Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Diabetes, regarded as a prevalent metabolic disorder with multifactorial origins, contributes to a myriad of global complications. These cumulate an elevated susceptibility to kidney failure, nerve impairment, blindness, atherosclerosis, heart ailments, and even strokes. Recent investigations underscore the diverse roles of associated biomarkers in diabetes progression. Among these are biomarkers for diabetes mellitus such as DPP-4, PPAR-ϒ, SGLT-2, α-amylase, and α-glucosidase, which are linked to the onset of diabetes and its related problems. As a result of undesirable adverse consequences linked to extant synthetic antidiabetic medications, research attention is increasingly directed towards formulating natural antidiabetic drugs, aiming for enhanced efficacy and reduced complications. Cyanobacteria stand out as a pivotal repository of natural bioactive metabolites extensively harnessed for pharmaceutical and nutraceutical development. The potent bioactive compounds sourced from cyanobacteria hold substantial promise, kindling high expectations in scientific research and presenting vast prospects for drug discovery and advancement. Some of these bioactive compounds have demonstrated impressive effectiveness, displaying successful applications across various phases of clinical trials. This review strives to provide a more precise understanding of diabetes mellitus, encompassing its clinical manifestation, epidemiological data, complications, and prevailing treatment modalities. The objective of this review is to contribute researchers and readers an enhanced and accurate understanding of diabetes mellitus by covering its clinical manifestation, epidemiological evidence, difficulties, and prevailing therapeutics possibilities.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998307764240909114007
2024-11-29
2025-10-31
Loading full text...

Full text loading...

References

  1. KootiW. FarokhipourM. AsadzadehZ. Ashtary-LarkyD. Asadi-SamaniM. The role of medicinal plants in the treatment of diabetes: A systematic review.Electron. Physician2016811832184210.19082/1832 26955456
    [Google Scholar]
  2. IsmailM.Y. Clinical evaluation of antidiabetic activity of Trigonella seeds and Aegle marmelos Leaves.World Appl. Sci. J.200971012311234
    [Google Scholar]
  3. AroraS. OjhaS.K. VohoraD. Characterisation of Streptozotocin induced diabetes mellitus in Swiss Albino mice.Glob. J. Pharmacol.2009328184
    [Google Scholar]
  4. JothivelN. PonnusamyS.P. AppachiM. Antidiabetic activities of methanol leaf extract of Costus pictus D. Don in alloxan-induced diabetic rats.J. Health Sci.200753665566310.1248/jhs.53.655
    [Google Scholar]
  5. BastakiS.S. Diabetes mellitus and its treatment.Int. J. Diabetes Metab.200513311113410.1159/000497580
    [Google Scholar]
  6. DixitV.P. JoshiS.C. Antiatherosclerotic effects of alfalfa meal ingestion in chicks: A biochemical evaluation.Indian J. Physiol. Pharmacol.19852914750 4055016
    [Google Scholar]
  7. EshratM.H. Effect of Cocciniaindica (L.) and Abromaaugusta (L.) on glycemia, lipid profile and on indicators of end-organ damage in streptozotocin induced diabetic rats.Indian J. Clin. Biochem.2003182546310.1007/BF02867368 23105393
    [Google Scholar]
  8. GroverN. BafnaP.A. RanaA.C. Diabetes and methods to induce experimental diabetes.Int. J. Pharm. Biol. Sci.201114414419
    [Google Scholar]
  9. NasabS.B. HomaeiA. PletschkeB.I. Salinas-SalazarC. Castillo-ZacariasC. Parra-SaldívarR. Marine resources effective in controlling and treating diabetes and its associated complications.Process Biochem.20209231334210.1016/j.procbio.2020.01.024
    [Google Scholar]
  10. Abo-ShadyA.M. GhedaS.F. IsmailG.A. CotasJ. PereiraL. Abdel-KarimO.H. Antioxidant and antidiabetic activity of algae.Life (Basel)202313246010.3390/life13020460 36836817
    [Google Scholar]
  11. ScharpD.W. MarchettiP. Encapsulated islets for diabetes therapy: History, current progress, and critical issues requiring solution.Adv. Drug Deliv. Rev.201467-68357310.1016/j.addr.2013.07.018 23916992
    [Google Scholar]
  12. JunH.S. YoonJ.W. A new look at viruses in type 1 diabetes.Diabetes Metab. Res. Rev.200319183110.1002/dmrr.337 12592641
    [Google Scholar]
  13. WassmuthR. LernmarkÅ. The genetics of susceptibility to diabetes.Clin. Immunol. Immunopathol.198953335839910.1016/0090‑1229(89)90002‑0 2680191
    [Google Scholar]
  14. World Health OrganizationDiabetes mellitus.Report of a WHO Study Group World Health Organ Tech Rep Ser1985727113
    [Google Scholar]
  15. American Diabetes Association2014
    [Google Scholar]
  16. AlbertiK.G.M.M. ZimmetP.Z. The WHO Consultation. Definition, diagnosis and classification of diabetes mellitus and its complications.Diabet. Med.19981553955310.1002/(SICI)1096‑9136(199807)15:7<539::AID‑DIA668>3.0.CO;2‑S 9686693
    [Google Scholar]
  17. Leonardo JacobS. Pharmacology (The National Medical Series for Independent Study).Hong Kong, LondonWilliams & Wilkins1987
    [Google Scholar]
  18. BloomA. HayesT.M. GambleD.R. Register of newly diagnosed diabetic children.BMJ19753598358058310.1136/bmj.3.5983.580 1174829
    [Google Scholar]
  19. KumarC.R. Basic Pathology.5th edBangalorePrism PVT1992569587
    [Google Scholar]
  20. WilsonR. Anatomy and Pathophysiology in Health and Illness.11th edLondon, United KingdomChurchill Livingstone Elsevier2010227229
    [Google Scholar]
  21. TripathiK.D. Essentials Medicals Pharmacology.7th edNew Delhi (India)Jaypee Brothers Medical Publisher2013258281
    [Google Scholar]
  22. DyckP.J. KratzK.M. KarnesJ.L. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population‐based cohort.Neurology199343481782410.1212/WNL.43.4.817 8469345
    [Google Scholar]
  23. HarrisM.I. Undiagnosed NIDDM: Clinical and public health issues.Diabetes Care199316464265210.2337/diacare.16.4.642 8462395
    [Google Scholar]
  24. NguyenN.D.T. LeL.T. Targeted proteins for diabetes drug design.Adv Nat Sci Nanosci Nanotechnol2012319
    [Google Scholar]
  25. LiuQ. ChenL. HuL. GuoY. ShenX. Small molecules from natural sources, targeting signaling pathways in diabetes.Biochim. Biophys. Acta. Gene Regul. Mech.2010179910-1285486510.1016/j.bbagrm.2010.06.004 20601278
    [Google Scholar]
  26. PatilS.R. ChavanA.B. PatelA.M. ChavanP.D. BhopaleJ.V. A review on diabetes mellitus its types, pathophysiology, epidermiology and its global burden.J Res Appl Sci Biotechnol202324737910.55544/jrasb.2.4.9
    [Google Scholar]
  27. HuF.B. Globalization of Diabetes.Diabetes Care20113461249125710.2337/dc11‑0442 21617109
    [Google Scholar]
  28. LeyS.H. HamdyO. MohanV. HuF.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies.Lancet201438399331999200710.1016/S0140‑6736(14)60613‑9 24910231
    [Google Scholar]
  29. BarnettA.H. EffC. LeslieR.D.G. PykeD.A. Diabetes in identical twins.Diabetologia1981202879310.1007/BF00262007 7193616
    [Google Scholar]
  30. WangY.C. McPhersonK. MarshT. GortmakerS.L. BrownM. Health and economic burden of the projected obesity trends in the USA and the UK.Lancet2011378979381582510.1016/S0140‑6736(11)60814‑3 21872750
    [Google Scholar]
  31. DeFronzoR.A. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: The missing links. The Claude Bernard Lecture 2009.Diabetologia20105371270128710.1007/s00125‑010‑1684‑1 20361178
    [Google Scholar]
  32. HemminkiK. LiX. SundquistK. SundquistJ. Familial risks for type 2 diabetes in Sweden.Diabetes Care201033229329710.2337/dc09‑0947 19903751
    [Google Scholar]
  33. GroopL. ForsblomC. LehtovirtaM. Metabolic consequences of a family history of NIDDM (the Botnia study): Evidence for sex-specific parental effects.Diabetes199645111585159310.2337/diab.45.11.1585 8866565
    [Google Scholar]
  34. LyssenkoV. AlmgrenP. AnevskiD. Predictors of and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes.Diabetes200554116617410.2337/diabetes.54.1.166 15616025
    [Google Scholar]
  35. GrantS.F.A. ThorleifssonG. ReynisdottirI. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes.Nat. Genet.200638332032310.1038/ng1732 16415884
    [Google Scholar]
  36. LyssenkoV. LupiR. MarchettiP. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes.J. Clin. Invest.200711782155216310.1172/JCI30706 17671651
    [Google Scholar]
  37. SladekR. RocheleauG. RungJ. A genome-wide association study identifies novel risk loci for type 2 diabetes.Nature2007445713088188510.1038/nature05616 17293876
    [Google Scholar]
  38. SaxenaR. VoightB.F. LyssenkoV. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels.Science200731658291331133610.1126/science.1142358 17463246
    [Google Scholar]
  39. MorrisA.P. VoightB.F. TeslovichT.M. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes.Nat. Genet.201244998199010.1038/ng.2383 22885922
    [Google Scholar]
  40. FlannickJ. ThorleifssonG. BeerN.L. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.Nat. Genet.201446435736310.1038/ng.2915 24584071
    [Google Scholar]
  41. LyssenkoV. NagornyC.L.F. ErdosM.R. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion.Nat. Genet.2009411828810.1038/ng.288 19060908
    [Google Scholar]
  42. TangY. AxelssonA.S. SpégelP. Genotype-based treatment of type 2 diabetes with an α 2A -adrenergic receptor antagonist.Sci. Transl. Med.20146257257ra13910.1126/scitranslmed.3009934 25298321
    [Google Scholar]
  43. De JesusD.F. KulkarniR.N. Epigenetic modifiers of islet function and mass.Trends Endocrinol. Metab.2014251262863610.1016/j.tem.2014.08.006 25246382
    [Google Scholar]
  44. ÖzcanS. Minireview: MicroRNA function in pancreatic β cells.Mol. Endocrinol.201428121922193310.1210/me.2014‑1306 25396300
    [Google Scholar]
  45. HalbanP.A. PolonskyK.S. BowdenD.W. β-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment.J. Clin. Endocrinol. Metab.20149961983199210.1210/jc.2014‑1425 24712577
    [Google Scholar]
  46. FerranniniE. MariA. β-Cell function in type 2 diabetes.Metabolism201463101217122710.1016/j.metabol.2014.05.012 25070616
    [Google Scholar]
  47. ArkanM.C. HevenerA.L. GretenF.R. IKK-β links inflammation to obesity-induced insulin resistance.Nat. Med.200511219119810.1038/nm1185 15685170
    [Google Scholar]
  48. de AlvaroC. TeruelT. HernandezR. LorenzoM. Tumor necrosis factor α produces insulin resistance in skeletal muscle by activation of inhibitor kappaB kinase in a p38 MAPK-dependent manner.J. Biol. Chem.200427917170701707810.1074/jbc.M312021200 14764603
    [Google Scholar]
  49. UysalK.T. WiesbrockS.M. HotamisligilG.S. Functional analysis of tumor necrosis factor (TNF) receptors in TNF-α-mediated insulin resistance in genetic obesity.Endocrinology1998139124832483810.1210/endo.139.12.6337 9832419
    [Google Scholar]
  50. OfeiF. HurelS. NewkirkJ. SopwithM. TaylorR. Effects of an engineered human anti-TNF-α antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM.Diabetes199645788188510.2337/diab.45.7.881 8666137
    [Google Scholar]
  51. KimJ.K. KimY.J. FillmoreJ.J. Prevention of fat-induced insulin resistance by salicylate.J. Clin. Invest.2001108343744610.1172/JCI11559 11489937
    [Google Scholar]
  52. YuanM. KonstantopoulosN. LeeJ. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta.Science200129355351673167710.1126/science.1061620 11533494
    [Google Scholar]
  53. GoldfineA.B. FonsecaV. JablonskiK.A. PyleL. StatenM.A. ShoelsonS.E. The effects of salsalate on glycemic control in patients with type 2 diabetes: A randomized trial.Ann. Intern. Med.2010152634635710.7326/0003‑4819‑152‑6‑201003160‑00004 20231565
    [Google Scholar]
  54. MartinB.C. WarramJ.H. KrolewskiA.S. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: Results of a 25-year follow-up study.Lancet1992340882592592910.1016/0140‑6736(92)92814‑V 1357346
    [Google Scholar]
  55. KahnS.E. CooperM.E. Del PratoS. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future.Lancet201438399221068108310.1016/S0140‑6736(13)62154‑6 24315620
    [Google Scholar]
  56. NauckM.A. VardarliI. DeaconC.F. HolstJ.J. MeierJ.J. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: What is up, what is down?Diabetologia2011541101810.1007/s00125‑010‑1896‑4 20871975
    [Google Scholar]
  57. MadsbadS. The role of glucagon-like peptide-1 impairment in obesity and potential therapeutic implications.Diabetes Obes. Metab.201416192110.1111/dom.12119 23617798
    [Google Scholar]
  58. RitzelR.A. MeierJ.J. LinC.Y. VeldhuisJ.D. ButlerP.C. Human islet amyloid polypeptide oligomers disrupt cell coupling, induce apoptosis, and impair insulin secretion in isolated human islets.Diabetes2007561657110.2337/db06‑0734 17192466
    [Google Scholar]
  59. CabreraO. BermanD.M. KenyonN.S. RicordiC. BerggrenP.O. CaicedoA. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function.Proc. Natl. Acad. Sci. USA200610372334233910.1073/pnas.0510790103 16461897
    [Google Scholar]
  60. HodsonD.J. MitchellR.K. BellomoE.A. Lipotoxicity disrupts incretin-regulated human β cell connectivity.J. Clin. Invest.2013123104182419410.1172/JCI68459 24018562
    [Google Scholar]
  61. RahierJ. GuiotY. GoebbelsR.M. SempouxC. HenquinJ.C. Pancreatic β‐cell mass in European subjects with type 2 diabetes.Diabetes Obes. Metab.200810s4Suppl. 4324210.1111/j.1463‑1326.2008.00969.x 18834431
    [Google Scholar]
  62. MarselliL. SuleimanM. MasiniM. Are we overestimating the loss of beta cells in type 2 diabetes?Diabetologia201457236236510.1007/s00125‑013‑3098‑3 24233056
    [Google Scholar]
  63. MarchettiP. MasiniM. Autophagy and the pancreatic beta-cell in human type 2 diabetes.Autophagy2009571055105610.4161/auto.5.7.9511 19657235
    [Google Scholar]
  64. MarchettiP. BuglianiM. LupiR. The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients.Diabetologia200750122486249410.1007/s00125‑007‑0816‑8 17906960
    [Google Scholar]
  65. GuptaD. LeahyJ.L. Islet amyloid and type 2 diabetes: Overproduction or inadequate clearance and detoxification?J. Clin. Invest.201412483292329410.1172/JCI77506 25036704
    [Google Scholar]
  66. DengS. VatamaniukM. HuangX. Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects.Diabetes200453362463210.2337/diabetes.53.3.624 14988246
    [Google Scholar]
  67. GiaccaA. XiaoC. OprescuA.I. CarpentierA.C. LewisG.F. Lipid-induced pancreatic β-cell dysfunction: Focus on in vivo studies.Am. J. Physiol. Endocrinol. Metab.20113002E255E26210.1152/ajpendo.00416.2010 21119027
    [Google Scholar]
  68. PattiM.E. CorveraS. The role of mitochondria in the pathogenesis of type 2 diabetes.Endocr. Rev.201031336439510.1210/er.2009‑0027 20156986
    [Google Scholar]
  69. PetersenK.F. BefroyD. DufourS. Mitochondrial dysfunction in the elderly: Possible role in insulin resistance.Science200330056221140114210.1126/science.1082889 12750520
    [Google Scholar]
  70. PetersenK.F. DufourS. BefroyD. GarciaR. ShulmanG.I. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes.N. Engl. J. Med.2004350766467110.1056/NEJMoa031314 14960743
    [Google Scholar]
  71. MogensenM. SahlinK. FernströmM. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes.Diabetes20075661592159910.2337/db06‑0981 17351150
    [Google Scholar]
  72. PetersenK.F. DufourS. ShulmanG.I. Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents.PLoS Med.200529e23310.1371/journal.pmed.0020233 16089501
    [Google Scholar]
  73. WangC.H. WangC.C. HuangH.C. WeiY.H. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes.FEBS J.201328041039105010.1111/febs.12096 23253816
    [Google Scholar]
  74. RainsJ.L. JainS.K. Oxidative stress, insulin signaling, and diabetes.Free Radic. Biol. Med.201150556757510.1016/j.freeradbiomed.2010.12.006 21163346
    [Google Scholar]
  75. MorinoK. PetersenK.F. SonoS. Regulation of mitochondrial biogenesis by lipoprotein lipase in muscle of insulin-resistant offspring of parents with type 2 diabetes.Diabetes201261487788710.2337/db11‑1391 22368174
    [Google Scholar]
  76. RamachandranA. SnehalathaC. LathaE. VijayV. ViswanathanM. Rising prevalence of NIDDM in an urban population in India.Diabetologia1997402232237
    [Google Scholar]
  77. TakakiA. KawaiD. YamamotoK. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH).Int. J. Mol. Sci.20131410207042072810.3390/ijms141020704 24132155
    [Google Scholar]
  78. HalliwellB. RafterJ. JennerA. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: Direct or indirect effects? Antioxidant or not?Am. J. Clin. Nutr.2005811268S276S10.1093/ajcn/81.1.268S 15640490
    [Google Scholar]
  79. DyskenM.W. SanoM. AsthanaS. Effect of vitamin E and memantine on functional decline in Alzheimer disease: The TEAM-AD VA cooperative randomized trial.JAMA20143111334410.1001/jama.2013.282834 24381967
    [Google Scholar]
  80. TrachoothamD. AlexandreJ. HuangP. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach?Nat. Rev. Drug Discov.20098757959110.1038/nrd2803 19478820
    [Google Scholar]
  81. ShuklaV. MishraS.K. PantH.C. Oxidative stress in neurodegeneration.Adv. Pharmacol. Sci.2011201111310.1155/2011/572634 21941533
    [Google Scholar]
  82. RadakD. ResanovicI. IsenovicE.R. Link between oxidative stress and acute brain ischemia.Angiology201465866767610.1177/0003319713506516 24132856
    [Google Scholar]
  83. ParaviciniT. TouyzR. Redox signaling in hypertension.Cardiovasc. Res.200671224725810.1016/j.cardiores.2006.05.001 16765337
    [Google Scholar]
  84. ObradovicM. BogdanovicN. RadakD. IsenovicE.R. Editorial: Oxidative stress in pathophysiological conditions.Curr. Vasc. Pharmacol.201513222622810.2174/1570161113999150311153109 25980652
    [Google Scholar]
  85. HaigisM.C. YanknerB.A. The aging stress response.Mol. Cell201040233334410.1016/j.molcel.2010.10.002 20965426
    [Google Scholar]
  86. Al GhoulehI. KhooN.K.H. KnausU.G. Oxidases and peroxidases in cardiovascular and lung disease: New concepts in reactive oxygen species signaling.Free Radic. Biol. Med.20115171271128810.1016/j.freeradbiomed.2011.06.011 21722728
    [Google Scholar]
  87. TabetF. SchiffrinE.L. CalleraG.E. Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHR.Circ. Res.2008103214915810.1161/CIRCRESAHA.108.178608 18566342
    [Google Scholar]
  88. SikarisK.A. The clinical biochemistry of obesity.Clin. Biochem. Rev.2004253165181 18458706
    [Google Scholar]
  89. Sudar MilovanovicE. JovanovicA. Misirkic-MarjanovicM. VucicevicL. JanjetovicK. IsenovicE. Effects of intracerebroventricularly (ICV) injected ghrelin on cardiac inducible nitric oxide synthase activity/expression in obese rats.Exp. Clin. Endocrinol. Diabetes20151231058158810.1055/s‑0035‑1559758 26600052
    [Google Scholar]
  90. Olivares-CorichiI. Rincon ViquezM. Gutierrez-LopezL. Ceballos-ReyesG. Garcia-SanchezJ. Oxidative stress present in the blood from obese patients modifies the structure and function of insulin.Horm. Metab. Res.2011431174875310.1055/s‑0031‑1286305 22009368
    [Google Scholar]
  91. TereshinE.V. A role of fatty acids in the development of oxidative stress in aging. A hypothesis.Usp. Gerontol.20072015965 17969588
    [Google Scholar]
  92. HensleyK. RobinsonK.A. GabbitaS.P. SalsmanS. FloydR.A. Reactive oxygen species, cell signaling, and cell injury.Free Radic. Biol. Med.200028101456146210.1016/S0891‑5849(00)00252‑5 10927169
    [Google Scholar]
  93. KhanN.I. NazL. YasmeenG. Obesity: An independent risk factor for systemic oxidative stress.Pak. J. Pharm. Sci.20061916265 16632456
    [Google Scholar]
  94. Diabetes Atlas International Diabetes FederationDiabetes and impaired glucose tolerance.2006
    [Google Scholar]
  95. SridharG.R. RaoP.V. AhujaM.M.S. Epidemiology of diabetes and its complications.RSSDI textbook of diabetesmellitus.New Delhi (India)Jaypee Brothers Medical Publishers2002
    [Google Scholar]
  96. KadikiO.A. ReddyM.R.S. MarzoukA.A. Incidence of insulin-dependent diabetes (IDDM) and non-insulin-dependent diabetes (NIDDM) (0–34 years at onset) in Benghazi, Libya.Diabetes Res. Clin. Pract.199632316517310.1016/0168‑8227(96)01262‑4 8858205
    [Google Scholar]
  97. WangX. BaoW. LiuJ. Inflammatory markers and risk of type 2 diabetes: A systematic review and meta-analysis.Diabetes Care201336116617510.2337/dc12‑0702 23264288
    [Google Scholar]
  98. KhanM.S. AhmadI. Herbal medicine: Current trends and future prospects.New Look to Phytomedicine: Advancements in Herbal Products as Novel Drug Leads.Cambridge, MassachusettsAcademic Press2019
    [Google Scholar]
  99. MarlesR.J. FarnsworthN.R. Antidiabetic plants and their active constituents.Phytomedicine19952213718910.1016/S0944‑7113(11)80059‑0 23196156
    [Google Scholar]
  100. IneediS ShakyaA SinghGK KumarV Role of hyperforin in diabetes and its associated hyperlipidemia in rats.TANG [HUMANITAS MEDICINE]20122325.1610.5667/tang.2012.0015
    [Google Scholar]
  101. ThakurAK ChatterjeeSS KumarV Anxiolytic-like activity of leaf extract of traditionally used Indian-Mustard (Brassica juncea) in diabetic rats.TANG [HUMANITAS MEDICINE]2013317.1710.5667/tang.2012.0042
    [Google Scholar]
  102. DingE.L. SongY. MansonJ.E. Sex hormone-binding globulin and risk of type 2 diabetes in women and men.N. Engl. J. Med.2009361121152116310.1056/NEJMoa0804381 19657112
    [Google Scholar]
  103. WangT.J. LarsonM.G. VasanR.S. Metabolite profiles and the risk of developing diabetes.Nat. Med.201117444845310.1038/nm.2307 21423183
    [Google Scholar]
  104. EsteveE. RicartW. Fernández-RealJ.M. Gut microbiota interactions with obesity, insulin resistance and type 2 diabetes.Curr. Opin. Clin. Nutr. Metab. Care201114548349010.1097/MCO.0b013e328348c06d 21681087
    [Google Scholar]
  105. HuF.B. MansonJ.E. StampferM.J. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women.N. Engl. J. Med.20013451179079710.1056/NEJMoa010492 11556298
    [Google Scholar]
  106. SchellenbergE.S. DrydenD.M. VandermeerB. HaC. KorownykC. Lifestyle interventions for patients with and at risk for type 2 diabetes: A systematic review and meta-analysis.Ann. Intern. Med.2013159854355110.7326/0003‑4819‑159‑8‑201310150‑00007 24126648
    [Google Scholar]
  107. OdermattA. AtanasovA.G. BalazsZ. Why is 11β-hydroxysteroid dehydrogenase type 1 facing the endoplasmic reticulum lumen?Mol. Cell. Endocrinol.20062481-2152310.1016/j.mce.2005.11.040 16412558
    [Google Scholar]
  108. DavaniB. PortwoodN. BryzgalovaG. Aged transgenic mice with increased glucocorticoid sensitivity in pancreatic beta-cells develop diabetes.Diabetes200453Suppl. 1S51S5910.2337/diabetes.53.2007.S51 14749266
    [Google Scholar]
  109. AndrewsR.C. WalkerB.R. EdlingN. ForsgrenM. KlingstromG. Glucocorticoids and insulin resistance: Old hormones, new targets.Clin. Sci. (Lond.)199996551352310.1042/cs0960513 10209084
    [Google Scholar]
  110. GrøntvedA. RimmE.B. WillettW.C. AndersenL.B. HuF.B. A prospective study of weight training and risk of type 2 diabetes mellitus in men.Arch. Intern. Med.2012172171306131210.1001/archinternmed.2012.3138 22868691
    [Google Scholar]
  111. International Diabetes FederationIDF Diabetes AtlasAvailable From: http://www.idf.org/sites/default/files/EN_6E_Atlas_Full_0.pdf 2013
  112. ThakurA.K. ChatterjeeS.S. KumarV. Beneficial effects of Brassica juncea on cognitive functions in rats.Pharm. Biol.201351101304131010.3109/13880209.2013.789917 23848339
    [Google Scholar]
  113. Atta-Ur-Rahman ZamanK. Medicinal plants with hypoglycemic activity.J. Ethnopharmacol.198926115510.1016/0378‑8741(89)90112‑8 2664356
    [Google Scholar]
  114. BadawiA. KlipA. HaddadP. Type 2 diabetes mellitus and inflammation: Prospects for biomarkers of risk and nutritional intervention.Diabetes Metab. Syndr. Obes.2010317318610.2147/DMSO.S9089 21437087
    [Google Scholar]
  115. RendellM. The role of sulphonylureas in the management of type 2 diabetes mellitus.Drugs200464121339135810.2165/00003495‑200464120‑00006 15200348
    [Google Scholar]
  116. KrentzA.J. BaileyC.J. Oral antidiabetic agents: Current role in type 2 diabetes mellitus.Drugs200565338541110.2165/00003495‑200565030‑00005 15669880
    [Google Scholar]
  117. ShoelsonS.E. LeeJ. YuanM. Inflammation and the IKKβ/IκB/NF-κB axis in obesity- and diet-induced insulin resistance.Int. J. Obes.200327S3Suppl. 3S49S5210.1038/sj.ijo.0802501 14704745
    [Google Scholar]
  118. HundalR.S. PetersenK.F. MayersonA.B. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes.J. Clin. Invest.2002109101321132610.1172/JCI0214955 12021247
    [Google Scholar]
  119. HotamisligilG.S. Inflammation and metabolic disorders.Nature2006444712186086710.1038/nature05485 17167474
    [Google Scholar]
  120. WilcoxG. Insulin and insulin resistance.Clin. Biochem. Rev.20052621939
    [Google Scholar]
  121. AtanasovA.G. WaltenbergerB. Pferschy-WenzigE.M. Discovery and resupply of pharmacologically active plant-derived natural products: A review.Biotechnol. Adv.20153381582161410.1016/j.biotechadv.2015.08.001 26281720
    [Google Scholar]
  122. PatwardhanB. VaidyaA.D. ChorghadeM. Ayurveda and natural products drug discovery.Curr. Sci.20042004789799
    [Google Scholar]
  123. ComanC. RuginaO.D. SocaciuC. Plants and natural compounds with antidiabetic action.Not. Bot. Horti Agrobot. Cluj-Napoca201240131432510.15835/nbha4017205
    [Google Scholar]
  124. GothaiS. GanesanP. ParkS.Y. FakuraziS. ChoiD.K. ArulselvanP. Natural phyto-bioactive compounds for the treatment of type 2 diabetes: Inflammation as a target.Nutrients20168846110.3390/nu8080461 27527213
    [Google Scholar]
  125. KimW. EganJ.M. The role of incretins in glucose homeostasis and diabetes treatment.Pharmacol. Rev.200860447051210.1124/pr.108.000604 19074620
    [Google Scholar]
  126. HaidariF. OmidianK. RafieiH. ZareiM. Mohamad ShahiM. Green tea (Camellia sinensis) supplementation to diabetic rats improves serum and hepatic oxidative stress markers.Iran. J. Pharm. Res.2013121109114 24250578
    [Google Scholar]
  127. MasseyC.N. FeigE.H. Duque-SerranoL. WexlerD. MoskowitzJ.T. HuffmanJ.C. Well-being interventions for individuals with diabetes: A systematic review.Diabetes Res. Clin. Pract.201914711813310.1016/j.diabres.2018.11.014 30500545
    [Google Scholar]
  128. IssaAA Abd-AllaMH OhyamaT Nitrogen Fixing Cyanobacteria: Future Prospect.Advances in Biology and Ecology of Nitrogen Fixation.LondonInTechOpen2014
    [Google Scholar]
  129. WhittonB.A. PottsM. Introduction to the cyanobacteria.The Ecological of Cyanobacteria.The NetherlandsKluwer Academic Publishers2000111
    [Google Scholar]
  130. PapkeR.T. RamsingN.B. BatesonM.M. WardD.M. Geographical isolation in hot spring cyanobacteria.Environ. Microbiol.20035865065910.1046/j.1462‑2920.2003.00460.x 12871232
    [Google Scholar]
  131. ComteK. SabackáM. Carré-MloukaA. ElsterJ. KomárekJ. Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium-like strains evaluated by a polyphasic approach.FEMS Microbiol. Ecol.200759236637610.1111/j.1574‑6941.2006.00257.x 17313583
    [Google Scholar]
  132. AlwathnaniH. JohansenJ.R. Cyanobacteria in soils from a Mojave desert ecosystem.Monogr. West. N. Am. Nat.201151718910.3398/042.005.0103
    [Google Scholar]
  133. HallD.O. MarkovS.A. WatanabeY. Krishna RaoK. The potential applications of cyanobacterial photosynthesis for clean technologies.Photosynth. Res.1995461-215916710.1007/BF00020426 24301578
    [Google Scholar]
  134. MarkovS.A. LichtlR. RaoK.K. HallD.O. A hollow fibre photobioreactor for continuous production of hydrogen by immobilized cyanobacteria under partial vacuum.Int. J. Hydrogen Energy1993181190190610.1016/0360‑3199(93)90059‑J
    [Google Scholar]
  135. PainterT.J. Carbohydrate polymers in desert reclamation: The potential of microalgal biofertilizers.Carbohydr. Polym.1993202778610.1016/0144‑8617(93)90081‑E
    [Google Scholar]
  136. WildeE.W. BenemannJ.R. WeissmanJ.C. TillettD.M. Cultivation of algae and nutrient removal in a waste heat utilization process.J. Appl. Phycol.19913215916710.1007/BF00003698
    [Google Scholar]
  137. VenkataramanG.S. The role of blue-green algae in tropical rice cultivation.Nitrogen fixation by free living microorganisms.UKCambridge University Press1975207218
    [Google Scholar]
  138. MurphyR.C. StevensS.E.Jr Cloning and expression of the cryIVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium Agmenellum quadruplicatum PR-6 and its resulting larvicidal activity.Appl. Environ. Microbiol.19925851650165510.1128/aem.58.5.1650‑1655.1992 1622235
    [Google Scholar]
  139. MettingB. PyneJ.W. Biologically active compounds from microalgae.Enzyme Microb. Technol.19868738639410.1016/0141‑0229(86)90144‑4
    [Google Scholar]
  140. DixitR.B. SuseelaM.R. Cyanobacteria: Potential candidates for drug discovery.Antonie van Leeuwenhoek2013103594796110.1007/s10482‑013‑9898‑0 23532410
    [Google Scholar]
  141. GademannK. PortmannC. Secondary metabolites from cyanobacteria: Complex structures and powerful bioactivities.Curr. Org. Chem.200812432634110.2174/138527208783743750
    [Google Scholar]
  142. SivonenK. BornerT. Bioactive compounds produced by cyanobacteria.The Cyanobacteria: Molecular Biology, Genomics and Evolution.Norfolk, UKCaster Academic Press2008159197
    [Google Scholar]
  143. CarmichaelW.W. Cyanobacteria secondary metabolites—the cyanotoxins.J. Appl. Bacteriol.199272644545910.1111/j.1365‑2672.1992.tb01858.x 1644701
    [Google Scholar]
  144. PflugmacherS. Possible allelopathic effects of cyanotoxins, with reference to microcystin‐LR, in aquatic ecosystems.Environ. Toxicol.200217440741310.1002/tox.10071 12203964
    [Google Scholar]
  145. BurjaA.M. BanaigsB. Abou-MansourE. Grant BurgessJ. WrightP.C. Marine cyanobacteria—a prolific source of natural products.Tetrahedron200157469347937710.1016/S0040‑4020(01)00931‑0
    [Google Scholar]
  146. TanL.T. Bioactive natural products from marine cyanobacteria for drug discovery.Phytochemistry200768795497910.1016/j.phytochem.2007.01.012 17336349
    [Google Scholar]
  147. HarveyA. Natural product pharmaceuticals: A diverse approach to drug discovery.Drug Discov. Today20081319-2089490110.1016/j.drudis.2008.07.004 18691670
    [Google Scholar]
  148. WilliamsP.G. YoshidaW.Y. MooreR.E. PaulV.J. Isolation and structure determination of obyanamide, a novel cytotoxic cyclic depsipeptide from the marine cyanobacterium Lyngbya confervoides.J. Nat. Prod.2002651293110.1021/np0102253 11809060
    [Google Scholar]
  149. GrindbergV.R. ShumanF.C. SorrelsM.C. WingerdJ. GerwickH.W. Neurotoxic alkaloids from cyanobacteria.Modern Alkaloids: Structure, Isolation, Synthesis and Biology.Hoboken, New JerseyWiley2008
    [Google Scholar]
  150. SivonenK. Cyanobacterial Toxins.Encyclopedia of Microbiology, OxfordUKElsevier200929030710.1016/B978‑012373944‑5.00005‑5
    [Google Scholar]
  151. StewartI. SchluterP.J. ShawG.R. Cyanobacterial lipopolysaccharides and human health – a review.Environ. Health200651710.1186/1476‑069X‑5‑7 16563160
    [Google Scholar]
  152. KurmayerR. DengL. EntfellnerE. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix.Harmful Algae201654698610.1016/j.hal.2016.01.004 27307781
    [Google Scholar]
  153. MazardS. PenesyanA. OstrowskiM. PaulsenI. EganS. Tiny microbes with a big impact: The role of cyanobacteria and their metabolites in shaping our future.Mar. Drugs20161459710.3390/md14050097 27196915
    [Google Scholar]
  154. BurattiF.M. ManganelliM. VichiS. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation.Arch. Toxicol.20179131049113010.1007/s00204‑016‑1913‑6 28110405
    [Google Scholar]
  155. HumbertJ-F. TöröknéA. New tools for the monitoring of cyanobacteria in freshwater ecosystems.Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis.Chichester, UKJohnWiley & Sons, Ltd.20178488
    [Google Scholar]
  156. PaerlH.W. OttenT.G. Harmful cyanobacterial blooms: Causes, consequences, and controls.Microb. Ecol.2013654995101010.1007/s00248‑012‑0159‑y 23314096
    [Google Scholar]
  157. ZanchettG. Oliveira-FilhoE. Cyanobacteria and cyanotoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects.Toxins (Basel)20135101896191710.3390/toxins5101896 24152991
    [Google Scholar]
  158. FarrokhP. SheikhpourM. KasaeianA. AsadiH. BavandiR. Cyanobacteria as an eco‐friendly resource for biofuel production: A critical review.Biotechnol. Prog.2019355e283510.1002/btpr.2835 31063628
    [Google Scholar]
  159. eD BN TB. Molecular biology of peptide and polyketide biosynthesis in cyanobacteria.Appl. Microbiol. Biotechnol.200157446747310.1007/s002530100810 11764765
    [Google Scholar]
  160. VolkR.B. Screening of microalgae for species excreting norharmane, a manifold biologically active indole alkaloid.Microbiol. Res.2008163330731310.1016/j.micres.2006.06.002 16872816
    [Google Scholar]
  161. WaseN.V. WrightP.C. Systems biology of cyanobacterial secondary metabolite production and its role in drug discovery.Expert Opin. Drug Discov.20083890392910.1517/17460441.3.8.903 23484967
    [Google Scholar]
  162. TreadwayJ.L. MendysP. HooverD.J. Glycogen phosphorylase inhibitors for treatment of type 2 diabetes mellitus.Expert Opin. Investig. Drugs200110343945410.1517/13543784.10.3.439 11227044
    [Google Scholar]
  163. GroverJ.K. YadavS. VatsV. Medicinal plants of India with anti-diabetic potential.J. Ethnopharmacol.20028118110010.1016/S0378‑8741(02)00059‑4 12020931
    [Google Scholar]
  164. ManirafashaE. NdikubwimanaT. ZengX. LuY. JingK. Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent.Biochem. Eng. J.201610928229610.1016/j.bej.2016.01.025
    [Google Scholar]
  165. HusainA. KhanF. OsamaK. Media optimization for C-phycocyanin production in Plectonema sp. using response surface methodology and central composite design.Int J Res Pharmaceut Sci20201133897390410.26452/ijrps.v11i3.2575
    [Google Scholar]
  166. de Jesus RaposoM.F. de MoraisR.M.S.C. de MoraisA.M.M.B. Health applications of bioactive compounds from marine microalgae.Life Sci.2013931547948610.1016/j.lfs.2013.08.002 23994664
    [Google Scholar]
  167. AbdelsalamS. KorashyH.M. ZeidanA. AgouniA. The role of protein tyrosine phosphatase (PTP) -1B in cardio-vascular disease and its interplay with insulin resistance.Biomolecules201997286
    [Google Scholar]
  168. PengJ. YuanJ.P. WuC.F. WangJ.H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health.Mar. Drugs20119101806182810.3390/md9101806 22072997
    [Google Scholar]
  169. LeeJ.Y. KimS.M. JungW.S. Phlorofucofuroeckol-A, a potent inhibitor of aldo-keto reductase family 1 member B10, from the edible brown alga Eisenia bicyclis.J. Korean Soc. Appl. Biol. Chem.201255672172710.1007/s13765‑012‑2169‑3
    [Google Scholar]
  170. MoonH.E. IslamM.N. AhnB.R. Protein tyrosine phosphatase 1B and α-glucosidase inhibitory Phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis.Biosci. Biotechnol. Biochem.20117581472148010.1271/bbb.110137 21821954
    [Google Scholar]
  171. GunathilakaM.D.T.L. PeirisD. RanasingheP. SamarakoonK.W. In-vitro anti-diabetic activity of polyphenolic rich extract from marine brown algae Choonospora minima (Hering 1841). 12 th INTERNATIONAL RESEARCH CONFERENCE -GENERAL SIR JOHN KOTELAWALA DEFENCE UNIVERSITY.Srilanka.2019
    [Google Scholar]
  172. UnnikrishnanP.S. SuthindhiranK. JayasriM.A. Inhibitory potential of Turbinaria ornata against key metabolic enzymes linked to diabetes.Biomed Res. Int.20142014783895
    [Google Scholar]
  173. SonY.K. JinS.E. KimH.R. WooH.C. JungH.A. ChoiJ.S. Inhibitory activities of the edible brown alga Laminaria japonica on glucose-mediated protein damage and rat lens aldose reductase.Fish. Sci.20117761069107910.1007/s12562‑011‑0406‑z
    [Google Scholar]
  174. LeeS.H. JeonY.J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms.Fitoterapia20138612913610.1016/j.fitote.2013.02.013 23466874
    [Google Scholar]
  175. JungH.A. YoonN.Y. WooM.H. ChoiJ.S. Inhibitory activities of extracts from several kinds of seaweeds and phlorotannins from the brown alga Ecklonia stolonifera on glucose-mediated protein damage and rat lens aldose reductase.Fish. Sci.20087461363136510.1111/j.1444‑2906.2008.01670.x
    [Google Scholar]
  176. YangH.W. FernandoK.H.N. OhJ.Y. LiX. JeonY.J. RyuB. Anti-obesity and anti-diabetic effects of Ishige oka- murae.Mar. Drugs201917420210.3390/md17040202 30934943
    [Google Scholar]
  177. AliM. KimD. SeongS. KimH.R. JungH. ChoiJ. α-Glucosidase and protein tyrosine phosphatase 1B inhibitory activity of plastoquinones from marine brown alga Sargassum serratifolium.Mar. Drugs2017151236810.3390/md15120368 29194348
    [Google Scholar]
  178. EzzatS.M. BishbishyM.H.E. HabtemariamS. Looking at marine-derived bioactive molecules as upcoming anti-diabetic agents: A special emphasis on PTP1B inhibitors.Molecules20182312333410.3390/molecules23123334 30558294
    [Google Scholar]
  179. ShinH.C. KimS.H. ParkY. LeeB.H. HwangH.J. Effects of 12-week oral supplementation of Ecklonia cava polyphenols on anthropometric and blood lipid parameters in overweight Korean individuals: A double-blind randomized clinical trial.Phytother. Res.201226336336810.1002/ptr.3559 21717516
    [Google Scholar]
  180. Gómez-GuzmánM. Rodríguez-NogalesA. AlgieriF. GálvezJ. Potential role of seaweed polyphenols in cardiovascular-associated disorders.Mar. Drugs201816825010.3390/md16080250 30060542
    [Google Scholar]
  181. GunathilakaT.L. SamarakoonK. RanasingheP. PeirisL.D.C. Antidiabetic potential of marine brown algae a mini review.J. Diabetes Res.2020202011310.1155/2020/1230218 32377517
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998307764240909114007
Loading
/content/journals/cdr/10.2174/0115733998307764240909114007
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test