00180‑734302745
    [Google Scholar]
  177. NdegwaS. AdamsA. Anakinra Therapy for Hemophagocytic Lymphohistiocytosis: CADTH Health Technology Review.Can. J. Med. Technol.20222237797133
    [Google Scholar]
  178. Iglesias-JuliánE. López-VelosoM. de-la-Torre-FerreraN. Barraza-VengoecheaJ.C. Delgado-LópezP.D. Colazo-BurlatoM. Ubeira-IglesiasM. Montero-BaladíaM. Lorenzo-MartínA. Minguito-de-la-IglesiaJ. García-MuñozJ.P. Sanllorente-SebastiánR. Vicente-GonzálezB. Alemán-AlemánA. Buzón-MartínL. High dose subcutaneous Anakinra to treat acute respiratory distress syndrome secondary to cytokine storm syndrome among severely ill COVID-19 patients.J. Autoimmun.202011510253710.1016/j.jaut.2020.10253732843231
    [Google Scholar]
  179. FavalliE.G. BiggioggeroM. MaioliG. CaporaliR. Baricitinib for COVID-19: a suitable treatment?Lancet Infect. Dis.20202091012101310.1016/S1473‑3099(20)30262‑032251638
    [Google Scholar]
  180. Saber-AyadM. HammoudehS. Abu-GharbiehE. HamoudiR. TaraziH. Al-TelT.H. HamidQ. Current status of baricitinib as a repurposed therapy for COVID-19.Pharmaceuticals (Basel)202114768010.3390/ph1407068034358107
    [Google Scholar]
  181. MisraA.K. RangariG. CM. SharmaS. Current management of diabetes patients with COVID-19.Expert Rev. Endocrinol. Metab.202318219920710.1080/17446651.2023.218721536882971
    [Google Scholar]
  182. AkinosoglouK. SchinasG. BletsaE. BristianouM. LanarasL. MichailidesC. KatsikasT. BarkasF. LiberopoulosE. KotsisV. TentolourisK. GrigoropoulouP. FrangouA. BasoulisD. AlexiouZ. DaganouM. BostantzoglouC. DimakopoulouV. KoutsoukouA. PefanisA. BaraboutisI.G. AgelonidouE. TentolourisN. COVID-19 Outcomes and Diabetes Mellitus: A Comprehensive Multicenter Prospective Cohort Study.Microorganisms2023116141610.3390/microorganisms1106141637374918
    [Google Scholar]
  183. PapanasN. ZieglerD. Efficacy of α-lipoic acid in diabetic neuropathy.Expert Opin. Pharmacother.201415182721273110.1517/14656566.2014.97293525381809
    [Google Scholar]
  184. ChangP. LiuJ. YuY. CuiS.Y. GuoZ.H. ChenG.M. HuangQ. LiuZ.G. Alpha-lipoic acid suppresses extracellular histone-induced release of the infammatory mediator tumor necrosis factor-α by macrophages.Cell. Physiol. Biochem.20174262559256810.1159/00048021728848097
    [Google Scholar]
  185. JesudasonE.P. MasilamoniJ.G. JebarajC.E. PaulS.F.D. JayakumarR. Efficacy of DL-α lipoic acid against systemic inflammation-induced mice: antioxidant defense system.Mol. Cell. Biochem.20083131-211312310.1007/s11010‑008‑9748‑y18401559
    [Google Scholar]
  186. SimaA.A. RisticH. MerryA. KamijoM. LattimerS.A. StevensM.J. GreeneD.A. Primary preventive and secondary interventionary effects of acetyl-L-carnitine on diabetic neuropathy in the bio-breeding Worcester rat.J. Clin. Invest.19969781900190710.1172/JCI1186218621774
    [Google Scholar]
  187. YouleM. OsioM. ALCAR Study Group A double-blind, parallel-group, placebo-controlled, multicentre study of acetyl l -carnitine in the symptomatic treatment of antiretroviral toxic neuropathy in patients with HIV-1 infection.HIV Med.20078424125010.1111/j.1468‑1293.2007.00467.x17461852
    [Google Scholar]
  188. LemireJ.M. Immunomodulatory role of 1,25-dihydroxyvitamin D 3.J. Cell. Biochem.1992491263110.1002/jcb.2404901061644850
    [Google Scholar]
  189. LiuP.T. StengerS. LiH. WenzelL. TanB.H. KrutzikS.R. OchoaM.T. SchauberJ. WuK. MeinkenC. KamenD.L. WagnerM. BalsR. SteinmeyerA. ZügelU. GalloR.L. EisenbergD. HewisonM. HollisB.W. AdamsJ.S. BloomB.R. ModlinR.L. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response.Science200631157681770177310.1126/science.112393316497887
    [Google Scholar]
  190. StirbanA. NegreanM. StratmannB. GawlowskiT. HorstmannT. GöttingC. KleesiekK. Mueller-RoeselM. KoschinskyT. UribarriJ. VlassaraH. TschoepeD. Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes.Diabetes Care20062992064207110.2337/dc06‑053116936154
    [Google Scholar]
  191. TorresA. RubioG. Efecto analgésico de las vitaminas del complejo B, a 50 años de la primera combinación fija de tiamina, piridoxina y cianocobalamina.Med. Interna Mex.2012285473482
    [Google Scholar]
  192. FrisoS. JacquesP.F. WilsonP.W.F. RosenbergI.H. SelhubJ. Low circulating vitamin B(6) is associated with elevation of the inflammation marker C-reactive protein independently of plasma homocysteine levels.Circulation2001103232788279110.1161/01.CIR.103.23.278811401933
    [Google Scholar]
  193. YaqubB.A. SiddiqueA. SulimaniR. Effects of methylcobalamin on diabetic neuropathy.Clin. Neurol. Neurosurg.199294210511110.1016/0303‑8467(92)90066‑C1324807
    [Google Scholar]
  194. AhmedI. LiuT.Y.A. The impact of COVID-19 on diabetic retinopathy monitoring and treatment.Curr. Diab. Rep.202121104010.1007/s11892‑021‑01411‑634495377
    [Google Scholar]
  195. SinghA.K. SinghA. ShaikhA. SinghR. MisraA. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries.Diabetes Metab. Syndr.202014324124610.1016/j.dsx.2020.03.01132247211
    [Google Scholar]
  196. SolerteS.B. D’AddioF. TrevisanR. LovatiE. RossiA. PastoreI. Dell’AcquaM. IppolitoE. ScarannaC. BellanteR. GallianiS. DodesiniA.R. LeporeG. GeniF. FiorinaR.M. CatenaE. CorsicoA. ColomboR. MiraniM. De RivaC. OleandriS.E. AbdiR. BonventreJ.V. RusconiS. FolliF. Di SabatinoA. ZuccottiG. GalliM. FiorinaP. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: a multicenter, case-control, retrospective, observational study.Diabetes Care202043122999300610.2337/dc20‑152132994187
    [Google Scholar]
  197. KanasakiK. ShiS. KanasakiM. HeJ. NagaiT. NakamuraY. IshigakiY. KitadaM. SrivastavaS.P. KoyaD. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen.Diabetes20146362120213110.2337/db13‑102924574044
    [Google Scholar]
  198. YangY. ZouS. XuG. An update on the interaction between COVID-19, vaccines, and diabetic kidney disease.Front. Immunol.20221399953410.3389/fimmu.2022.99953436341356
    [Google Scholar]
  199. NishigaM. WangD.W. HanY. LewisD.B. WuJ.C. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives.Nat. Rev. Cardiol.202017954355810.1038/s41569‑020‑0413‑932690910
    [Google Scholar]
  200. XuX. HanM. LiT. SunW. WangD. FuB. ZhouY. ZhengX. YangY. LiX. ZhangX. PanA. WeiH. Effective treatment of severe COVID-19 patients with tocilizumab.Proc. Natl. Acad. Sci. USA202011720109701097510.1073/pnas.200561511732350134
    [Google Scholar]
  201. OtsukaY. KiyoharaC. KashiwadoY. SawabeT. NaganoS. KimotoY. AyanoM. MitomaH. AkahoshiM. ArinobuY. NiiroH. AkashiK. HoriuchiT. Effects of tumor necrosis factor inhibitors and tocilizumab on the glycosylated hemoglobin levels in patients with rheumatoid arthritis; an observational study.PLoS One2018134e019636810.1371/journal.pone.019636829694426
    [Google Scholar]
  202. FlahertyG.T. HessionP. LiewC.H. LimB.C.W. LeongT.K. LimV. SulaimanL.H. COVID-19 in adult patients with pre-existing chronic cardiac, respiratory and metabolic disease: a critical literature review with clinical recommendations.Trop. Dis. Travel Med. Vaccines2020611610.1186/s40794‑020‑00118‑y32868984
    [Google Scholar]
  203. GasmiA. PeanaM. PivinaL. SrinathS. Gasmi BenahmedA. SemenovaY. MenzelA. DadarM. BjørklundG. Interrelations between COVID-19 and other disorders.Clin. Immunol.202122410865110.1016/j.clim.2020.10865133333255
    [Google Scholar]
  204. Moura de AraújoM.F. Moreira BarrosL. Moura de AraújoT. de Souza TeixeiraC.R. Alves de OliveiraR. Almeida BarrosE. Stabnow SantosF. PascoalL.M. Pereira de Jesus CostaA.C. Santos NetoM. Influence of simultaneous comorbidities on COVID-associated acute respiratory distress syndrome mortality in people with diabetes.J. Taibah Univ. Med. Sci.202419349249910.1016/j.jtumed.2024.03.00638562915
    [Google Scholar]
  205. MeansC. Mechanisms of increased morbidity and mortality of SARS-CoV-2 infection in individuals with diabetes: What this means for an effective management strategy.Metab. Clin. Exp.2020108154254
    [Google Scholar]
  206. JoshiG. DasA. VermaG. GuchhaitP. Viral infection and host immune response in diabetes.IUBMB Life202476524226610.1002/iub.279438063433
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998341202241202103725
Loading
/content/journals/cdr/10.2174/0115733998341202241202103725
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ACE2; COVID-19; Diabetes mellitus; DPP4 inhibitor; SARS-CoV-2; SGLT2 inhibitors
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test