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Abstract: Chrysin, a flavone nutraceutical, possesses several beneficial pharmacological proper-
ties, which has gained much emphasis in recent years. The biological effects of chrysin are exert-
ed due to impeding or activating multifarious cellular and molecular pathways. Our findings indi-
cated that chrysin inhibited tumor progression in various cancer cell lines by repressing the forma-
tion of a sphere and upregulated protein expression of Src homology region 2 domain-containing
phosphatase-1 (SHP-1), alleviating phosphorylated-signal transducer and activator of transcription
3 (p-STAT3) and transaction workflow innovation standards team1 (Twist1), sustaining phospho-
rylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and endorsing mitogen-activated
protein kinase kinase1 (MEK1) overexpression, increasing the cytochrome c release, mitochon-
drial reactive oxygen species (ROS) formation, matrix metalloproteinases (MMP) collapse, and
caspase-3 activity, modulating p53/ B-cell lymphoma-2 (Bcl-2)/caspase-9 cascade, cyclooxyge-
nase-2 (COX-2), nuclear factor kappa B proposition 65 (NF-kB p65) expression and also decreas-
ing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2).  Chrysin prevented cy-
clophosphamide, doxorubicin, cisplatin, methotrexate, paracetamol, alcohol, carbon tetrachloride,
tert-butyl  hydroperoxide  (tBHP)  and  thioacetamide.  Chrysin  has  protective  properties  against
oxidative stress, inflammation, hepatotoxicity, liver fibrosis, steatosis, and hepatocellular carcino-
ma.Chrysin's most common hepatoprotective biochemical and molecular mechanisms involve the
ability to control enzyme synthesis, scavenge free radicals, boost the antioxidant response, induce
apoptosis, and modify the synthesis of proinflammatory and profibrotic cytokines.Chrysin is a
valuable nutraceutical with broad therapeutic feasibility, but to confirm its representative hepato-
protective potential, clinical studies are advised. It would also be interesting to use cutting-edge
drug delivery techniques or include bio-enhancers.
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1. INTRODUCTION
Regardless of the growing advancement in the manage-

ment of liver disease, these difficulties are still a thought-pro-
voking issue [1]. The liver performs a dominant and integral
task in the metabolism and distribution of drugs and nutri-
ents, as well as protection   against   food   xenobiotics   [2].
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Moreover, the liver participates in maintaining hemostasis,
metabolism  of  glucose  and  lipids,  and  formation  of  hor-
mones  [3].  Liver  injuries  are  majorly  caused  by  oxidative
stress, which attacks Kupffer cells, endothelial cells, and hep-
atic stellate cells. Various cytokines such as tumor necrosis
factor-alpha (TNF-α) can be generated due to the oxidative
stress that affects Kupffer cells, which may cause inflamma-
tory  responses  and  apoptotic  fate.  Drugs,  toxins,  alcohol,
and environmental pollution are critical inducers of hepatic
oxidative damage [4, 5]. Steatosis, steatohepatitis, fibrosis,
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Fig. (1). Alterations in the liver and the therapeutic strategies in each stage. (A higher resolution / colour version of this figure is available in
the electronic copy of the article).

cirrhosis,  and  hepatocellular  carcinoma (HCC)  most  com-
monly  happen  attributable  to  liver  damage  (Fig.  1)  [6].
Chronic liver disorders,  which are accompanied by abnor-
mal regeneration of hepatocytes, unremitting hepatic inflam-
mation, and fibrosis, can result in cirrhosis and genetic/epige-
netic changes that cause the formation of dysplastic nodules
associated with HCC [7]. About 65% of patients suffering
from liver disorders prefer using natural products in the Unit-
ed States and Europe [8].

The discovery of novel drugs is a challenging and multi-
faceted attempt, with numerous intrinsic complications con-
sisting of the possibility of their synthesis in addition to in-
herent  weaknesses  in  their  pharmacokinetics  and  toxicity
properties.  There  is  a  high  interest  in  natural  products  as
drug leads are being revitalized [9, 10]. Besides, nutraceuti-
cals, which are described as animal/plant/microorganism-o-
riginated nutritional substances with pharmaceutical applica-
tions, are under emphasis at the current time [11]. Chrysin is
a flavone secondary metabolite that revealed several expedi-
ent biological activities [12].

Regarding preclinical research, chrysin has encouraging
protective properties that can be used in the pharmacothera-
py  of  liver  disturbances.  In  the  present  paper  content,  we
first discussed the general aspects of chrysin. Afterward, we
precisely explained its protective effects against various liv-
er  disorders  by  putting  our  emphasis  on  molecular  mech-
anisms of action.

2. CHEMICAL PROPERTIES, METABOLITES, AND
DERIVATIVES OF CHRYSIN

Chrysin is a natural flavonoid compound that could be
isolated from various kinds of honey, propolis, plants, and
even mushrooms [13, 14] (Table 1). Chrysin exerts benefi-
cial pharmacological properties including anti-neoplastic, an-
tioxidant, anti-inflammatory, anti-allergic, nephroprotective,
hepatoprotective, neuroprotective, effective in reproductive
health, anti-diabetic, protective for cardiovascular health, an-
ti-obesity,  osteoprotective,  anti-dote,  and  effective  against
gastrointestinal disorders [15-21] (Fig. 2). Mechanisms un-
derlying the pharmacological effects of chrysin include mod-
ulatory effects on the transcription factors, growth factors, ki-
nases, adhesion molecules, cytokines, autophagy related fac-
tors, antioxidants, oxidative stress indices, related enzymes,
and apoptosis-related markers [15-21] (Fig. 3).

The flavone chrysin has three rings; two of them (A and
B) are benzene rings, and ring C is a heterocyclic ring that
contains  oxygen  [22].  The  presence  of  a  double  bond  be-
tween C2-C3 and the functional group carbonyl on the C4
atom  resulted  in  the  antioxidant  activities  of  chrysin  [23,
24]. Numerous natural derivatives are established due to the
variety of oxygenation in ring-A. Baicalein, oroxylin A, and
wogonin are examples of these natural derivatives that origi-
nated from chrysin [25, 26]. To ameliorate the pharmacologi-
cal effects of chrysin, its different derivatives were synthe-
sized,  presenting diverse  substituents  in  its  molecule  [27].
Various  chrysin  derivatives  and  analogs  can  be  prepared
with optimized biological activities. Alkylation, acetylation,
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Table 1. Sources of chrysin.

Botanical Name Family Type Used Part Extract Isolation Technique Yield References

Croatian Propolis - - - - HPLC/UV-Vis
2478.5 µg chrysin

/g
propolis

[163]

Iraqi Propolis - -
Collected by

honeybees (Apis
mellifera)

- HPLC-ESI/MS 10-1505 µg chrys-
in/mL propolis [164]

Buckwheat kinds of
honey - -

Nectar of little
pink flowers col-
lected by honey-

bees

- HPLC-DAD/ESI-MS 19.2-128.2 µg chrys-
in/100 g honey [165]

Acacia honey - - - - HPLC - [166]
Pelargonium crispum Geraniaceae Plant Leaves Me2CO HPLC/MS - [167]

Desmos cochinchinen-
sis Annonaceae Plant Leaves CH2Cl2: MeOH

(9.5: 0.5) Preparative TLC/UV-Vis (FTIR)
10.5 mg chrys-
in/774 g dried

leaves
[168]

Scutellaria araxensis Lamiaceae Plant Roots, shoots MeOH HPLC/UV-Vis

Root: 38.14 µg
chrysin/ 1.25 g

dried roots
Shoot: 235.5 µg
chrysin/ 1.25 g

dried shoots

[169]

S. bornmuelleri Lamiaceae Plant Roots, shoots MeOH HPLC/UV-Vis

Root: 100.56 µg
chrysin/0.4 g dried

roots
Shoot: 144.94 µg
chrysin/0.26 dried

shoots

[169]

S. immaculata Lamiaceae Plant Aerial parts,
roots

MeOH, CHCl3,
Water HPLC/ESI-MS - [170]

S. lateriflora Lamiaceae Plant Aerial parts MeOH HPLC-DAD/ESI-MS - [171]

S. multicaulis Lamiaceae Plant Roots, shoots MeOH HPLC/UV-Vis

Root: 26.63 µg
chrysin/ 1.25 g

dried roots
Shoot: 13.48 µg

chrysin/ 2.5 g dried
shooots

[169]

S. ramosissima Lamiaceae Plant Aerial parts,
roots

MeOH, CHCl3,
Water HPLC/ESI-MS - [170]

S. virens Lamiaceae Plant Roots, shoots MeOH HPLC/UV-Vis

Root: 144.96 µg
chrysin/0.135 g

dried roots
Shoot: 173.98 µg

chrysin/0.2 g dried
shoots

[169]

Oroxylum indicum Bignoniaceae Plant Roots MeOH (70%) HPTLC/UV-Vis - [172, 173]

Cytisus villosus Fabaceae Plant Aerial parts EtOH (80%) (E-
tOAc fraction) Preparative TLC/UV-Vis (NMR) 4 mg chrysin/1000

g dried aerial parts [174]

Cytisus multiflorus Fabaceae Plant Flowers EtOH (80%) HPLC-DAD/ESI-MS (NMR) 0.5 mg/g dried plant [175]
Eriodictyon califor-

nicum Hydrophylloideae Plant Twigs and
leaves EtOH (95%) Column and plate chromatogra-

phy/UV (NMR)
2 mg chrysin/800 g

plant [176]

Passiflora coerulea, P.
incarnata Passifloraceae Plant - - - - [177, 178]

Morinda citrifolia Rubiaceae Plant Fruits
Hexan, CHCl3,
EtOAc, EtOH,

MeOH
HPLC - [179, 180]

Docynia delavayi Rosaceae Plant Rhizomes MeOH: Water (9:1) HPLC/ UV, IR, MS, NMR - [116, 181]

(Table 1) contd....
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Botanical Name Family Type Used Part Extract Isolation Technique Yield References

Pyrus pashia Rosaceae Plant Fruits EtOH (95%) (E-
tOAc fraction)

Column chromatography/NMR,
LC-MS - [182]

Crataegus oxyacantha Rosaceae Plant Twigs MeOH Column chromatography/UV
(NMR) - [183]

Mitrella kentii Annonaceae Plant Leaves Hexan, EtOAc,
MeOH

Column chromatography/ NMR,
ESI-MS - [184]

Mangifera indica Anacardiaceae Plant Leaves MeOH GC-MS, HPTLC - [185]
Alpinia oxyphylla Zingiberaceae Plant Fruits EtOH (80%) HPLC- QTRAP - [186, 187]

Chaetomium globosum
PG 1.6 Chaetomiaceae Fungus

Isolated from a
marine green al-

ga C. media

Fermentation, ex-
traction by EtOAc

GC-MS, TLC-UV-Vis (FTIR,
NMR), LC-MS - [188]

Fig. (2). Protective and therapeutic indications of chrysin in numerous diseases. (A higher resolution / colour version of this figure is avail-
able in the electronic copy of the article).

halogenation,  methylation,  nitration,  trifluoromethylation,
phosphonation, amine introduction, and organometallic com-
plexion  are  some  of  the  important  chrysin  substitutions
[28-30].  Gallium-chrysin  complexes  showed  higher  anti-
cancer potential associated with more ROS generation [31].

7-aminochrysin derivatives exhibited anti-tumor activi-
ties in breast and colon cancer cell lines [32]. Vinylated and
allylated  chrysin  analogs  demonstrated  prostaglandin  E2

(PGE2) inhibitory effects [33]. A hydroxyethyl derivative of
chrysin showed anti-inflammatory activities via attenuation
of nuclear factor kappa B (NF-kB) expression [34]. O-methy-
lation  of  chrysin  led  to  more  reduction  in  interleukin-6
(IL)-6,monocyte  chemoattractant  protein-1  (MCP-1),  cy-
clooxygenase-2  (COX-2)-derived  PGE2  production,  and
NF-κB activation [35]. Halogenation of chrysin augmented
its affinity to human casein kinase 2 (CK2) [36].
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Fig. (3). Pharmacological effects of chrysin concerning mechanisms of action. Nrf2: Nuclear erythroid 2-related factor 2; PPAR-γ: peroxi-
some proliferator-activated receptor gamma; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; AP-1: activator protein
1; STAT: signal transducer and activator of transcription; HIF-1: hypoxia-inducible factor 1 alpha; EGR-1: Early growth response protein 1;
TCF-3, 4: Transcription factor 3,4; MIFT: Microphthalmia-associated transcription factor; RUNX2: Runt-related transcription factor 2; Osx:
Osteoblast-specific transcription factor Osterix; SOD: superoxide dismutase; CAT: catalase; GPx: glutathione peroxidase; GSH: glutathione;
GST: glutathione-S-transferase; HO-1: heme oxygenase-1; NQO1: NAD(P)H:quinone oxidoreductase 1; COX-2: cyclooxigenase 2; iNOS:
inducible nitric oxide synthase; eNOS: endothelial nitric oxide synthase; MMP: matrix metalloproteinase; PGE-2: prostaglandin E2; NO: ni-
tric oxide; G6PD: glucose-6-phosphate dehydrogenase; IL-10: interleukin-10; IFN-γ: interferon gamma; MCP-1: monocyte chemoattractant
protein 1; TNF-α: tumor necrosis factor alpha; LH-3:Microtubule-associated protein 1A/1B-light chain 3; mTOR: mechanistic target of ra-
pamycin; Beclin-1: mammalian orthologue of yeast Atg6; Atg: autophagy-related; TGF-β: transforming growth factor beta; HGF: hepatocyte
growth factor; IGF-2: insulin-like growth factor 2; VEGF: vascular endothelial growth factor; EGF: endothelial growth factor; ICAM-1: inter-
cellular adhesion molecule-1; VCAM-1: vascular cell adhesion molecule-1; JNK: c-Jun NH(2)-terminal kinase; MAPK: mitogen-activated
protein kinase; PI3-K: phosphoinositide 3-kinase; GSK-3β: glycogen synthase kinase 3 beta; PKA: protein kinase A; PKC protein kinase C;
JAK: Janus kinase; CDK: cyclin-dependent kinase; CK2: casein kinase 2; MEK-1: Mitogen-activated protein kinase 1; ERK-1, 2: extracellu-
lar signal-regulated protein kinases 1,2. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

The introduction of fluorine atoms into chrysin is impor-
tant for enhancing its lipophilicity, solubility, and biological
properties, e.g., antibacterial, anticancer, antiviral, and hypo-
glycemic effects [37].

Fujitaka  and coworkers  perceived that  regioselectively
of cultured Phytolacca americana cells presented glucosyl
and methoxyl residues on chrysin administrated exogenous-
ly to provide chrysin 7-β- D- glucoside with more powerful
antityrosinase activity and 8- methoxy-chrysin [38]. Another
biotransformation of  chrysin  was  performed by using cul-
tured Eucalyptus perriniana cells as biocatalysts, which led
to the preparation of 7-O-β-D-glucoside and chrysin 7-O-β--
gentiobioside [39]. The biotransformation of chrysin by Cun-
ninghamella elegans led to the production of chrysin 7-sul-
fate [40].

About the thermal degradation kinetics and its stability,
it was found that chrysin began melting at 558 K, and then
evaporation was initiated [41].

Zhou and coworkers found that the solubility of chrysin
in ethanol (EtOH) and H2O mixtures would rise following
an improvement in the concentration of ethanol and an eleva-
tion in temperature [42]. Noubigh and colleagues observed
that  the  solubility  of  chrysin  in  H2O,  methanol  (MeOH),
EtOH, butane-1-ol, butane-2-ol, ethylene glycol, and various
mixtures of water+methanol was dependent on an endother-
mic manner [43].

3. PHARMACOKINETICS, BIOAVAILABILITY, AND
DRUG DELIVERY SYSTEMS

Chrysin is absorbed inconsiderably, metabolized prompt-
ly, and eliminated immediately in the human body. Hence,
chrysin has a very low bioavailability [44]. Most commonly,
glucuronidation  and  sulfate  conjugation  participate  in  the
metabolism of chrysin [45]. Somehow, chrysin is metabol-
ized via oxidation in intestinal and hepatic cells [46]. Nocar-
dia hydrocarbonoxydans were able to metabolize chrysin by
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sulfate conjugation, acetylation, and hydroxylation, similar
to humans [47].

Dong et  al.  found that  sodium oleate-based nanoemul-
sions  of  chrysin  inhibited  the  first-pass  glucuronidation,
which  led  to  great  enhancement  in  the  oral  absorption  of
chrysin [48].

Human urine and plasma only contained trace amounts
of chrysin conjugated with sulfonate and glucuronide [46],
with mice's bile exhibiting the highest concentration of these
conjugated  metabolites  [49].  Consequently,  the  excretion
through feces is the chief recommended gate responsible for
the  bodily  removal  of  chrysin  and its  metabolites  [25,  46,
49].

Plasma  binding  >99%  was  detected  following  oral  in-
take of a single dose of 400 mg of chrysin in humans [44].
According to evaluations based on Lipinski’s “rule of five,”
the oral bioavailability of chrysin was estimated to be about
0.003-0.02% [44, 50], and its maximum plasma concentra-
tion was 12-64 nM [51]. Commonly, the expected flavonoid
aglycones’ maximum serum concentration is 1 mmol/L [44].
As a result, the chrysin had better be ordered to touch the an-
ticipated  micromolar  range  of  serum  concentration  [27].
Novel  drug delivery  systems used for  the  enhancement  of

bioavailability, solubility, and efficacy of chrysin are stated
as liposomes, micelles, and nanoparticles as carriers [52-54].
The best strategy to overwhelm the bioavailability problems
of chrysin was employing nanoparticles for the encapsula-
tion of chrysin (Fig. 4) [55, 56].

Sa et al. found that the bioavailability of chrysin in the
form of a salt cocrystal of chrysin with berberine is approxi-
mately 1.7 times that of pure chrysin in rats [57]. Zhu et al.
realized that the trapping of chrysin in β-cyclodextrin result-
ed in an elevation of the solubility of chrysin, its antioxidant
potential, anti-tumor effects, and antimicrobial activity [58].
Chrysin-loaded β-cyclodextrin-based nanosponges could im-
prove solubility, drug release, photostability, antioxidant ef-
fects, and anti-tumor efficacy of chrysin in-vitro [59]. The
solid  dispersion  preparation  of  chrysin  with  Brij®L4  and
amino-clay was apparently encouraging in the enhancement
of  chrysin dissolution,  improving in  vivo  effects  as  an en-
hancer  of  absorption,  and promoting the bioavailability  of
topotecan on human colon cancer cell (HT29) breast cancer
cell line [60]. Injectable chrysin-nanoparticles (CH-NPs) ex-
hibited  a  major  delay  in  non-small  cell  lung  cancer  (NS-
CLC) tumor growth in vivo. They offered a lower level of to-
tal dosage in comparison to the oral administration of free
chrysin [61].

Fig. (4). Novel drug delivery systems of chrysin. DDS: drug delivery system; NP: nanoparticle; SLN: solid lipid nanoparticle. (A higher reso-
lution / colour version of this figure is available in the electronic copy of the article).
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Halevas  and  coworkers  obtained  that  encapsulating
chrysin  via  poly(ε-caprolactone)  and  poly(3-hydroxybu-
tyrate)  microcarriers  had  valuable  hemocompatibility  and
the potential to combat MDA-MB 231 breast cancer cell line
[62]. Fabrication of a delivery platform constructed by the
focus  on  chrysin-polyvinylpyrrolidone  sub-micro  particles
improved its anticancer efficiency [63]. Santos et al. found
that selenium-chrysin polyurea dendrimer nanoformulation
could play a hopeful role in treating ovarian cancer through
glutathione  depletion  and  cystathionine  β-synthase  inhibi-
tion in human cell lines [64]. Sassa-deepaeng and colleagues
discovered  that  chrysin-loaded  poloxamer  micelles  im-
proved the water solubility of chrysin, and they were safe re-
garding the zebrafish embryo growth [65].

Fabrication of metallic silver (Chrysin-AgNPs) and gold
(Chrysin-AuNPs) nanoparticles could be a potent approach
for breast cancer therapy [66]. L-phenyl alanine-coated iron
oxide magnetic NPs could be great carriers for the delivery
of chrysin and other hydrophobic agents [67]. Chrysin-an-
chored Ag and Au NP-reduced graphene oxide composites
showed  great  cytotoxic  effects  for  breast  cancer  therapy
[68]. Gnanasekar and coworkers discovered that the fabrica-
tion of reduced graphene oxide nanosheets of chrysin exert-
ed no toxicity in treated animals and also resulted in less ly-
sis of RBCs, which signified their biocompatibility for impli-
cation  as  direct  wound dressing  [69].  The  neuroprotective
impact  of  chrysin  NPs  against  kindling-induced  epilepsy
might be associated with a reduction of oxidative stress via
the nuclear factor erythroid 2-related factor/ antioxidant reac-
tion  element/transcription  factor/Hemoxygenase  1  (Nr-
f2/ARE/HO-1)  signaling  pathway  [70].  Vedagiri  and  co-
workers obtained that chrysin could be consumed at a lower
dose  with  better  oral  bioavailability  by  encapsulating
chrysin  in  solid  lipid  nanoparticles  (SLNs)  in  Amyloid
β25-35  induced  Alzheimer’s  disease  in  rats  [71].  Chrys-
in-SLNs  molecularly  dispersed  into  the  lipids  had  5-fold
oral  bioavailability  in  comparison  to  free  chrysin  and  in-
creased  permeation  into  the  blood-brain  barrier  regarding
Alzheimer’s  disease  [72].  Chrysin-bovine  serum  albumin
NPs are a new, compatible, and controlled DDS for cancer
therapy [73, 74].

Mohammad  et  al.  found  that  chrysin-curcumin-loaded
poly(ε-caprolactone)-poly(ethylene  glycol)  (PCL-PEG)
nano-fibers had great potential for shortening the duration of
the wound-healing procedure in rats [75]. Tavakoli et al. no-
ticed that nano-encapsulated curcumin-chrysin with a one-
step fabricated co-delivery system might increase their effi-
ciency in the treatment of melanoma through augmentation
of tissue inhibitor of metalloproteinase (TIMP)-1 and TIM-
P-2 genes expression and alleviation of metalloproteinases
(MMP)-9,  MMP-2,  and  telomerase  reverse  transcriptase
(TERT) genes expression in mouse B16F10 melanoma tu-
mor  model  [76].  Chrysin-loaded  phytosomes,  which  were
prepared by consuming soy phosphatidylcholine or egg phos-
pholipid, could promote glucose uptake [77]. Deldar and co-
workers observed that chrysin-loaded PCL/PEG electrospun
nanofibrous mats could show feasible enhancements in cell
proliferation and adhesion while maintaining the stemness

of  adipose-derived  stem  cells  [78].  The  aforesaid  nanofi-
brous mats alleviated oxidative stress, reduced expression of
IL-1β, IL-6, TNF-α, and excessive production of nitric oxide
(NO)  in  J774A1.  They  maintained  the  viability  of  human
foreskin fibroblast (HFF)-1 cells subsequent stimulation by
lipopolysaccharide (LPS) [79]. Tang et al. synthesized novel
N-isopropyl acrylamide-based hydrogels with variable con-
tent of chrysin multiacrylate, which might have biomedical,
environmental, and other applications [80]. Contrary to Sta-
phylococcus  aureus,  chyrothen-loaded  chitosan  nanoparti-
cles enhanced antibiofilm activity. This was attributed to the
reduction of the hydrophobicity of the cell surface and the
synthesis of exopolysaccharide [81].

4. TOXICOLOGY PROPERTIES OF CHRYSIN
Chrysin  showed  an  inhibitory  effect  on  human  cy-

tochrome (CYP)  P450  3A4,  which  might  be  accredited  to
the hydrophobic non-substituted B ring, besides the rigidity
of  its  configuration  [82].  Moreover,  Chrysin  displayed  a
great inhibitory affinity of 54 nM in the direction of human
CYP P450 1A2 [83]. Chrysin and/or its conjugates (chrys-
in-7-sulfate and chrysin-7-glucuronide) could significantly
affect CYP P450 enzymes, Organic anion transporting po-
lypeptides (OATPs), P-glycoprotein (P-gp), breast cancer re-
sistance protein (BCRP), and multidrug resistance-associat-
ed protein 2 (MRP2) transporters. Thus, consumption of a
high  chrysin  dose  might  disturb  the  drug's  transportation
and/or biotransformation, which highlights the significance
of  chrysin  dose  adjustment  in  pharmacotherapy  regiments
[84].

An in vivo toxicological study in rats demonstrated that
acute oral toxicity (5000 mg/kg) orally exhibited 40% mor-
tality. In the sub-chronic toxicity experiment, treatment with
chrysin  (1000  mg/kg/day)  orally  indicated  considerable
body weight loss, while liver weight was augmented mean-
ingfully  in  male  rats.  The  lethal  dose  50  (LD50)  value  of
chrysin was found to be 4350 mg/kg while no-observed-ad-
verse-effect-level  (NOAEL)  and  low-observed-adverse-ef-
fect-level  (LOAEL) of  chrysin were established to be 500
and 1000 mg/kg in that order in male and female rats [85].

Whereas a few quantities of flavonoids are attainable by
consuming  a  regular  diet,  intake  of  higher  doses  of  them
may induce toxicity commencement [25, 86]. No adverse ef-
fects have been reported by intake of 400-500 mg of chrysin
per day [87].  The proposed daily dose for consumption of
chrysin is well-thought-out to be 0.5-3 g [25, 44]. Chrysin
exhibited peroxidase-like properties in hepatocytes, which in-
creased chrysin’s oxidation and the formation of toxins that
were related to cytotoxic effects [24]. Topoisomerase II and
myeloperoxidase  correlated  with  toxic  possessions  of
chrysin as well [88]. Boosting levels of human testosterone
were reported following the consumption of chrysin [89]. In-
duction of toxicity in trout liver cells and suppression of the
formation of de novo DNA might be attributed to chrysin in-
take [24].
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5. HEPATOCELLULAR CARCINOMA
Hepatocellular carcinoma (HCC) is one of the most pre-

vailing  cancers  that  can  be  commenced  by  heavy  alco-
holism,  obesity/diabetes,  nonalcoholic  fatty  liver  disease
(NAFLD), NASH, aflatoxin B1, cirrhosis, chronic inflamma-
tion  in  the  liver,  hepatitis  B  virus  (HBV),  and  hepatitis  C
virus  (HCV)  infections  [90-92].  Anciently,  the  liver  has
shown great regenerative potential; whether irregular regen-
eration  aggravates  or  dysplastic  nodules  form,  they  are
named  HCC  [93].

According to epidemiological data, only 15% of HCCs
have been feasibly treated after invasive surgical operations
or organ transplantation. Hence, finding palliative pharma-
cotherapeutic strategies by synthetic/natural medications to
manage this malignancy is very attention-grabbing [94, 95].
FDA-approved  systemic  therapies  for  advanced  HCC  are
comprised  of  multikinase  inhibitors  (sorafenib,  cabozan-
tinib, lenvatinib, and regorafenib), an antagonist of vascular
endothelial growth factor receptor (VEFGR2) (ramucirum-
ab),  programmed cell  death protein 1 (PD-1) pathway tar-
gets (nivolumab and pembrolizumab) [91, 96]. Anti-vascu-
lar endothelial growth factor A/ immunosuppressive ligand
programmed  cell  death-1  ligand  1  (VEGF/PD-L1)  agents
may be an emerging immunotherapeutic target in HCC thera-
py [97].

Abundant mutations have been recognized regarding the
occurrence of  HCC in humans.  The most  important  muta-
tions entailed in HCC are TERT, tumor protein p53 gene (T-
P53),  Catenin  beta-1  (CTNNB1),  axis  inhibition  protein  1
(AXIN1),  AT-rich  interactive  domain-containing  protein
(ARID) 1A, and ARID2 which have impacts on cell-cycle,
telomere maintenance, the Wnt/β-catenin cascade, Janus ki-
nase/signal  transducers  and  activators  of  transcription
(JAK/STAT), reticular activating system /mitogen-activated
protein  kinase/  Rapidly  Accelerated  Fibrosarcoma
(RAS/RAF/ MAPK), Kelch-like ECH-associated protein 1-
nuclear  factor  (Nrf2/Keap1),  and  protein  kinase  B/mam-
malian target of rapamycin (Akt/mTOR) conduits [93, 98].

Nrf2 knockout is associated with hindering liver regener-
ation, increasing lesions related to hepatic fibrosis, aggravat-
ing  hepatic  inflammations,  and  disabling  detoxification  of
hepatic toxins [2]. Nrf2 may play a pivotal part in the angio-
genesis process by motivating the expression of hypoxia-in-
ducible  factor  1  (HIF-1)α-dependent  VEGF  in  neoplastic
cells [99].

Regarding an innovative immunotherapeutic approach in
HCC, the transducing growth factor-beta (TGF-β) pathway
is feasibly anticipated [91]. P53, which is almost eminent as
a tumor suppressor in humans, is the most common gene af-
fected by mutation in tumors and eminently in HCC [100,
101].  HCC  therapy,  by  targeting  the  gut-microbiota-liver
axis, represents feasible opportunities for animals [102].

Iwase  et  al.  perceived  that  after  encountering  Huh-7
HCC cells with chrysin, the activity of matured structures of
sterol-regulating  portion-linking  proteins  has  been  sup-
pressed, and the generation of de novo FAs and cholesterol
has  been  incapacitated  [103].  Sherif  and  colleagues  wit-
nessed the glypican 3/ sulfatase 2 (GPC3/SULF2) axis sup-

pressive potential of chrysin in consort with the downregula-
tion of the expression of lncRNA-AF085935 in HepG2 cells
[104].  Chrysin  expressively  repressed  the  formation  of  a
sphere  and  upregulated  protein  expression  of  SHP-1  in
SMMC-7721 and MHCC97H cells. Moreover, chrysin alle-
viated  p-STAT3  and  Twist1  expression  in  SMMC-7721
cells. Together, chrysin is represented as a feasible nomina-
tion to combat HCC by regulating the SHP-1/STAT3 path-
ways [105]. Chrysin inhibited proliferation by increasing the
expression of SHP-1, leading to a decrease in STAT3 phos-
phorylation and, consequently, decreased the expression of
cyclin D1, myc1, survivin, and c-myc. The migration and in-
vasion were inhibited by the effect of chrysin on SHP-1/S-
TAT3 pathways via a decrease in the MMPs, Rho and Rac
expressions. Chrysin also decreased angiogenesis via block-
age of the SHP-1/STAT3/VEGF pathways (Fig. 5) [105].

Wei et al. discovered that co-treatment of chrysin-sensi-
tized sorafenib viaATP-binding cassette superfamily G mem-
ber  2  (ABCG2)  repression.  Chrysin  provoked  sustained
phosphorylation of ERK1/2 and endorsed MEK1 overexpres-
sion [106]. Chrysin pretreatment was assessed in rats with 2-
acetylaminofluorene  (2-AAF)  and  diethylnitrosamine
(DEN)-induced HCC. Chrysin administration increased the
cytochrome c release, mitochondrial ROS formation, hepato-
cytes’ mitochondria swelling, MMP collapse, and caspase-3
activity [107]. Chrysin treatment N-nitroso-diethylamine-in-
duced HCC rats alleviated α-fetoprotein levels and the carci-
no embryogenic antigen [108]. In HCC cells and xenograft
animals,  chrysin  mitigated  mitochondrial  hexokinase  2
(HK-2) linked with voltage-dependent anion-selective chan-
nel 1 (VDAC-1), caused mitochondrial Bax transformation,
and induced apoptotic cell  death [109].  Chrysin decreased
the  survival  of  HCC by  increasing  the  expression  of  P53,
p53 upregulated modulator of apoptosis (PUMA), and phor-
bol-12-myristate-13-acetate-induced  protein  1  (PMAIP1)
that  stimulated  the  cytochrome c/caspase  9/caspase  3  cas-
cades leading to apoptosis (Fig. 6) [110, 111].

Chrysin sensitized the programmed cell fate induced by
cisplatin and camptothecin in HepG2. Chrysin also downreg-
ulated, B-cell lymphoma-extra large (Bcl-xL), X-linked in-
hibitor of apoptosis protein (xIAP), functional lumen imag-
ing probe (FLIP), and activated caspase-3 and poly-ADP ri-
bose  polymerase  (PARP)  proteins  [112].  Oliveira  and  co-
workers found chrysin stopped the SubG0 phase in the Hep-
G2 cell cycle [113]. Chrysin upgraded TNF-related apopto-
sis-inducing  ligand  (TRAIL)-mediated  programmed  cell
death  in  HepG2  [114].  Gao  and  coworkers  clarified  that
chrysin impeded the expression of Nrf2 and its downstream
genes including MRP5, HO-1, and Aldo-keto reductase fami-
ly 1 member B10 (AKR1B10) by quenching ERK and phos-
phatidylinositol-3 kinase (PI3K)-Akt pathway and eventual-
ly  led  to  the  repeal  of  doxorubicin-resistant  phenotype  in
BEL-7402/ADM cells [115]. Chrysin increased caspase-3 ac-
tivity, inhibited VEGF creation, and inhibited angiogenesis
in H22 ascitic HCC cells and xenograft mice [116]. Chrysin
accelerated the apoptosis induced by TNF-α, the downregula-
tion of apoptosis inhibitory protein cFLIP-L in HepG2 cells.
Chrysin elevated the activation of caspase-3, caspase-8, and
PARP as well [117].
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Fig. (5). Effects of chrysin on cellular pathways and targets related to development and invasion of HCC. HCC: Hepatocellular Carcinoma;
JAK: Janus kinase; STAT: JAK-signal transducer and activator of transcription; SULF2: Sulfatase 2; GPC3: Glypican 3. (A higher resolu-
tion / colour version of this figure is available in the electronic copy of the article).

Fig. (6). Effects of chrysin on cellular pathways and targets related to development and invasion of HCC. HCC: Hepatocellular Carcinoma;
Bcl-2: B-cell lymphoma 2; VDAC-1: Voltage-dependent anion-selective channel 1; HK2: Hexokinase 2. (A higher resolution / colour ver-
sion of this figure is available in the electronic copy of the article).
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Fig. (7). Effects of chrysin on cellular pathways and targets related to development and invasion of HCC. Chryisn can decrease HCC survi-
val  through  induction  apoptosis,  autophagy  andinhibition  oxidative  stress.Chrysin  can  induce  autophagy  by  inhibiting  PI3K/Akt/m-
TOR/SK6/Beclin-1/LC1 signaling pathway.the apoptosis can be activaited by chrysin treatment through inhibiting PI3K/AKt/BAD/BCL-XL
signaling pathway. Chrysin can suppress cellprolifration through inhibiting PI3K/ RAS/RAF/MEK1/2/ERK1/2 and PI3K/ Akt/ NF-κB/Nrf2
signaling pathways. HCC: Hepatocellular Carcinoma; HGF: hepatocyte growth factor; c-Met: tyrosine-protein kinase Met or hepatocyte
growth factor receptor (HGFR); EGFR: epidermal growth factor receptor; TGF-α: Transforming growth factor-alpha; IGF-II: insulin-like
growth factor; IGFR: insulin-like growth factor receptor; PI3K: phosphatidylinositol-3 kinase; PIP3: phosphatidylinositol-3,4,5-triphosphate;
NF-κB: Nuclear factor-kappa (B). mTOR: mechanistic target of rapamycin; Nrf2: nuclear factor erythroid 2-related factor 2; ERK: extracellu-
lar regulated MAP kinase. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

Sun  and  coworkers  verified  overexpression  of  glu-
cose-regulating protein 78 (GRP78), spliced X-box binding
protein-1(XBP-1), and phosphorylation of eukaryotic initia-
tion factor 2 (eIF2-α) by chrysin. Besides, chrysin positively
influenced  the  cleavage  of  caspase-7  and  PARP  [118].
Chrysin attenuated COX-2, NF-kB p65 expression, Bcl-xL,
and  β-arrestin  amounts,  although  it  increased  mRNA  and
protein levels of p53, Bax, and caspase-3 in DEN-induced
HCC [119]. Smith et al. indicated that chrysin’s metabolic
constancy would possibly make limitations regarding its ca-
pacity  to  persuade  UDP-glucuronosyltransferase  1
(UGT1A1) in vivo [120]. Uhl et al. found that augmenting
the activation of Uridine Diphosphoglucuronosyltransferase
(UDGPT)  and/or  inhibition  of  sulfotransferase  in  2-ami-
no-1-methyl-6-phenylimidazo[4,5-]pyridine  (PhIP)-HepG2
might be correlated to the effectiveness of chrysin in hepato-
ma [121]. Wang and coworkers observed that chrysin nano-
suspension  could  inhibit  the  proliferation  of  HepG2  cells
and also represented a promising strategy to modify the de-
livery of chrysin in cancer therapy (Fig. 7) [122]. Table 2 in-
dicates all studies on the protective effect of chrysin against
hepatocarcinoma.

6. DRUGS/TOXINS-INDUCED LIVER DAMAGES
Liver damage caused afterward drug consumption is clas-

sified into three groups; (1) direct, (2) idiosyncratic, (3) indi-
rect [123].

The protective effects of chrysin against various toxins
and drugs that directly induce liver damage are discussed as
the below content (Fig. 8).

6.1.  Cyclophosphamide,  Doxorubicin,  Cisplatin,  and
Methotrexate

Cyclophosphamide is an alkylating agent from the oxaza-
phosphorine family which has been useful for the pharma-
cotherapeutic management of several epithelial tumors, such
as ovarian, breast, and small-cell lung carcinomas and hema-
tological carcinomas, such as lymphoma and leukemia. Nev-
ertheless,  its  usage  is  restricted  because  of  its  adverse  ef-
fects, mostly hepatoxicity and nephrotoxicity. Cytotoxicity
induced hepatorenal toxicity in rats. Treatment with chrysin
caused alleviation in hepatic  enzymes alanine aminotrans-
ferase (ALT), aspartate aminotransferase (AST), and alka-
line phosphatase (ALP). Chrysin decreased urea and creati-
nine as well. Chrysin attenuated MDA and increased super-
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oxide dismutase (SOD), catalase (CAT), glutathione (GSH),
and  glutathione  peroxidase  (GPx)  in  hepatic  and  renal
serum.  Inflammatory  parameters  COX-2,  inducible  nitric
oxide  synthase  (iNOS),  NF-κB,  IL-1β,  TNF-α,  and  IL-6

were abridged. Additionally, microtubule-associated protein
1 light chain 3 beta (LC3B) was reduced in chrysin-treated
rats. Chrysin decreased degeneration of hepatocytes, hepato-
cytes’ necrosis, steatohepatitis, hyperemia in sinusoids and
vessels, and Bax and increased Bcl-2 expressions [124].

Table 2. The protective effect of chrysin in hepatocellular carcinoma.

Experimental Model Dose and Duration
of Treatment

Molecular Mechanism References

Huh-7 cells 100 µM
24 h

Decreased the expression of SREBP target genes via the degradation of SREBPs
mature forms

[103]

HepG2 15, 30, and 60
μg/mL
24/48 h

Suppressed the GPC3/SULF2 axis along with the downregulation of lncR-
NA-AF085935 expression

[104]

SMMC-7721 and MHCC97H cells 10 Mm/L Suppressed SHP-1/STAT3 signaling axis [105]
Hep3B and HepG2 25 μM

48 h
Sustained phosphorylation of ERK1/2 [106]

hepatocellular carcinoma (HCC) rat
model

10, 20, and 40 µM Increased in mitochondrial reactive oxygen species (ROS) generation, Collapsed
the mitochondrial membrane potential (MMP),

Swelled mitochondria, and cytochrome c release

[107]

N-nitrosodiethylamine-induced hepato-
cellular carcinoma in rats

50 mg/kg
16 weeks

Blocked oxidative stress indices, Decreased the expression of PCNA protein [108]

HCC cell line
HepG2, Hep3B, Huh-7, HCC-LM3,

Bel-7402 and SMMC-7721

30 and 60 µM
24, 48 and 72 h.

Declined HK-2 combined with VDAC-1 on mitochondria resulted in the transfer
of Bax from cytoplasm to mitochondria and induction of cell apoptosis

[109]

HCC cell xenograft model 30 mg/kg Decreased HK-2 expression [109]
HepG2 and QGY7701 cells 0, 10, 15, 20, 25, 30,

40 and 50 µg/ml
24h

Regulated the p53/Bcl-2/caspase-9 signaling pathway [110]

HepG2 cells. pretreated with
chrysin (0, 10,20

and 40 µM) for 2 h

Increased the phosphorylation and accumulation of p53 through activating
ERK1/2 overexpression of the pro-apoptotic proteins Bax and DR5 and the inhibi-

tion of the anti-apoptotic protein Bcl-2

[111]

HepG2 Pretreated with
chrysin for 2 h

Sensitized the apoptosis induced by cisplatin and camptothecin [112]

HepG2 cells 1 to 15 μM
48h

Stopped the SubG0 phase [113]

HepG2 cells 24 h Enhanced TRAIL-mediated apoptosis in hepatocellular carcinoma cell line
HepG2

[114]

BEL-7402 cells Ptreated with 10 lM
of chrysin prior to

48 h incubation

Reduced anticancer drug resistance by down-regulating Nrf2 signaling pathway [115]

xenograft mice 15, 30, 60 mg/kg for
10 days

Increased caspase-3 activity, inhibited VEGF creation, and inhibited angiogenesis [116]

HepG2 cells 10, 20, and 40
μmol/L for 2 h

Accelerated the apoptosis induced by TNF-α, the down-regulation of apoptosis in-
hibitory protein cFLIP-L, which is regulated by NF-κB and augmented by TNF-α

[117]

HepG2
SMMC-7721

2.5 to 40 μM
48 h

Inhibited hepatoma cells growth and induces apoptosis in a dose-dependent mann-
er.

[118]

DEN-induced early hepatocarcinogene-
sis in rats

250 mg/kg
three times weekly

for 3 weeks

Activated p53-mediated apoptosis during early hepatocarcinogenesis. [119]

HepG2
Human hepatocytes

1-50 µM
72h

Induced UGT1A1 expression was minimal in human hepatocytes treated with
chrysin compared with that in HepG2 cells

[120]

HepG2 10 and100 µg/ml Activated UDGPT and/or inhibition of sulfotransferase in 2-ami-
no-1-methyl-6-phenylimidazo[4,5-]pyridine (PhIP)-HepG2

[121]

HepG2 cells Chrysin-NS 0, 0.1,
1, 10 and 100

μg/mL

Inhibited the proliferation [122]
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Fig. (8). Molecular pathways involved in protective effects of chrysin against drugs/toxins-induced hepatotoxicity. (A higher resolution /
colour version of this figure is available in the electronic copy of the article).

A  model  of  doxorubicin-induced  hepatorenal  toxicity
was studied in rodents by Rashid and coworkers. Chrysin ad-
ministration diminished the toxicity of biochemical markers
of the serum and augmented antioxidant protection enzyme
levels, as stated in cyclophosphamide hepatotoxicity [125].

The  effectiveness  of  chrysin  in  cisplatin-administered
rats was investigated. Chrysin alleviated lipid peroxidation
(LPO),  xanthine  oxidase  (XO)  activity,  glutathione  deple-
tion, and elevated enzymatic antioxidants CAT, GSH, glu-
cose-6-phosphate  dehydrogenase  (G6PD),  SOD, GPx,  and
phase-II detoxifying quinone reductase and glutathione S--
transferase (GST) activities. Furthermore, chrysin decreased
COX-2 and iNOS expression and NF-κB and TNF-α levels
[126].

Chrysin  protected methotrexate-induced hepatotoxicity
in rats through alleviation of ALT, AST, lactate dehydroge-
nase (LDH) activity, and malondialdehyde (MDA) content
in  addition to  augmentation of  GPx,  glutathione reductase
(GR), SOD, CAT activities, and GST content. Chrysin also
reduced Bax, p53, and cleaved caspase-3 [127].

6.2. Paracetamol
Paracetamol (acetaminophen) is the most frequently ap-

plied antipyretic and analgesic medication universally. Over-
dose or therapeutic doses of paracetamol cause hepatotoxici-
ty and nephrotoxicity. Glucuronidation and sulfate conjuga-
tion are the ways of paracetamol metabolization. It  is also
metabolized  by  the  cytochrome-P450  system  (CYP1A2,

CYP 3A4, and CYP2E1), causing N-acetyl-p-benzoquinone
imine (NAPQI) formation. Administration of chrysin less-
ened  the  NAPQI  formation  and  protected  the  liver  in  rats
[128,  129].  Chrysin  treatment  mitigated  caspase-3  and
LC3B levels, respectively, related to apoptosis and autopha-
gy in the rat  model of paracetamol-induced hepatotoxicity
[130].

6.3. Alcohol
Alcohol is the chief reason for avoidable liver diseases

universally. Using alcohol is connected with the incidence
and  progression  of  steatosis,  alcoholic  steatohepatitis,  ad-
vanced liver fibrosis, cirrhosis, HBV, HCV, and HCC. Alco-
hol  as  a  liver  toxin leads to  increased iron deposits,  ROS,
LPS,  cytokines,  bile  acids,  dysbiosis,  hepatocyte  damage,
lipid peroxidation, steatosis, and fibrosis progression [131,
132].

Sathiavelu et al. assessed the administration of chrysin
to rats with ethanol-induced hepatotoxicity. Chrysin consid-
erably alleviated lipid hydroperoxides, thiobarbituric acid re-
active  substance  (TBARS),  and  conjugated  dienes  and
suggestively augmented vitamin C and vitamin E, GPx, GR,
GST, SOD, and CAT activities, and GSH levels [133]. Tahir
and coworkers claimed that the administration of chrysin pre-
vented liver injury induced by chronic ethanol consumption
via  inhibition  of  antidiuretic  hormone  (ADH),  CYP  2E1,
XO, and CAT activities [134].



A Review on Hepatoprotective Effect of Chrysin Current Diabetes Reviews, XXXX, Vol. XX    13

6.4. Carbon Tetrachloride (CCl4)

Liver fibrosis represents an overaccumulation of the ex-
tracellular matrix (ECM). TGF-β, interleukins, chemokines,
NF-κB, PPAR-α and -γ, VEGF, platelet-derived growth fac-
tor (PDGF), connective tissue growth factor (CTGF), leptin,
tissue  inhibitors  of  metalloproteinases  (TIMPs),  MMPs,
ROS, MCP-1, are believed to form tight junctions between
NASH and fibrogenesis [135]. IL-22 has a putative profibro-
genic function, which is observed in vivo via the promotion
of TGF-β signaling in the condition of a p38/MAPK-reliant
mechanism of action [136, 137]. Collagen I is the most plen-
tiful protein in the fibrotic liver. TIMPs are MMP blockers
that could lead to cleavage of ECM associated with liver fi-
brosis [138].

Two studies of CCl4-induced liver and kidney injuries in
rats  were  evaluated.  Pretreatment  with  chrysin  reduced
ALT,  AST,  creatinine,  TNF-α,  and  MDA  levels,  and  in-
creased  SOD  and  GSH  levels.  These  consequences  con-
firmed  that  chrysin  provided  antioxidant  activity  against
CCl4-induced hepatic damage [139, 140]. Beyrami and co-
workers found that chrysin-loaded nanoliposomes enhanced
cadmium-induced hepatotoxicity in mice through the amelio-
ration  of  iNOS,  CAT,  SOD,  and  GPx.  Moreover,  chrys-
in-loaded nanoliposomes modulated the liver enzymes and
improved the feed intake and body weight gain [141].

CCl4-induced acute liver damage in mice was investigat-
ed in a recent study. Chrysin administration mitigated TN-
F-α  and  alpha-smooth  muscle  actin  (α-SMA)  expression
[142].

Ciceu  et  al.  demonstrated  that  complexation  chrysin
with  random methyl-β-cyclodextrin  and  (2-hydroxypropy-
l)-β-cyclodextrin  downregulated  NF-κB,  TNF-α,  and  IL-6
gene expression suppressed the activation of hepatic stellate
cells, modulated ECM by TIMP-1/MMPs balance, modulat-
ed profibrotic and antifibrotic miRNAs expression, downreg-
ulated TGF-β1/Smad signaling pathway, mitigated deposi-
tion and ultrastructural alterations in CCl4-induced liver fi-
brosis  in  mice  [143].  CCl4-induced  liver  fibrosis  in  mice
[144]. Chrysin exerted suitable efficacy to repress CCl4-in-
duced liver fibrosis by inhibition of hepatic stellate cell acti-
vation and proliferation via the TGF-β1/Smad signaling path-
way [145]. Chrysin administration downregulated collagen I
and restored TIMP-1/MMP balance [144]

6.5. Tert-butyl Hydroperoxide (tBHP)
Huang and coworkers studied tert-butyl hydroperoxide

(tBHP)-induced oxidative stress in rat primary hepatocytes.
Chrysin  upregulated  the  protein  expression  of  HO-1,  gan-
glion  cell  layer  (GCL),  glutamate-cysteine  ligase  catalytic
(GCLC),  and  glutamate  cysteine  ligase  modifier  (GCLM)
and increased the intracellular GSH content and GSH/GSSG
ratio. Moreover, chrysin attenuated ROS production and acti-
vated ERK2/Nrf2/ARE signaling pathways in rat primary he-
patocytes [146].

6.6. Thioacetamide
Hepatic encephalopathy is a severe neuropsychiatric con-

dition characterized by progressive motor disturbances and
declining cognitive function owing to acute or chronic hepat-
ic failure. It  is perceived that liver failure has an enduring
connection with systemic inflammation. Hence, an increase
in brain-measuring levels of TNF-α, IL-1β, and IL-6 follow-
ing intake of hepato-toxins is the leading cause of hepatic en-
cephalopathy. Targeting this liver-brain axis, which includes
systemic  pro-inflammatory  substances,  monocyte  recruit-
ment, the gathering of ammonia, manganese, and lactate in
the brain, and alteration of blood-brain barrier permeability,
probably  encourages  the  process  of  pharmaceutical  care
[147].  Moreover,  targeting  the  gut  microbiome  is  another
promising approach in hepatic encephalopathy treatment. Fe-
cal microbiota transplantation, glycerol phenylbutyrate, L-or-
nithine, L-aspartate, polyethylene glycol, and probiotics are
novel agents with limited positive evidence for the treatment
of hepatic encephalopathy. Probiotics, the same as chrysin,
ameliorated neuroinflammatory markers as the aim of thera-
py [148].

Administration of chrysin in rats toxified with thioace-
tamide  resulted  in  dampening  serum  ammonia,  AST,  and
ALT.  It  also  mitigated  MDA,  elevated  GSH,  and  reduced
brain  contents  of  NF-κB,  TNF-α,  and  IL-6.  Moreover,
chrysin administration reduced the expressions of the TLR-4
gene and caspase-3 protein [149].

7.  HEPATIC  STEATOHEPATITIS  AND  NONALCO-
HOLIC FATTY LIVER DISEASE (NAFLD)

Nonalcoholic steatohepatitis is an exceedingly prevalent
liver disorder putatively connected with metabolic syndrome
and  obesity.  Recent  findings  have  displayed  that  NAFLD
correlates with the progression of insulin resistance, type II
diabetes, hypertriglyceridemia, hypertension, metabolic syn-
drome, hepatic fibrosis and cirrhosis, and even hepatocellu-
lar carcinoma. Hepatocyte injury/fate and numerous genet-
ic/epigenetic/environmental  factors  are  attributed  to  the
pathogenesis  of  NAFLD.

The presence of type 2 diabetes (T2D) significantly in-
creases the chances of developing NASH and fibrosis com-
pared  to  NAFLD  without  T2D.  The  relationship  between
NAFLD and T2D is not as straightforward, and these condi-
tions have multiple interactions on different molecular lev-
els,  which  we  tried  to  summarize  in  our  text.  Evidence
suggests that NAFLD can precede T2D, so perhaps, by effec-
tively managing NAFLD, we could modify the risk for T2D
development in the future.

During T2D, elevation of  lipogenesis  and reduction of
fatty acid oxidation and triglyceride secretion via very low--
density lipoprotein (VLDL) is found in the liver. In addition,
peripheral insulin resistance leads to the release of fatty acid
from adipose tissue and an increase in the hepatic uptake of
fatty acids (FFAs) [150]. Therefore, NAFLD and T2D usual-
ly coexist. Following metabolic stress, mild liver fat storage
initiates a decrease in lipotoxicity. Inflammatory signaling
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pathways  are  induced  in  hepatocytes  with  high  free  fatty
acid accumulation. In this condition, the NAFLD is stimulat-
ed  to  an  advanced stage  including cirrhosis  and HCC,  via
several molecular mechanisms, including PI3K/ phosphatase
and  tensin  homolog  deleted  on  chromosome  10
(PTEN)/Akt,  JAK/STAT,  mTOR,  4-hydroxynonenal  (4H-
NE), nuclear respiratory factor-1 (NRF-1) and NF-kB [150].
The  high  influx  of  FFAs  liver  cells  in  diabetic  conditions
causes lipotoxicity and induces oxidative stress and inflam-
mation in the liver, leading to the activation of hepatic stel-
late  cells  that  promotes  fibrosis  and  the  development  of
HCC [150]. It seems that changes in gut microbiota (dysbio-
sis), insulin resistance, lipotoxicity, overnutrition, bile acid
metabolism, oxidative stress, apoptosis, autophagy, inflam-
mation, nuclear receptors, innate immunity, and fibrogenesis
might  be  targeted  in  the  treatment  of  NASH  [150-156].
Lifestyle modifications and bariatric surgery are regarded as
non-pharmaceutical  prudence  for  the  management  of
NASH.  Antioxidant  (vitamin  E),  galectin  3,  bovine  milk
colostrum, fibroblast growth factor (FGF)-19-like substance,
FGF-21,  peroxisome  proliferator-activated  receptors  (P-
PAR)-γ agonist (pioglitazone), agonists of PPAR-α and -δ,
farnesoid X receptor (FXR) agonist (obeticholic acid), antag-
onists of chemokine receptor-2 and 5, the inhibitor of lysyl
oxidase-like 2, and the inhibitor of stress-activated kinase-1
are  pharmacotherapies  in  phase  2/3  of  clinical  trials  for
NAFLD [157-159]. Jointly, the best therapeutic attitude for
NAFLD should be multitargeted and holistic [160].

Methionine  and  choline  deficiency  (MCD)  caused
NAFLD in mice, and H2O2-induced damage in HepG2 cells
was assessed. Treatment with chrysin caused a reduction in
liver  triacylglycerol.  Furthermore,  attenuation  in  dihy-
droethidium (DHE) fluorescence, MDA, and an increase in
SOD, CAT mRNA, and protein expressions were observed.
Chrysin augmented hepatic VLDL secretion by apoprotein
(Apo)B upregulation and attenuated hepatocyte Nuclear Fac-
tor 4 (HNF4)-α at ser78 in NAFLD mice. Besides, chrysin
inverted the consequence of oxidative damage, which was
correlated to a decrease in expression of ApoB and secretion
of VLDL in vitro. Additionally, chrysin lessened protein ki-
nase  C  (PKC)  performance  in  MCD  mice  liver  [161].
Chrysin administration attenuated serum fasting glucose and
improved insulin resistance, as well as decreased liver en-
zymes  and  improved  dyslipidemia  in  rats  fed  by  HFD.
Chrysin demonstrated antioxidant properties, abridged hepat-
ic concentrations of carbonyl, advanced glycation end prod-
ucts (AGEs), IL-6, TNF-α, and collagen. Chrysin considerab-
ly  alleviated  the  hepatic  sterol  regulatory  element-binding
protein (SREBP)-1c gene expression and augmented its at-
tributable PPAR-α [162].

CONCLUSION
Chrysin, a promising bioflavonoid, is consumed for vari-

ous therapeutic purposes. Regarding data provided in this re-
view study, the bioavailability of chrysin can be enhanced
by nanocarriers and its activity can be promoted by the syn-
thesis of more efficient derivatives. Chrysin showed emerg-
ing hepatoprotective properties in preclinical studies through

scavenging free radicals, anti-inflammatory responses, induc-
ing apoptotic cell death, regulation of enzymes and antioxi-
dants, numerous transcriptional signaling pathways, and mo-
dulation of biochemical changes. Findings and discussion of
our study demonstrated that chrysin possesses great hepato-
protective properties to combat hepatotoxicity, liver fibrosis,
NAFLD, hepatic encephalopathy, and hepatocellular carcino-
ma by evidence of preclinical studies. The protective effects
of chrysin against liver cancer are mostly related to its ef-
fects  on  the  SHP-1/Stat3,  Sulf2/GPC3/  wingless  and
Int-1(Wnt)/B-Catenin, and P53/PUMA or phorbol-12-myris-
tate-13-acetate-induced protein 1 (PMAIP1) /Bcl2/Bax/cy-
tochrome c/caspase9/caspase3. In addition, its inhibitory ef-
fects on Nrf2, Erk1/2 and PI3K lead to an increase in oxida-
tive stress in tumor cells, which leads to a decrease in tumor
cell survival and proliferation. Chrysin can mostly amelio-
rate the hepatotoxicity induced by drugs and chemicals via
inhibition of NF-κB, ROS, p53, and LC3B, as well as its sti-
mulatory effects on the Nrfs signaling pathways. In addition,
chrysin  is  able  to  modulate  fibrogenesis  induced by drugs
and chemicals via a decrease in the α-SMA, ECM, collagen
1, and TGF-B1/Smad. Despite all the worthwhile characteris-
tics of chrysin for liver protection, evaluation of its promis-
ing  effects  in  clinical  trials  is  highly  recommended  for
prospects.

AUTHOR'S INSIGHT ON THE TOPIC
To the best of our knowledge, phytochemicals, nutraceu-

ticals, and herbal medicines have feasible therapeutic effects
in prevailing liver disorders.

With regard to the promising hepatoprotective impact of
chysin in hepatocellular carcinoma, fatty liver diseases, and
hepatotoxicity in preclinical studies, this grateful nutraceuti-
cal can be evaluated via efficient clinical trials.

It’s possibly evident that the application of nanotechnolo-
gy-based drug delivery  systems can assist  in  the  enhance-
ment of the bioavailability of chrysin. Somehow, phytoso-
mal formulations are of high interest due to the synergistic
efficacy observed by the presence of phosphatidylcholine in
the preparation.

Besides the previous recommendations in the targeted is-
sue, pharmacovigilance and post-marketing adverse drug re-
actions should be assessed in future investigations.

MAIN POINTS
• Chrysin has protective properties against hepatotoxici-

ty, liver fibrosis, steatosis, and hepatocellular carcinoma.
• The most hepatoprotective mechanisms of chrysin in-

clude the potential for regulating enzymes, scavenging free
radicals, antioxidant response, modulating the synthesis of
proinflammatory  and  profibrotic  cytokines,  and  inducing
apoptosis.

• Chrysin may be a valuable nutraceutical agent that can
be used in novel drug delivery systems.
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