Skip to content
2000
image of Hyaluronic Acid-Modified Nanoparticles Loaded with Cabazitaxel: A Promising Nanomedicine for Malignant Prostate Tumors

Abstract

Introduction

Prostate cancer is the most common cancer among men globally. The first-line drug, cabazitaxel (CTX), has significant side effects such as neutropenia and anemia. To address this, we aimed to develop hyaluronic acid (HA)-modified human serum albumin (HSA)-loaded CTX nanoparticles (HA-CTX NPs) to target prostate tumors with enhanced efficacy and reduced toxicity.

Methods

HA-CTX NPs were synthesized a self-assembly method and optimized using unidirectional and response surface analyses. The NPs were characterized by particle size, zeta potential, and morphology. experiments evaluated the pharmacokinetics, cytotoxicity, and cellular uptake in prostate cancer cells with high CD44 expression and in HepG-2 cells with low CD44 expression. anti-tumor efficacy and biosafety were assessed using tumor-bearing models.

Results

The optimized HA-CTX NPs achieved an encapsulation efficiency of 89.2 ± 1.3%. Disulfide bonds enabled rapid drug release in the tumor microenvironment with high glutathione levels. studies showed significant cytotoxicity and targeting ability for prostate cancer cells. assays demonstrated a tumor inhibition rate of 85.31% with good biosafety.

Discussion

HA-CTX NPs exhibited superior anti-tumor efficacy and biosafety compared to Jevtana®. The targeting ability was attributed to the high CD44 expression in prostate cancer cells. The rapid drug release in the tumor microenvironment contributed to the enhanced therapeutic effect. Limitations include the need for further long-term safety studies.

Conclusion

HA-CTX NPs represent a promising nanomedicine for prostate tumor treatment, offering improved efficacy and reduced side effects compared to conventional CTX formulations.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018415982251117074725
2026-01-08
2026-02-20
Loading full text...

Full text loading...

References

  1. Wang H. Wu D. Wang P. Gao C. Teng H. Liu D. Zhao Y. Du R. Albumin nanoparticles and their folate modified counterparts for delivery of a lupine derivative to hepatocellular carcinoma. Biomed. Pharmacother. 2023 167 115485 10.1016/j.biopha.2023.115485 37713994
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  3. Xiang S. Zhang H. Zhang J. Breaking hypoxic barrier: Oxygensupplied nanomaterials for enhanced T cell-mediated tumor immunotherapy. Int. J. Pharm. X 2025 10 100400. 10.1016/j.ijpx.2025.100400
    [Google Scholar]
  4. Nam R.K. Cheung P. Herschorn S. Saskin R. Su J. Klotz L.H. Chang M. Kulkarni G.S. Lee Y. Kodama R.T. Narod S.A. Incidence of complications other than urinary incontinence or erectile dysfunction after radical prostatectomy or radiotherapy for prostate cancer: A population-based cohort study. Lancet Oncol. 2014 15 2 223 231 10.1016/S1470‑2045(13)70606‑5 24440474
    [Google Scholar]
  5. Perez C.A. Hanks G.E. Leibel S.A. Zietman A.L. Fuks Z. Lee W.R. Localized carcinoma of the prostate (Stages T1B, T1C, T2, and T3). Review of management with external beam radiation therapy. Cancer 1993 72 11 3156 3173 10.1002/1097‑0142(19931201)72:11<3156:AID‑CNCR2820721106>3.0.CO;2‑G 7694785
    [Google Scholar]
  6. Shore N. Management of early-stage prostate cancer. Am. J. Manag. Care 2014 20 12 S260 S272 25734965
    [Google Scholar]
  7. Huang Z. Wang Y. Yao D. Wu J. Hu Y. Yuan A. Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress. Nat. Commun. 2021 12 1 145 10.1038/s41467‑020‑20243‑8 33420008
    [Google Scholar]
  8. Altman D. Granath F. Cnattingius S. Falconer C. Hysterectomy and risk of stress-urinary-incontinence surgery: Nationwide cohort study. Lancet 2007 370 9597 1494 1499 10.1016/S0140‑6736(07)61635‑3 17964350
    [Google Scholar]
  9. Blomberg K. Wengström Y. Sundberg K. Browall M. Isaksson A.K. Nyman M.H. Langius-Eklöf A. Symptoms and self-care strategies during and six months after radiotherapy for prostate cancer – Scoping the perspectives of patients, professionals and literature. Eur. J. Oncol. Nurs. 2016 21 139 145 10.1016/j.ejon.2015.09.004 26482003
    [Google Scholar]
  10. Pourmadadi M. Ghaemi A. Shaghaghi M. Rahdar A. Pandey S. Cabazitaxel-nano delivery systems as a cutting-edge for cancer therapy. J. Drug Deliv. Sci. Technol. 2023 82 104338 10.1016/j.jddst.2023.104338
    [Google Scholar]
  11. Lai X. Lu T. Zhang F. Khan A. Zhao Y. Li X. Xiang S. Lin K. Lysosome-targeted theranostics: Integration of real-time fluorescence imaging and controlled drug delivery via Zn(II)-Schiff Base complexes. J. Inorg Biochem. 2025 272 113015 10.1016/j.jinorgbio.2025.113015 40716183
    [Google Scholar]
  12. Sun W. Jang M.S. Zhan S. Liu C. Sheng L. Lee J.H. Fu Y. Yang H.Y. Tumor-targeting and redox-responsive photo-cross-linked nanogel derived from multifunctional hyaluronic acid-lipoic acid conjugates for enhanced in vivo protein delivery. Int. J. Biol. Macromol. 2025 314 144444 10.1016/j.ijbiomac.2025.144444 40403518
    [Google Scholar]
  13. Yang S. Liu Y. Wu T. Zhang X. Xu S. Pan Q. Zhu L. Zheng P. Qiao D. Zhu W. Synthesis and application of a novel multifunctional nanoprodrug for synergistic chemotherapy and phototherapy with hydrogen sulfide gas. J. Med. Chem. 2025 68 3 3197 3211 10.1021/acs.jmedchem.4c02426 39786725
    [Google Scholar]
  14. Li K Wang Q Tang X Akakuru OU Li R Wang Y Zhang R Jiang Z Yang Z Advances in prostate cancer biomarkers and probes. Cyborg Bionic Syst. 2024 5 0129 10.34133/cbsystems.0129 40353136
    [Google Scholar]
  15. Reddy L.H. Bazile D. Drug delivery design for intravenous route with integrated physicochemistry, pharmacokinetics and pharmacodynamics: Illustration with the case of taxane therapeutics. Adv. Drug Deliv. Rev. 2014 71 34 57 10.1016/j.addr.2013.10.007 24184489
    [Google Scholar]
  16. Nightingale G. Ryu J. Cabazitaxel (jevtana): A novel agent for metastatic castration-resistant prostate cancer. 2012 37 8 440 448 23091336
  17. Sun B. Jing H. Mabrouk M.T. Zhang Y. Jin H. Lovell J.F. A surfactant-stripped cabazitaxel micelle formulation optimized with accelerated storage stability. Pharm. Dev. Technol. 2020 25 10 1281 1288 10.1080/10837450.2020.1818780 32892678
    [Google Scholar]
  18. Han X. Gong F. Sun J. Li Y. Liu X.F. Chen D. Liu J. Shen Y. Glutathione-responsive core cross-linked micelles for controlled cabazitaxel delivery. J. Nanopart. Res. 2018 20 2 42 10.1007/s11051‑018‑4128‑3
    [Google Scholar]
  19. Prabhakar K. Afzal S.M. Surender G. Kishan V. Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain. Acta Pharm. Sin. B 2013 3 5 345 353 10.1016/j.apsb.2013.08.001
    [Google Scholar]
  20. ten Tije A.J. Verweij J. Loos W.J. Sparreboom A. Pharmacological effects of formulation vehicles: Implications for cancer chemotherapy. Clin. Pharmacokinet. 2003 42 7 665 685 10.2165/00003088‑200342070‑00005 12844327
    [Google Scholar]
  21. Qu N. Song K. Ji Y. Liu M. Chen L. Lee R. Teng L. Albumin nanoparticle-based drug delivery systems. Int. J. Nanomedicine 2024 19 6945 6980 10.2147/IJN.S467876 39005962
    [Google Scholar]
  22. Yasuda K. Maeda H. Kinoshita R. Minayoshi Y. Mizuta Y. Nakamura Y. Imoto S. Nishi K. Yamasaki K. Sakuragi M. Nakamura T. Ikeda-Imafuku M. Iwao Y. Ishima Y. Ishida T. Iwakiri Y. Otagiri M. Watanabe H. Maruyama T. Encapsulation of an antioxidant in redox-sensitive self-assembled albumin nanoparticles for the treatment of Hepatitis. ACS Nano 2023 17 17 16668 16681 10.1021/acsnano.3c02877 37579503
    [Google Scholar]
  23. Paul M. Itoo A.M. Ghosh B. Biswas S. Current trends in the use of human serum albumin for drug delivery in cancer. Expert Opin. Drug Deliv. 2022 19 11 1449 1470 10.1080/17425247.2022.2134341 36253957
    [Google Scholar]
  24. Chen Q. Liu Z. Albumin carriers for cancer theranostics: A conventional platform with new promise. Adv. Mater. 2016 28 47 10557 10566 10.1002/adma.201600038 27111654
    [Google Scholar]
  25. Gou Y. Zhang Z. Li D. Zhao L. Cai M. Sun Z. Li Y. Zhang Y. Khan H. Sun H. Wang T. Liang H. Yang F. HSA-based multi-target combination therapy: Regulating drugs’ release from HSA and overcoming single drug resistance in a breast cancer model. Drug Deliv. 2018 25 1 321 329 10.1080/10717544.2018.1428245 29350051
    [Google Scholar]
  26. Tan Y.L. Ho H.K. Navigating albumin-based nanoparticles through various drug delivery routes. Drug Discov. Today 2018 23 5 1108 1114 10.1016/j.drudis.2018.01.051 29408437
    [Google Scholar]
  27. Markus G. Karush F. The disulfide bonds of human serum albumin and bovine γ-globulin1. J. Am. Chem. Soc. 1957 79 1 134 139 10.1021/ja01558a034
    [Google Scholar]
  28. Hassn Mesrati M. Syafruddin S.E. Mohtar M.A. Syahir A. CD44: A multifunctional mediator of cancer progression. Biomolecules 2021 11 12 1850 10.3390/biom11121850
    [Google Scholar]
  29. Senbanjo L.T. Chellaiah M.A. CD44: A multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front. Cell Dev. Biol. 2017 5 18 10.3389/fcell.2017.00018 28326306
    [Google Scholar]
  30. Mishra M. Chandavarkar V. Sharma R. Bhargava D. Structure, function and role of CD44 in neoplasia. J. Oral Maxillofac. Pathol. 2019 23 2 267 272 10.4103/jomfp.JOMFP_246_18 31516234
    [Google Scholar]
  31. Pęcak A. Skalniak Ł. Pels K. Książek M. Madej M. Krzemień D. Malicki S. Władyka B. Dubin A. Holak T.A. Dubin G. Anti-CD44 DNA aptamers selectively target cancer cells. Nucleic Acid Ther. 2020 30 5 289 298 10.1089/nat.2019.0833 32379519
    [Google Scholar]
  32. Hou Y. Zou Q. Ge R. Shen F. Wang Y. The critical role of CD133+CD44+/high tumor cells in hematogenous metastasis of liver cancers. Cell Res. 2012 22 1 259 272 10.1038/cr.2011.139 21862973
    [Google Scholar]
  33. Kazemi Y. Dehghani S. Nosrati R. Taghdisi S.M. Abnous K. Alibolandi M. Ramezani M. Recent progress in the early detection of cancer based on CD44 biomarker; Nano-biosensing approaches. Life Sci. 2022 300 120593 10.1016/j.lfs.2022.120593
    [Google Scholar]
  34. Lee S.Y. Kang M.S. Jeong W.Y. Han D-W. Kim K.S. Hyaluronic acid-based theranostic nanomedicines for targeted cancer therapy. Cancers 2020 12 4 940 10.3390/cancers12040940
    [Google Scholar]
  35. Harada H. Takahashi M. CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J. Biol. Chem. 2007 282 8 5597 5607 10.1074/jbc.M608358200 17170110
    [Google Scholar]
  36. Passi A. Vigetti D. Hyaluronan: Structure, metabolism, and biological properties. Extracellular Sugar-Based Biopolymers Matrices 2019 12 155 186 10.1007/978‑3‑030‑12919‑4_4
    [Google Scholar]
  37. Ghatak S. Maytin E.V. Mack J.A. Hascall V.C. Atanelishvili I. Moreno Rodriguez R. Markwald R.R. Misra S. Roles of proteoglycans and glycosaminoglycans in wound healing and fibrosis. Int. J. Cell Biol. 2015 2015 1 1 20 10.1155/2015/834893 26448760
    [Google Scholar]
  38. Khowala S. Verma D. Banik S.P. Biomolecules:(introduction, structure and function). Doctor of Philosophy. Indian Institute of Chemical Biology 2008 3 9
    [Google Scholar]
  39. Chakrabarti B. Park J.W. Stevens E.S. Glycosaminoglycans: Structure and Interactio. Crit. Rev. Biochem. 1980 8 3 225 313 10.3109/10409238009102572 6774852
    [Google Scholar]
  40. Egil A.C. Kesim H. Ustunkaya B. Kutlu Ö. Ozaydin Ince G. Self-assembled albumin nanoparticles for redox responsive release of curcumin. J. Drug Deliv. Sci. Technol. 2022 76 103831 10.1016/j.jddst.2022.103831
    [Google Scholar]
  41. Idrees H. Zaidi S.Z.J. Sabir A. Khan R.U. Zhang X. Hassan S. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials 2020 10 10 1970 10.3390/nano10101970 33027891
    [Google Scholar]
  42. Kim T.H. Jiang H.H. Youn Y.S. Park C.W. Tak K.K. Lee S. Kim H. Jon S. Chen X. Lee K.C. Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Int. J. Pharm. 2011 403 1-2 285 291 10.1016/j.ijpharm.2010.10.041 21035530
    [Google Scholar]
  43. Elmizadeh A. Goli S.A.H. Mohammadifar M.A. Rahimmalek M. Fabrication and characterization of pectin-zein nanoparticles containing tanshinone using anti-solvent precipitation method. Int. J. Biol. Macromol. 2024 260 Pt 1 129463 10.1016/j.ijbiomac.2024.129463 38237820
    [Google Scholar]
  44. Yi K. Wang X. Li P. Gao Y. He D. Pan Y. Ma X. Hu G. Zhai Y. Amphiphilic mPEG-PLGA copolymer nanoparticles co-delivering colistin and niclosamide to treat colistin-resistant Gram-negative bacteria infections. Commun. Biol. 2025 8 1 673 10.1038/s42003‑025‑08095‑8 40295783
    [Google Scholar]
  45. Lim J. Yeap S.P. Che H.X. Low S.C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 2013 8 1 381 10.1186/1556‑276X‑8‑381 24011350
    [Google Scholar]
  46. He C. Hu Y. Yin L. Tang C. Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010 31 13 3657 3666 10.1016/j.biomaterials.2010.01.065 20138662
    [Google Scholar]
  47. Zhang M. Zhou N. Zhao L. Zhao L. Black rice anthocyanins nanoparticles based on bovine serum albumin and hyaluronic acid: Preparation, characterization, absorption and intestinal barrier function protection in Caco-2 monolayers. Int. J. Biol. Macromol. 2024 267 Pt 2 131325 10.1016/j.ijbiomac.2024.131325 38604425
    [Google Scholar]
  48. Saleh T. Soudi T. Shojaosadati S.A. Redox responsive curcumin-loaded human serum albumin nanoparticles: Preparation, characterization and in vitro evaluation. Int. J. Biol. Macromol. 2018 114 759 766 10.1016/j.ijbiomac.2018.03.085 29567499
    [Google Scholar]
  49. Baig M.H. Rahman S. Rabbani G. Imran M. Ahmad K. Choi I. Multi-spectroscopic characterization of human serum albumin binding with cyclobenzaprine hydrochloride: Insights from biophysical and in silico approaches. Int. J. Mol. Sci. 2019 20 3 662 10.3390/ijms20030662 30717459
    [Google Scholar]
  50. Rogóż W. Owczarzy A. Kulig K. Maciążek-Jurczyk M. Ligand-human serum albumin analysis: the near-UV CD and UV-Vis spectroscopic studies. Naunyn Schmiedebergs Arch. Pharmacol. 2025 398 3 3119 3131 10.1007/s00210‑024‑03471‑3 39347800
    [Google Scholar]
  51. Shikuku R. Hasnat M.A. Mashrur S.B.A. Haque P. Rahman M.M. Khan M.N. Chitosan-based pH-sensitive semi-interpenetrating network nanoparticles as a sustained release matrix for anticancer drug delivery. Carbohydr Polym. Technol Appl. 2024 7 100515 10.1016/j.carpta.2024.100515
    [Google Scholar]
  52. Yang J. Lv Q. Wei W. Yang Z. Dong J. Zhang R. Kan Q. He Z. Xu Y. Bioresponsive albumin-conjugated paclitaxel prodrugs for cancer therapy. Drug Deliv. 2018 25 1 807 814 10.1080/10717544.2018.1451935 29553858
    [Google Scholar]
  53. Gómez-Lázaro L. Martín-Sabroso C. Aparicio-Blanco J. Torres-Suárez A.I. Assessment of in vitro release testing methods for colloidal drug carriers: The lack of standardized protocols. Pharmaceutics 2024 16 1 103 10.3390/pharmaceutics16010103 38258113
    [Google Scholar]
  54. Demirturk E. Ugur Kaplan A.B. Cetin M. Dönmez Kutlu M. Köse S. Akıllıoğlu K. Preparation of nanoparticle and nanoemulsion formulations containing repaglinide and determination of pharmacokinetic parameters in rats. Eur. J. Pharm. Sci. 2024 200 106844 10.1016/j.ejps.2024.106844 38977205
    [Google Scholar]
  55. Whyte C.E. Chemokine-mediated control of immunity to tumours and infectious pathogens. Doctor of Philosophy. University of Adelaide 2018
    [Google Scholar]
  56. Supino R. MTT assays. In vitro Toxicity Testing Protocols 1995 43 137 149 10.1385/0‑89603‑282‑5:137
    [Google Scholar]
  57. Huang K.T. Chen Y.H. Walker A.M. Inaccuracies in MTS assays: Major distorting effects of medium, serum albumin, and fatty acids. Biotechniques 2004 37 3 406 412 10.2144/04373ST05 15470895
    [Google Scholar]
  58. Gupta A.K. Gupta M. Yarwood S.J. Curtis A.S.G. Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. J. Control. Release 2004 95 2 197 207 10.1016/j.jconrel.2003.11.006 14980768
    [Google Scholar]
  59. Ferro A. Mestre T. Carneiro P. Sahumbaiev I. Seruca R. Sanches J.M. Blue intensity matters for cell cycle profiling in fluorescence DAPI-stained images. Lab. Invest. 2017 97 5 615 625 10.1038/labinvest.2017.13 28263290
    [Google Scholar]
  60. Charan J. Kantharia N.D. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 2013 4 4 303 306 10.4103/0976‑500X.119726 24250214
    [Google Scholar]
  61. Ji M. Liu H. Liang X. Wei M. Shi D. Gou J. Yin T. He H. Tang X. Zhang Y. Tumor cells are under siege from all sides: Tumor Cell-Mimic Metal−Organic framework nanoparticles triggering cuproptosis/ferroptosis/apoptosis for chemo-chemodynamic-photothermal-immunological synergistic antitumor therapy. Chem. Eng. J. 2024 485 149640 JI M. 10.1016/j.cej.2024.149640
    [Google Scholar]
  62. Zavrakidis I. Jóźwiak K. Hauptmann M. Statistical analysis of longitudinal data on tumour growth in mice experiments. Sci. Rep. 2020 10 1 9143 10.1038/s41598‑020‑65767‑7 32499558
    [Google Scholar]
  63. Zawidzka E.M. Biavati L. Thomas A. Zanettini C. Marchionni L. Leone R. Borrello I. Tumor-specific CD8 + T cells from the bone marrow resist exhaustion and exhibit increased persistence in tumor-bearing hosts as compared with tumor-infiltrating lymphocytes. J. Immunother. Cancer 2025 13 2 e009367 10.1136/jitc‑2024‑009367 40010772
    [Google Scholar]
  64. Tao H. Wang R. Sheng W. Zhen Y. The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. Int. J. Biol. Macromol. 2021 187 24 34 10.1016/j.ijbiomac.2021.07.080 34284054
    [Google Scholar]
  65. Matsuda Y. Fujii T. Suzuki T. Yamahatsu K. Kawahara K. Teduka K. Kawamoto Y. Yamamoto T. Ishiwata T. Naito Z. Comparison of fixation methods for preservation of morphology, RNAs, and proteins from paraffin-embedded human cancer cell-implanted mouse models. J. Histochem. Cytochem. 2011 59 1 68 75 10.1369/jhc.2010.957217 20940453
    [Google Scholar]
  66. Perera Y. Farina H.G. Hernández I. Mendoza O. Serrano J.M. Reyes O. Gómez D.E. Gómez R.E. Acevedo B.E. Alonso D.F. Perea S.E. Systemic administration of a peptide that impairs the protein kinase (CK2) phosphorylation reduces solid tumor growth in mice. Int. J. Cancer 2008 122 1 57 62 10.1002/ijc.23013 17847034
    [Google Scholar]
  67. Davenport A.P. Kuc R.E. Immunocytochemical localization of receptors using light and confocal microscopy with application to the phenotypic characterization of knock-out mice. Receptor Binding Techniques 2005 306 155 172 10.1385/1‑59259‑927‑3:155
    [Google Scholar]
  68. Meng H. Xue M. Xia T. Ji Z. Tarn D.Y. Zink J.I. Nel A.E. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 2011 5 5 4131 4144 10.1021/nn200809t 21524062
    [Google Scholar]
  69. Tiwari S. Bahadur P. Modified hyaluronic acid based materials for biomedical applications. Int. J. Biol. Macromol. 2019 121 556 571 10.1016/j.ijbiomac.2018.10.049 30321638
    [Google Scholar]
  70. Ronca A. D’Amora U. Raucci M.G. Lin H. Fan Y. Zhang X. Ambrosio L. A combined approach of double network hydrogel and nanocomposites based on hyaluronic acid and poly(ethylene glycol) diacrylate blend. Materials 2018 11 12 2454 10.3390/ma11122454 30518026
    [Google Scholar]
  71. Mirzayeva T. Čopíková J. Kvasnička F. Bleha R. Synytsya A. Screening of the chemical composition and identification of hyaluronic acid in food issues by fractionation and fourier-transform infrared spectroscopy. Polymers 2021 13 22 4002 10.3390/polym13224002 34833306
    [Google Scholar]
  72. Bian Q. Liu J. Tian J. Hu Z. Binding of genistein to human serum albumin demonstrated using tryptophan fluorescence quenching. Int. J. Biol. Macromol. 2004 34 5 275 279 10.1016/j.ijbiomac.2004.09.005 15556236
    [Google Scholar]
  73. Taboada P. Barbosa S. Castro E. Gutiérrez-Pichel M. Mosquera V. Effect of solvation on the structure conformation of human serum albumin in aqueous–alcohol mixed solvents. Chem. Phys. 2007 340 1-3 59 68 10.1016/j.chemphys.2007.07.027
    [Google Scholar]
  74. Asghar S. Salmani J.M.M. Hassan W. Xie Y. Meng F. Su Z. Sun M. Xiao Y. Ping Q. A facile approach for crosslinker free nano self assembly of protein for anti-tumor drug delivery: Factors’ optimization, characterization and in vitro evaluation. Eur. J. Pharm. Sci. 2014 63 53 62 10.1016/j.ejps.2014.06.022 25004412
    [Google Scholar]
  75. Ghisaidoobe A. Chung S. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on Förster resonance energy transfer techniques. Int. J. Mol. Sci. 2014 15 12 22518 22538 10.3390/ijms151222518 25490136
    [Google Scholar]
  76. Kesharwani P. Chadar R. Sheikh A. Rizg W.Y. Safhi A.Y. CD44-Targeted nanocarrier for cancer therapy. Front. Pharmacol. 2022 12 800481 10.3389/fphar.2021.800481 35431911
    [Google Scholar]
  77. Yuan L. Chen Q. Riviere J.E. Lin Z. Pharmacokinetics and tumor delivery of nanoparticles. J. Drug Deliv. Sci. Technol. 2023 83 104404 10.1016/j.jddst.2023.104404 38037664
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018415982251117074725
Loading
/content/journals/cdd/10.2174/0115672018415982251117074725
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: nanoparticle ; cabazitaxel ; redox response ; human serum albumin ; Hyaluronic acid ; prostate tumor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test