Skip to content
2000
Volume 13, Issue 1
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NPs) have been widely used as drug delivery systems for both small molecules and macromolecules. However, the colloidal stability problem remains unsolved. This study aims to investigate the possibility of using sodium carboxymethyl cellulose (SCMC) as a stabilizing agent of PLGA NPs. In this study, PLGA NPs were fabricated using various concentrations of SCMC (0.01, 0.1 and 0.5% w/v) by solvent displacement method. SCMC coated NPs were characterized using DLS, FTIR, DSC, colorimetric method. Particle size, polydispersity index, zeta potential values and SCMC adsorption increased with SCMC concentration. FTIR spectra, DSC thermograms and results of colorimetry suggested the interaction of SCMC and PLGA NPs. The stability of SCMC coated PLGA NPs was observed during the storage of three weeks in water. The stability of SCMC coated NPs in serum was also evaluated. Cell viability study revealed that there was no toxicity increased when SCMC was used as a stabilizing agent up to a concentration of 0.1% w/v. SCMC coated PLGA NPs bound A549 cells in a time dependent manner and with a greater extent than uncoated PLGA NPs. In conclusion, SCMC can be used to stabilize PLGA NPs by adsorbing on the surface of NPs.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/1567201812666150904144241
2016-02-01
2025-11-05
Loading full text...

Full text loading...

/content/journals/cdd/10.2174/1567201812666150904144241
Loading

  • Article Type:
    Research Article
Keyword(s): Adsorption; colloidal stabilizer; nanoparticle; PLGA; sodium carboxymethyl cellulose
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test