Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Diabetic wound healing is a dynamic medical process that takes place in an environment within the body that is complex and contains elevated sugar levels, oxygen deprivation, and cellular oxidative stress. Phloridzin (Phlorizin) is one of the most well-known polyphenols found in apples because of its anti-inflammatory, antioxidant, antibacterial, antidiabetic, and antiseptic properties; it can also play a significant part in the healing of diabetic wounds.

The study aimed to investigate the role of phloridzin as an efficient DPP-4 inhibitor with additional therapeutic effects in diabetic wound healing, as Dipeptidyl Peptidase-4 (DPP-4) expression increases in response to increases in glucose, Reactive Oxygen Species (ROS), and inflammation. Phloridzin inhibiting DPP-4 preserves Stromal cell-derived Factor-1α (SDF-1α), Insulin-like Growth Factor (IGF), and Glucagon-like Peptide-1 (GLP-1), which are possible DPP-4 substrates involved in wound healing.

The accessible material from systemic searches in PubMed, Scopus, and published articles was reviewed with no period of limitation.

The study showed strong binding of phloridzin with DPP-4 protein (2P8S); also, DPP-4 inhibition assay has shown better inhibition by phloridzin. This study offers new research directions for examining phloridzin’s capacity to withstand oxidative stress, as well as for redefining its tactical function as a powerful DPP-4 inhibitor to regulate the process involved in the healing of diabetic wounds.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998291941240416053855
2024-04-26
2025-09-10
Loading full text...

Full text loading...

References

  1. SaeediP. SalpeaP. KarurangaS. PetersohnI. MalandaB. GreggE.W. Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: Results from the international diabetes federation diabetes atlas.Diabetes Res. Clin. Pract.2019162108086
    [Google Scholar]
  2. GædeP. VedelP. LarsenN. JensenG.V.H. ParvingH.H. PedersenO. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes.N. Engl. J. Med.2003348538339310.1056/NEJMoa021778 12556541
    [Google Scholar]
  3. HolmanR.R. PaulS.K. BethelM.A. MatthewsD.R. NeilH.A.W. 10-year follow-up of intensive glucose control in type 2 diabetes.N. Engl. J. Med.2008359151577158910.1056/NEJMoa0806470 18784090
    [Google Scholar]
  4. ReiberG.E. VileikyteL. BoykoE.J. Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings.Diabetes Care199922115716210.2337/diacare.22.1.157 10333919
    [Google Scholar]
  5. HuntD. Diabetes: Foot ulcers and amputations.BMJ Clin Evid201120110602
    [Google Scholar]
  6. SpampinatoS.F. CarusoG.I. PasqualeR.D. SortinoM.A. MerloS. The treatment of impaired wound healing in diabetes: Looking among old drugs.Pharmaceuticals2020113460
    [Google Scholar]
  7. AvogaroA. FadiniG.P. The effects of dipeptidyl peptidase-4 inhibition on microvascular diabetes complications.Diabetes Care201437102884289410.2337/dc14‑0865 25249673
    [Google Scholar]
  8. GreenhalghD.G. Wound healing and diabetes mellitus.Clin. Plast. Surg.2003301374510.1016/S0094‑1298(02)00066‑4
    [Google Scholar]
  9. WernerS. GroseR. Regulation of wound healing by growth factors and cytokines.Physiol. Rev.200383383587010.1152/physrev.2003.83.3.835 12843410
    [Google Scholar]
  10. RöhrbornD. WronkowitzN. EckelJ. DPP4 in diabetes.Front. Immunol.2015638610.3389/fimmu.2015.00386 26284071
    [Google Scholar]
  11. ZhangK.W. Insight into the role of DPP-4 in fibrotic wound healing.Biomed. Pharmacother.202215111314310.1016/j.biopha.2022.113143
    [Google Scholar]
  12. TaN.N. SchuylerC.A. LiY. Lopes-VirellaM.F. HuangY. Inhibitor alogliptin inhibits atherosclerosis in diabetic apolipoprotein E–deficient mice.J. Cardiovasc. Pharmacol.2011582157166
    [Google Scholar]
  13. HiromuraM. Caveolin-1, a binding protein of CD26, is essential for the anti-inflammatory effects of dipeptidyl peptidase-4 inhibitors on human and mouse macrophages.Biochem. Biophys. Res. Commun.20174951223229 29113797
    [Google Scholar]
  14. TerasakiM. YashimaH. MoriY. A dipeptidyl peptidase-4 inhibitor inhibits foam cell formation of macrophages in type 1 diabetes via suppression of CD36 and ACAT-1 expression.Int. J. Mol. Sci.20202113481110.3390/ijms21134811 32646003
    [Google Scholar]
  15. TianL. CaoJ. ZhaoT. LiuY. KhanA. ChengG. The bioavailability, extraction, biosynthesis and distribution of natural dihydrochalcone: Phloridzin.Int. J. Mol. Sci.202122296210.3390/ijms22020962 33478062
    [Google Scholar]
  16. Holmquist-MengelbierL. FredlundE. LöfstedtT. Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype.Cancer Cell200610541342310.1016/j.ccr.2006.08.026 17097563
    [Google Scholar]
  17. CatrinaS.B. ZhengX. Hypoxia and hypoxia-inducible factors in diabetes and its complications.Diabetologia202164470971610.1007/s00125‑021‑05380‑z 33496820
    [Google Scholar]
  18. BotusanI.R. SunkariV.G. SavuO. CatrinaA.I. LindbergS. PereiraT. Stabilization of HIF-1␣ is critical to improve wound healing in diabetic mice.Proc. Natl. Acad. Sci. U S A2008105491942619431
    [Google Scholar]
  19. CatrinaS.B. OkamotoK. PereiraT. BrismarK. PoellingerL. Hyperglycemia regulates hypoxia-inducible factor-1␣ protein stability and function.Diabetes2004531232263232
    [Google Scholar]
  20. ThangarajahH. YaoD. ChangE.I. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues.Proc. Natl. Acad. Sci. USA200910632135051351010.1073/pnas.0906670106 19666581
    [Google Scholar]
  21. LambeirA.M. DurinxC. ScharpéS. MeesterI.D. Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV.Crit. Rev. Clin. Lab. Sci.2003403209294
    [Google Scholar]
  22. ChungK.M. HuangC.H. ChengJ.H. Proline in transmembrane domain of type II protein DPP-IV governs its translocation behavior through endoplasmic reticulum.Biochemistry201150377909791810.1021/bi200605h 21834515
    [Google Scholar]
  23. RãD. Shedding of dipeptidyl peptidase 4 is mediated by metalloproteases and up-regulated by hypoxia in human adipocytes and smooth muscle cells.FEBS Lett.20145882138703877
    [Google Scholar]
  24. MentleinR. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides.Regul. Pept.199985192410.1016/S0167‑0115(99)00089‑0 10588446
    [Google Scholar]
  25. EricksonR.H. GumJ.R. LottermanC.D. HicksJ.W. LaiR.S. KimY.S. Regulation of the gene for human dipeptidyl peptidase IV by hepatocyte nuclear factor.Biochem. J.1999338Pt 19197
    [Google Scholar]
  26. TrzaskalskiN.A. FadzeyevaE. MulvihillE.E. Dipeptidyl peptidase-4 at the interface between inflammation and metabolism.Clin. Med. Insights Endocrinol. Diabetes202013117955142091297210.1177/1179551420912972
    [Google Scholar]
  27. BohmS.K. GumJ.R. EricksonR.H. HicksJ.W. KimY.S. Human dipeptidyl peptidase IV gene promoter: Tissue-specific regulation from a TATA-less GC-rich sequence characteristic of a housekeeping gene promoter.Biochem. J.1995311Pt 383584310.1042/bj3110835
    [Google Scholar]
  28. ZhongJ. MaiseyeuA. DavisS.N. RajagopalanS. DPP4 in cardiometabolic disease: Recent insights from the laboratory and clinical trials of DPP4 inhibition.Circ. Res.201511681491150410.1161/CIRCRESAHA.116.305665 25858071
    [Google Scholar]
  29. ChoE.H. KimS.W. Soluble dipeptidyl peptidase-4 levels are associated with decreased renal function in patients with type 2 diabetes mellitus.Diabetes Metab. J.201943197104
    [Google Scholar]
  30. SellH. BlüherM. KlötingN. Adipose dipeptidyl peptidase-4 and obesity: Correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro.Diabetes Care201336124083409010.2337/dc13‑0496 24130353
    [Google Scholar]
  31. PalaL. RotellaC.M. The role of DPP4 activity in cardiovascular districts: In vivo and in vitro evidence.J. Diabetes Res.20132013590456
    [Google Scholar]
  32. MatsubaraJ. SugiyamaS. SugamuraK. NakamuraT. FujiwaraY. AkiyamaE. A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein e–deficient mice.J. Am. Coll. Cardiol.2012593265276
    [Google Scholar]
  33. MasonR.P. JacobR.F. KubantR. CiszewskiA. CorbalanJ.J. MalinskiT. Dipeptidyl peptidase-4 inhibition with saxagliptin enhanced nitric oxide release and reduced blood pressure and sICAM-1 levels in hypertensive rats.J. Cardiovasc. Pharmacol.201260546747310.1097/FJC.0b013e31826be204
    [Google Scholar]
  34. IkushimaH. MunakataY. IwataS. Soluble CD26/dipeptidyl peptidase IV enhances transendothelial migration via its interaction with mannose 6-phosphate/insulin-like growth factor II receptor.Cell. Immunol.2002215110611010.1016/S0008‑8749(02)00010‑2 12142042
    [Google Scholar]
  35. IshibashiY. MatsuiT. MaedaS. HigashimotoY. Advanced glycation end products evoke endothelial cell damage by stimulating soluble dipeptidyl peptidase-4 production and its interaction with mannose 6-phosphate/insulin- like growth factor II receptor.Cardiovasc. Diabetol.201312125
    [Google Scholar]
  36. YazbeckR. JaenischS.E. AbbottC.A. Dipeptidyl peptidase 4 inhibitors: Applications in innate immunity?Biochem. Pharmacol.202118811451710.1016/j.bcp.2021.114517 33722535
    [Google Scholar]
  37. IkedaT. KumagaiE. IwataS. YamakawaA. Soluble CD26/Dipeptidyl peptidase IV enhances the transcription of IL-6 and TNF-α in THP-1 cells and monocytes.PLoS ONE201386e66520
    [Google Scholar]
  38. BouchardL. FaucherG. TchernofA. Comprehensive genetic analysis of the dipeptidyl peptidase-4 gene and cardiovascular disease risk factors in obese individuals.Acta Diabetol.2009461132110.1007/s00592‑008‑0049‑4 18682883
    [Google Scholar]
  39. WangZ. GrigoC. SteinbeckJ. von HörstenS. AmannK. DanielC. Soluble DPP4 originates in part from bone marrow cells and not from the kidney.Peptides20145710911710.1016/j.peptides.2014.05.006 24874705
    [Google Scholar]
  40. WetzlerC. KämpferH. StallmeyerB. PfeilschifterJ. FrankS. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair.J. Invest. Dermatol.2000115224525310.1046/j.1523‑1747.2000.00029.x 10951242
    [Google Scholar]
  41. PakyariM. FarrokhiA. MaharlooeiM.K. GhaharyA. Critical role of transforming growth factor beta in different phases of wound healing.Adv. Wound Care (New Rochelle)20132521522410.1089/wound.2012.0406 24527344
    [Google Scholar]
  42. BrownD.L. KaneC.D. ChernausekS.D. GreenhalghD.G. Differential expression and localization of insulin- like growth factors I and II in cutaneous wounds of diabetic and nondiabetic mice.Am. J. Pathol.19971513715724
    [Google Scholar]
  43. RobertsA.B. Transforming growth factor-p; Activity and efficacy in animal models of wound healing.Wound Repair Regen.199534408418
    [Google Scholar]
  44. LobmannR. ZemlinC. MotzkauM. ReschkeK. LehnertH. Expression of matrix metalloproteinases and growth factors in diabetic foot wounds treated with a protease absorbent dressing.J. Diabetes Complications200620532933510.1016/j.jdiacomp.2005.08.007 16949521
    [Google Scholar]
  45. SchürmannC. LinkeA. Engelmann-PilgerK. The dipeptidyl peptidase-4 inhibitor linagliptin attenuates inflammation and accelerates epithelialization in wounds of diabetic ob/ob mice.J. Pharmacol. Exp. Ther.20123421718010.1124/jpet.111.191098 22493041
    [Google Scholar]
  46. DeaconC.F. NauckM.A. MeierJ. HückingK. HolstJ.J. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide.J. Clin. Endocrinol. Metab.2000851035753581
    [Google Scholar]
  47. DeaconC.F. DanielsenP. KlarskovL. OlesenM. HolstJ.J. Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and potentiates its insulinotropic and antihyperglycemic effects in anesthetized pigs.Diabetes20015071588159710.2337/diabetes.50.7.1588 11423480
    [Google Scholar]
  48. SabooA. RathnayakeA. VangavetiV.N. MalabuU.H. Wound healing effects of dipeptidyl peptidase-4 inhibitors: An emerging concept in management of diabetic foot ulcer—A review.Diabetes Metab. Syndr.201610211311910.1016/j.dsx.2015.04.006 25990796
    [Google Scholar]
  49. WangD. LuoP. WangY. Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism.Diabetes20136251697170810.2337/db12‑1025 23364453
    [Google Scholar]
  50. LeeY.S. ParkM.S. ChoungJ.S. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes.Diabetologia20125592456246810.1007/s00125‑012‑2592‑3 22722451
    [Google Scholar]
  51. KoderaR. ShikataK. KataokaH.U. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes.Diabetologia201154496597810.1007/s00125‑010‑2028‑x 21253697
    [Google Scholar]
  52. IshibashiY. NishinoY. MatsuiT. TakeuchiM. YamagishiS. Glucagon-like peptide–1 suppresses advanced glycation end product–induced monocyte chemoattractant protein–1 expression in mesangial cells by reducing advanced glycation end product receptor level.Metabolism20116091271127710.1016/j.metabol.2011.01.010 21388644
    [Google Scholar]
  53. SahaS. ButtariB. PanieriE. ProfumoE. SasoL. An overview of Nrf2 signaling pathway and its role in inflammation.Molecules20202522547410.3390/molecules25225474 33238435
    [Google Scholar]
  54. MarfellaR. SassoF.C. RizzoM.R. Dipeptidyl peptidase 4 inhibition may facilitate healing of chronic foot ulcers in patients with type 2 diabetes.Exp. Diabetes Res.2012201211110.1155/2012/892706 23197976
    [Google Scholar]
  55. ShiodaT. KatoH. OhnishiY. Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1α (SDF-1α) and SDF-1β are abolished by CD26/dipeptidyl peptidase IV-mediated cleavage.Proc. Natl. Acad. Sci. USA199895116331633610.1073/pnas.95.11.6331
    [Google Scholar]
  56. WenJ. ZhangJ.Q. HuangW. WangY. SDF-1α and CXCR4 as therapeutic targets in cardiovascular disease.Am. J. Cardiovasc. Dis.2012212028
    [Google Scholar]
  57. ProostP. StruyfS. ScholsD. Processing by CD26/dipeptidyl‐peptidase IV reduces the chemotactic and anti‐HIV‐1 activity of stromal‐cell‐derived factor‐1α.FEBS Lett.19984321-2737610.1016/S0014‑5793(98)00830‑8 9710254
    [Google Scholar]
  58. XiaoT. YanZ. XiaoS. XiaY. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization.Stem Cell Res. Ther.202011123210.1186/s13287‑020‑01755‑y 32527289
    [Google Scholar]
  59. ZgheibC. XuJ. LiechtyK.W. Targeting inflammatory cytokines and extracellular matrix composition to promote wound regeneration.Adv. Wound Care20143434435510.1089/wound.2013.0456 24757589
    [Google Scholar]
  60. LongM. CaiL. LiW. DPP-4 inhibitors improve diabetic wound healing via direct and indirect promotion of epithelial-mesenchymal transition and reduction of scarring.Diabetes201867351853110.2337/db17‑0934 29254987
    [Google Scholar]
  61. HollyJ.M.P. WassJ.A.H. Insulin-like growth factors; Autocrine, paracrine or endocrine? New perspectives of the somatomedin hypothesis in the light of recent developments.J. Endocrinol.1989122361161810.1677/joe.0.1220611 2478648
    [Google Scholar]
  62. LangfordK.S. MiellJ.P. The insulin‐like growth factor‐I/binding protein axis: Physiology, pathophysiology and therapeutic manipulation.Eur. J. Clin. Invest.199323950351610.1111/j.1365‑2362.1993.tb00958.x 7694853
    [Google Scholar]
  63. RinderknechtE. HumbelR.E. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin.J. Biol. Chem.197825382769277610.1016/S0021‑9258(17)40889‑1 632300
    [Google Scholar]
  64. SuhD.Y. HuntT.K. SpencerE.M. Insulin-like growth factor-I reverses the impairment of wound healing induced by corticosteroids in rats.Endocrinology199213152399240310.1210/endo.131.5.1425438
    [Google Scholar]
  65. RosenD.M. AdamsS. MooreJ.A. MaackC.A. SommerA. Modulation of IGF-I therapy by IGFBP-3: Potential utility in wound healing. In: Ziegler TR, Pierce GF, Herndon DN, Eds. Growth Factors and Wound Healing.New York, NYSpringer New York199728129010.1007/978‑1‑4612‑1876‑0_16
    [Google Scholar]
  66. GartnerM.H. BensonJ.D. CaldwellM.D. Insulin-like growth factors I and II expression in the healing wound.J. Surg. Res.199252438939410.1016/0022‑4804(92)90121‑F 1350650
    [Google Scholar]
  67. ChenX. TangH.Y. HanY.S. Downregulation of signaling-active IGF-1 by dipeptidyl peptidase IV (DPP-IV).Int. J. Biomed. Sci.20106430130910.59566/IJBS.2010.6301 23675206
    [Google Scholar]
  68. BitarM. Insulin-like growth factor-1 reverses diabetes-induced wound healing impairment in rats.Horm. Metab. Res.199729838338610.1055/s‑2007‑979060 9288575
    [Google Scholar]
  69. TsuboiR. ShiC.M. SatoC. CoxG.N. OgawaH. Co-administration of insulin-like growth factor (IGF)-I and IGF-binding protein-1 stimulates wound healing in animal models.J. Invest. Dermatol.1995104219920310.1111/1523‑1747.ep12612755 7530269
    [Google Scholar]
  70. ChhabriaS. MathurS. VadakanS. SahooD.K. MishraP. PaitalB. A review on phytochemical and pharmacological facets of tropical ethnomedicinal plants as reformed DPP-IV inhibitors to regulate incretin activity.Front. Endocrinol.202213102723710.3389/fendo.2022.1027237 36440220
    [Google Scholar]
  71. EhrenkranzJ.R.L. LewisN.G. Ronald KahnC. RothJ. Phlorizin: A review.Diabetes Metab. Res. Rev.2005211313810.1002/dmrr.532 15624123
    [Google Scholar]
  72. GoschC. HalbwirthH. StichK. Phloridzin: Biosynthesis, distribution and physiological relevance in plants.Phytochemistry2010718-983884310.1016/j.phytochem.2010.03.003 20356611
    [Google Scholar]
  73. RanaS. BhushanS. Apple phenolics as nutraceuticals: Assessment, analysis and application.J. Food Sci. Technol.20165341727173810.1007/s13197‑015‑2093‑8 27413201
    [Google Scholar]
  74. ZabidiN.A. IshakN.A. HamidM. AshariS.E. Mohammad LatifM.A. Inhibitory evaluation of Curculigo latifolia on α-glucosidase, DPP (IV) and in vitro studies in antidiabetic with molecular docking relevance to type 2 diabetes mellitus.J. Enzyme Inhib. Med. Chem.202136110912110.1080/14756366.2020.1844680 33249946
    [Google Scholar]
  75. LvQ. LinY. TanZ. Dihydrochalcone-derived polyphenols from tea crab apple (Malus hupehensis) and their inhibitory effects on α-glucosidase in vitro.Food Funct.20191052881288710.1039/C9FO00229D 31070208
    [Google Scholar]
  76. HyttiM. RuuthJ. KanervaI. Phloretin inhibits glucose transport and reduces inflammation in human retinal pigment epithelial cells.Mol. Cell. Biochem.2023478121522710.1007/s11010‑022‑04504‑2 35771396
    [Google Scholar]
  77. ZielinskaD. Laparra-LlopisJ.M. ZielinskiH. Szawara-NowakD. Giménez-BastidaJ.A. Role of apple phytochemicals, phloretin and phloridzin, in modulating processes related to intestinal inflammation.Nutrients2019115117310.3390/nu11051173 31130634
    [Google Scholar]
  78. FanZ. WangY. YangM. CaoJ. KhanA. ChengG. UHPLC-ESI-HRMS/MS analysis on phenolic compositions of different E Se tea extracts and their antioxidant and cytoprotective activities.Food Chem.202031812651210.1016/j.foodchem.2020.126512 32135418
    [Google Scholar]
  79. GaoH.Q. Quantitative proteomics study on the protective mechanism of phlorizin on hepatic damage in diabetic db/db mice.Mol. Med. Rep.20125512851294
    [Google Scholar]
  80. SowaA. ZgórkaG. SzykułaA. Analysis of polyphenolic compounds in extracts from leaves of some Malus domestica cultivars: Antiradical and antimicrobial analysis of these extracts.BioMed Res. Int.2016201611210.1155/2016/6705431 28097143
    [Google Scholar]
  81. KhalifaM.M.A. BakrA.G. OsmanA.T. Protective effects of phloridzin against methotrexate-induced liver toxicity in rats.Biomed. Pharmacother.20179552953510.1016/j.biopha.2017.08.121 28866420
    [Google Scholar]
  82. QinX. XingY. ZhouZ. YaoY. Dihydrochalcone compounds isolated from crabapple leaves showed anticancer effects on human cancer cell lines.Molecules20152012211932120310.3390/molecules201219754 26633321
    [Google Scholar]
  83. OsorioH. BautistaR. RiosA. FrancoM. ArellanoA. Vargas-RoblesH. Effect of phlorizin on sglt2 expression in the kidney of diabetic rats.J. Nephrol.2010235541546
    [Google Scholar]
  84. RiegerA.C. TompkinsB.A. BanerjeeM. NatsumedaM. FloreaV. SchulmanI.H. Insights into signaling in cell-based therapy for heart disease.Signal Transduct. Insights2017610.1177/1178643417717688
    [Google Scholar]
  85. Lankat-ButtgereitB. MüllerS. SchmidtH. ParhoferK.G. GressT.M. GökeR. Knockdown of Pdcd4 results in induction of proprotein convertase 1/3 and potent secretion of chromogranin A and secretogranin II in a neuroendocrine cell line.Biol. Cell20081001270371510.1042/BC20080052 18549351
    [Google Scholar]
  86. WidemanR.D. CoveyS.D. WebbG.C. DruckerD.J. KiefferT.J. A switch from prohormone convertase (PC)-2 to PC1/3 expression in transplanted α-cells is accompanied by differential processing of proglucagon and improved glucose homeostasis in mice.Diabetes200756112744275210.2337/db07‑0563 17698597
    [Google Scholar]
  87. PeixotoCA OliveiraWH AraújoSMR NunesAKS AMPK activation: Role in the signaling pathways of neuroinflammation and neurodegeneration.Exp Neurol2017298Pt A314110.1016/j.expneurol.2017.08.01328844606
    [Google Scholar]
  88. AmmarR.A. MohamedA.F. KamalM.M. SafarM.M. AbdelkaderN.F. Neuroprotective effect of liraglutide in an experimental mouse model of multiple sclerosis: Role of AMPK/SIRT1 signaling and NLRP3 inflammasome.Inflammopharmacology202230391993410.1007/s10787‑022‑00956‑6 35364735
    [Google Scholar]
  89. RothmeierA.S. RufW. Protease-activated receptor 2 signaling in inflammation.Semin. Immunopathol.201234113314910.1007/s00281‑011‑0289‑1 21971685
    [Google Scholar]
  90. ChoiY.J. MoonK.M. ChungK.W. The underlying mechanism of proinflammatory NF-κB activation by the mTORC2/Akt/IKKα pathway during skin aging.Oncotarget2016733526855269410.18632/oncotarget.10943 27486771
    [Google Scholar]
  91. Berlanga-AcostaJ. SchultzG.S. López-MolaE. Guillen-NietoG. García-SiverioM. Herrera-MartínezL. Glucose toxic effects on granulation tissue productive cells: the diabetics’ impaired healing.BioMed Res. Int.2013201311510.1155/2013/256043 23484099
    [Google Scholar]
  92. SooC. ShawW.W. ZhangX. LongakerM.T. HowardE.W. TingK. Differential expression of matrix metalloproteinases and their tissue-derived inhibitors in cutaneous wound repair.Plast. Reconstr. Surg.2000105263864710.1097/00006534‑200002000‑00024 10697171
    [Google Scholar]
  93. LiuY. MinD. BoltonT. Increased matrix metalloproteinase-9 predicts poor wound healing in diabetic foot ulcers.Diabetes Care200932111711910.2337/dc08‑0763 18835949
    [Google Scholar]
  94. NeeL. TuiteN. RyanM.P. McMorrowT. TNF-alpha and IL-1 beta-mediated regulation of MMP-9 and TIMP-1 in human glomerular mesangial cells.Nephron, Exp. Nephrol.20071072e73e8610.1159/000108645 17890880
    [Google Scholar]
  95. TaN.N. DPP-4 (CD26) inhibitor alogliptin inhibits TLR4-mediated ERK activation and ERK-dependent MMP-1 expression by U937 histiocytes.Atherosclerosis201020132429435
    [Google Scholar]
  96. KorshunovS.S. SkulachevV.P. StarkovA.A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria.FEBS Lett.19974161151810.1016/S0014‑5793(97)01159‑9 9369223
    [Google Scholar]
  97. DuX. MatsumuraT. EdelsteinD. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells.J. Clin. Invest.200311271049105710.1172/JCI18127 14523042
    [Google Scholar]
  98. XiaoH. GuZ. WangG. ZhaoT. The possible mechanisms underlying the impairment of HIF-1α pathway signaling in hyperglycemia and the beneficial effects of certain therapies.Int. J. Med. Sci.201310101412142110.7150/ijms.5630 23983604
    [Google Scholar]
  99. VolpeC.M.O. Villar-DelfinoP.H. dos AnjosP.M.F. Nogueira-MachadoJ.A. Cellular death, reactive oxygen species (ROS) and diabetic complications.Cell Death Dis.20189211910.1038/s41419‑017‑0135‑z 29371661
    [Google Scholar]
  100. BaldisserottoA. MalisardiG. ScalambraE. Synthesis, antioxidant and antimicrobial activity of a new phloridzin derivative for dermo-cosmetic applications.Molecules20121711132751328910.3390/molecules171113275 23135632
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998291941240416053855
Loading
/content/journals/cdr/10.2174/0115733998291941240416053855
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-oxidant; Diabetic wound healing; DPP-4; HIF-1; phloridzin; SDF-1α
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test