Skip to content
2000
image of A Dual-Drug Nanosuspension of Bufalin and Quercetin Exhibits Potent Anti-Hepatocellular Carcinoma Activity In vitro and In vivo

Abstract

Introduction

Both bufalin (BF) and quercetin (QUE) have demonstrated significant antitumor potential. However, they suffer from poor solubility and low bioavailability, which largely limit their clinical application. In order to increase the antitumor activity of BF and QUE by synergistic effect, BF and QUE co-loaded nanosuspension (BF-QUE NS) was developed.

Methods

The MTT method was used to determine the viability of HepG2 cells after treatment with BF and QUE at different mass ratios, and the optimal combination ratio was screened. BF-QUE NS was prepared by the anti-solvent precipitation method, and the single factors affecting its preparation were investigated to optimize the formulation and preparation process of the best combined NS. BF-QUE NS was characterized by observing morphology, measuring particle size and zeta potential, X-ray diffraction, differential scanning calorimetry, and drug release . Cytotoxicity was detected using the MTT method; the uptake of BF-QUE NS by HepG2 cells was observed by laser confocal microscopy and flow cytometry; apoptosis of HepG2 cells was detected by flow cytometry. BF-QUE NS was systematically characterized, and H22 tumor-bearing mice were further used to investigate the targeting distribution, antitumor effect.

Results

The optimal synergistic ratio of BF to QUE was 3:2. The mass ratio of BF and QUE in BF-QUE NS was 1.47:1. The optimized BF-QUE NS exhibited an average particle size of 238.4 ± 2.1 nm, polydispersity index of 0.250 ± 0.004, zeta potential of -22.2 ± 0.3 mV, and presented good short-term physical stability. and experiments demonstrated that BF-QUE NS exhibited significant liver tumor-targeting efficacy, achieving an inhibition rate of 72.59% in H22 tumor-bearing mice, along with high safety profiles.

Discussion

BF-QUE NS provides a practical solution to the delivery challenges of poorly soluble anti-cancer drugs.

Conclusion

The prepared BF-QUE NS enhanced the drug solubility and promoted the targeted accumulation in tumors, thereby strengthening the synergistic anti-tumor effect of BF and QUE. BF-QUE NS shows potential for clinical application as an anti-liver tumor drug.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018405334250831225746
2025-10-01
2025-11-16
Loading full text...

Full text loading...

References

  1. Ganesan P. Kulik L.M. Hepatocellular carcinoma. Clin. Liver Dis. 2023 27 1 85 102 10.1016/j.cld.2022.08.004 36400469
    [Google Scholar]
  2. Salem R. Johnson G.E. Kim E. Riaz A. Bishay V. Boucher E. Fowers K. Lewandowski R. Padia S.A. Yttrium‐90 radioembolization for the treatment of solitary, unresectable HCC: The LEGACY study. Hepatology 2021 74 5 2342 2352 10.1002/hep.31819 33739462
    [Google Scholar]
  3. Brown Z.J. Tsilimigras D.I. Ruff S.M. Mohseni A. Kamel I.R. Cloyd J.M. Pawlik T.M. Management of hepatocellular carcinoma. JAMA Surg. 2023 158 4 410 420 10.1001/jamasurg.2022.7989 36790767
    [Google Scholar]
  4. Shao H. Li B. Li H. Gao L. Zhang C. Sheng H. Zhu L. Novel strategies for solubility and bioavailability enhancement of bufadienolides. Molecules 2021 27 1 51 10.3390/molecules27010051 35011278
    [Google Scholar]
  5. Xing P. Zhong Y. Cui X. Liu Z. Wu X. Natural products in digestive tract tumors metabolism: Functional and application prospects. Pharmacol. Res. 2023 191 106766 10.1016/j.phrs.2023.106766 37061144
    [Google Scholar]
  6. Liu Y. Yang S. Wang K. Lu J. Bao X. Wang R. Qiu Y. Wang T. Yu H. Cellular senescence and cancer: Focusing on traditional Chinese medicine and natural products. Cell Prolif. 2020 53 10 e12894 10.1111/cpr.12894 32881115
    [Google Scholar]
  7. Dong S. Guo X. Han F. He Z. Wang Y. Emerging role of natural products in cancer immunotherapy. Acta Pharm. Sin. B 2022 12 3 1163 1185 10.1016/j.apsb.2021.08.020 35530162
    [Google Scholar]
  8. Hu Y. Li R. Jin J. Wang Y. Ma R. Quercetin improves pancreatic cancer chemo‐sensitivity by regulating oxidative‐inflammatory networks. J. Food Biochem. 2022 46 12 e14453 10.1111/jfbc.14453 36181395
    [Google Scholar]
  9. Wang J. Ma W. Tu P. Synergistically improved anti-tumor efficacy by co-delivery doxorubicin and curcumin polymeric micelles. Macromol. Biosci. 2015 15 9 1252 1261 10.1002/mabi.201500043 25981672
    [Google Scholar]
  10. Liang Y. Liu Z.Y. Wang P.Y. Li Y.J. Wang R.R. Xie S.Y. Nanoplatform-based natural products co-delivery system to surmount cancer multidrug-resistant. J. Control. Release 2021 336 396 409 10.1016/j.jconrel.2021.06.034 34175367
    [Google Scholar]
  11. Soumoy L. Ghanem G.E. Saussez S. Journe F. Bufalin for an innovative therapeutic approach against cancer. Pharmacol. Res. 2022 184 106442 10.1016/j.phrs.2022.106442 36096424
    [Google Scholar]
  12. Xu Y. Tang L. Chen P. Chen M. Zheng M. Shi F. Wang Y. Tumor-targeted delivery of bufalin-loaded modified albumin–polymer hybrid for enhanced antitumor therapy and attenuated hemolysis toxicity and cardiotoxicity. AAPS PharmSciTech 2021 22 4 137 10.1208/s12249‑021‑02000‑2 33880681
    [Google Scholar]
  13. Zou A. Zhao X. Handge U.A. Garamus V.M. Willumeit-Römer R. Yin P. Folate receptor targeted bufalin/β-cyclodextrin supramolecular inclusion complex for enhanced solubility and anti-tumor efficiency of bufalin. Mater. Sci. Eng. C 2017 78 609 618 10.1016/j.msec.2017.04.094 28576029
    [Google Scholar]
  14. Cheng X. Huang J. Li H. Zhao D. Liu Z. Zhu L. Zhang Z. Peng W. Quercetin: A promising therapy for diabetic encephalopathy through inhibition of hippocampal ferroptosis. Phytomedicine 2024 126 154887 10.1016/j.phymed.2023.154887 38377720
    [Google Scholar]
  15. Zeng Y.F. Li J.Y. Wei X.Y. Ma S.Q. Wang Q.G. Qi Z. Duan Z.C. Tan L. Tang H. Preclinical evidence of reno-protective effect of quercetin on acute kidney injury: A meta-analysis of animal studies. Front. Pharmacol. 2023 14 1310023 10.3389/fphar.2023.1310023 38186644
    [Google Scholar]
  16. Zheng P. Xu D. Cai Y. Zhu L. Xiao Q. Peng W. Chen B. A multi-omic analysis reveals that Gamabufotalin exerts anti-hepatocellular carcinoma effects by regulating amino acid metabolism through targeting STAMBPL1. Phytomedicine 2024 135 156094 10.1016/j.phymed.2024.156094 39348778
    [Google Scholar]
  17. Tang S.M. Deng X.T. Zhou J. Li Q.P. Ge X.X. Miao L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother. 2020 121 109604 10.1016/j.biopha.2019.109604 31733570
    [Google Scholar]
  18. Wu L. Li J. Liu T. Li S. Feng J. Yu Q. Zhang J. Chen J. Zhou Y. Ji J. Chen K. Mao Y. Wang F. Dai W. Fan X. Wu J. Guo C. Quercetin shows anti‐tumor effect in hepatocellular carcinoma LM3 cells by abrogating JAK2/STAT3 signaling pathway. Cancer Med. 2019 8 10 4806 4820 10.1002/cam4.2388 31273958
    [Google Scholar]
  19. Chen Z. Huang C. Ma T. Jiang L. Tang L. Shi T. Zhang S. Zhang L. Zhu P. Li J. Shen A. Reversal effect of quercetin on multidrug resistance via FZD7/β-catenin pathway in hepatocellular carcinoma cells. Phytomedicine 2018 43 37 45 10.1016/j.phymed.2018.03.040 29747752
    [Google Scholar]
  20. Guo H. Ding H. Tang X. Liang M. Li S. Zhang J. Cao J. Quercetin induces pro‐apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac. Cancer 2021 12 9 1415 1422 10.1111/1759‑7714.13925 33709560
    [Google Scholar]
  21. Zhang D. Liu X. Li X. Cai X. Diao Z. Qiu L. Chen X. Liu Y. Sun J. Cui D. Ye Q. Yin T. A multifunctional low-temperature photothermal nanomedicine for melanoma treatment via the oxidative stress pathway therapy. Int. J. Nanomedicine 2024 19 11671 11688 10.2147/IJN.S487683 39553457
    [Google Scholar]
  22. Wang Q. Wang F. Li X. Ma Z. Jiang D. Quercetin inhibits the amphiregulin/EGFR signaling‐mediated renal tubular epithelial‐mesenchymal transition and renal fibrosis in obstructive nephropathy. Phytother. Res. 2023 37 1 111 123 10.1002/ptr.7599 36221860
    [Google Scholar]
  23. Hatahet T. Morille M. Hommoss A. Devoisselle J.M. Müller R.H. Bégu S. Quercetin topical application, from conventional dosage forms to nanodosage forms. Eur. J. Pharm. Biopharm. 2016 108 41 53 10.1016/j.ejpb.2016.08.011 27565033
    [Google Scholar]
  24. Gurunathan S. Kang M.H. Qasim M. Kim J.H. Nanoparticle-mediated combination therapy: Two-in-one approach for cancer. Int. J. Mol. Sci. 2018 19 10 3264 10.3390/ijms19103264 30347840
    [Google Scholar]
  25. Zhao M. van Straten D. Broekman M.L.D. Préat V. Schiffelers R.M. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics 2020 10 3 1355 1372 10.7150/thno.38147 31938069
    [Google Scholar]
  26. Wang X. Li J. Chen R. Li T. Chen M. Active ingredients from chinese medicine for combination cancer therapy. Int. J. Biol. Sci. 2023 19 11 3499 3525 10.7150/ijbs.77720 37497002
    [Google Scholar]
  27. Tran B.N. Ninh T.T.K. Do T.T. Do P.T. Nguyen C.N. Hybrid nanoparticle for co-delivering paclitaxel and dihydroartemisinin to exhibit synergic anticancer therapeutics. Curr. Cancer Drug Targets 2024 24 12 1250 1261 10.2174/0115680096283208231229103822 38321897
    [Google Scholar]
  28. Aumeeruddy M.Z. Mahomoodally M.F. Combating breast cancer using combination therapy with 3 phytochemicals: Piperine, sulforaphane, and thymoquinone. Cancer 2019 125 10 1600 1611 10.1002/cncr.32022 30811596
    [Google Scholar]
  29. Aguilar-Hernández G. López-Romero B.A. Nicolás-García M. Nolasco-González Y. García-Galindo H.S. Montalvo-González E. Nanosuspensions as carriers of active ingredients: Chemical composition, development methods, and their biological activities. Food Res. Int. 2023 174 Pt 1 113583 10.1016/j.foodres.2023.113583 37986449
    [Google Scholar]
  30. Jacob S. Nair A.B. Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater. Res. 2020 24 1 3 10.1186/s40824‑020‑0184‑8 31969986
    [Google Scholar]
  31. Li B. Shao H. Gao L. Li H. Sheng H. Zhu L. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: A review. Drug Deliv. 2022 29 1 2130 2161 10.1080/10717544.2022.2094498 35815678
    [Google Scholar]
  32. Chavhan R. Nanosuspensions: Enhancing drug bioavailability through nanonization. Ann. Pharm. Fr. 2025 83 2 251 271 10.1016/j.pharma.2024.06.003 38945393
    [Google Scholar]
  33. Sahu B.P. Hazarika H. Bharadwaj R. Loying P. Baishya R. Dash S. Das M.K. Curcumin-docetaxel co-loaded nanosuspension for enhanced anti-breast cancer activity. Expert Opin. Drug Deliv. 2016 13 8 1065 1074 10.1080/17425247.2016.1182486 27124646
    [Google Scholar]
  34. Wang R. Yang M. Li G. Wang X. Zhang Z. Qiao H. Chen J. Chen Z. Cui X. Li J. Paclitaxel-betulinic acid hybrid nanosuspensions for enhanced anti-breast cancer activity. Colloids Surf. B Biointerfaces 2019 174 270 279 10.1016/j.colsurfb.2018.11.029 30469048
    [Google Scholar]
  35. Chou T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010 70 2 440 446 10.1158/0008‑5472.CAN‑09‑1947 20068163
    [Google Scholar]
  36. Ghasemi M. Turnbull T. Sebastian S. Kempson I. The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int. J. Mol. Sci. 2021 22 23 12827 10.3390/ijms222312827 34884632
    [Google Scholar]
  37. El Hassouni B. Mantini G. Li Petri G. Capula M. Boyd L. Weinstein H.N.W. Vallés-Marti A. Kouwenhoven M.C.M. Giovannetti E. Westerman B.A. Peters G.J. To combine or not combine: Drug interactions and tools for their analysis. Anticancer Res. 2019 39 7 3303 3309 10.21873/anticanres.13472 31262850
    [Google Scholar]
  38. Kovshova T. Mantrov S. Boiko S. Malinovskaya J. Merkulova M. Osipova N. Moiseeva N. Akimov M. Dudina P. Senchikhin I. Ermolenko Y. Gelperina S. Co-delivery of paclitaxel and etoposide prodrug by human serum albumin and PLGA nanoparticles: Synergistic cytotoxicity in brain tumour cells. J. Microencapsul. 2023 40 4 246 262 10.1080/02652048.2023.2188943 36880479
    [Google Scholar]
  39. Li P. Yang S. Dou M. Chen Y. Zhang J. Zhao X. Synergic effects of artemisinin and resveratrol in cancer cells. J. Cancer Res. Clin. Oncol. 2014 140 12 2065 2075 10.1007/s00432‑014‑1771‑7 25048878
    [Google Scholar]
  40. Singh R. Cheng S. Li J. Kumar S. Zeng Q. Zeng Q. Norcantharidin combined with 2-deoxy-D-glucose suppresses the hepatocellular carcinoma cells proliferation and migration. 3 Biotech 2021 11 3 142 10.1007/s13205‑021‑02688‑w
    [Google Scholar]
  41. Zhang X. Guo T. Liu X. Kuang W. Zhong Y. Zhang M. Huang Y. Liu Z. Anti-solvent precipitation for the preparation of nobiletin nano-particles under ultrasonication-cis/reverse homogenization. Ultrason. Sonochem. 2023 96 106433 10.1016/j.ultsonch.2023.106433 37163955
    [Google Scholar]
  42. Bao X. Rong S. Fu Q. Liu H. Han Y. Liu F. Ye Z. Chen S. Zein-yeast carboxymethyl glucan particles formed by anti-solvent precipitation for encapsulating resveratrol. Int. J. Biol. Macromol. 2023 253 Pt 8 127557 10.1016/j.ijbiomac.2023.127557 37865360
    [Google Scholar]
  43. Pirincci Tok Y. Mesut B. Güngör S. Sarıkaya A.O. Aldeniz E.E. Dude U. Özsoy Y. Systematic screening study for the selection of proper stabilizers to produce physically stable canagliflozin nanosuspension by wet milling method. Bioengineering 2023 10 8 927 10.3390/bioengineering10080927 37627812
    [Google Scholar]
  44. Gülbağ Pınar S. Çelebi N. Development of cyclosporine a nanosuspension using an experimental design based on response surface methodology: In vitro evaluations. Turk J. Pharm. Sci. 2024 21 5 428 439 39569680
    [Google Scholar]
  45. Panzade P. Shendarkar G. Kulkarni D. Shelke S. Solid state characterization and dissolution enhancement of nevirapine cocrystals. Adv. Pharm. Bull. 2020 11 4 772 776 10.34172/apb.2021.087 34888225
    [Google Scholar]
  46. Pınar S.G. Oktay A.N. Karaküçük A.E. Çelebi N. Formulation strategies of nanosuspensions for various administration routes. Pharmaceutics 2023 15 5 1520 10.3390/pharmaceutics15051520 37242763
    [Google Scholar]
  47. Fan M. Geng S. Liu Y. Wang J. Wang Y. Zhong J. Yan Z. Yu L. Nanocrystal technology as a strategy to improve drug bioavailability and antitumor efficacy for the cancer treatment. Curr. Pharm. Des. 2018 24 21 2416 2424 10.2174/1381612824666180515154109 29766787
    [Google Scholar]
  48. Malamatari M. Taylor K.M.G. Malamataris S. Douroumis D. Kachrimanis K. Pharmaceutical nanocrystals: Production by wet milling and applications. Drug Discov. Today 2018 23 3 534 547 10.1016/j.drudis.2018.01.016 29326082
    [Google Scholar]
  49. Sheng H. Zhang Y. Nai J. Wang S. Dai M. Lin G. Zhu L. Zhang Q. Preparation of oridonin nanocrystals and study of their endocytosis and transcytosis behaviours on MDCK polarized epithelial cells. Pharm. Biol. 2020 58 1 518 527 10.1080/13880209.2020.1767160 32501184
    [Google Scholar]
  50. He Y. Xia D. Li Q. Tao J. Gan Y. Wang C. Enhancement of cellular uptake, transport and oral absorption of protease inhibitor saquinavir by nanocrystal formulation. Acta Pharmacol. Sin. 2015 36 9 1151 1160 10.1038/aps.2015.53 26256404
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018405334250831225746
Loading
/content/journals/cdd/10.2174/0115672018405334250831225746
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test