Skip to content
2000
image of Peptide-Loaded Nanoparticles: A Precision Approach to Breast Cancer Treatment

Abstract

Breast cancer (BC) continues to be the most prevalent cause of death from cancer on a global scale, requiring novel and targeted therapeutic strategies. Peptide-loaded nanoparticles (NPs) have been established as a prospective platform for precision drug delivery in BC treatment, providing enhanced cancer selectivity, improved drug stability, and reduced systemic toxicity. This article explores the multifaceted utilizations of peptide-loaded NPs in BC therapeutics, highlighting advancements in targeted drug delivery, combination therapy, and vaccine development. Peptide-loaded NPs have demonstrated superior efficacy in delivering chemotherapeutic agents, overcoming drug resistance, and minimizing adverse effects. Studies on tumor-homing peptides, such as F3-functionalized liquid crystalline NPs and tLyP-1-modified reconstituted high-density lipoprotein NPs, have shown significant improvements in drug accumulation at tumor sites, reduction in metastasis, and prolonged circulation time. Additionally, the creation of peptide-based vaccines targeting tumor-associated antigens, including HER2/neu and heat shock protein 90 (HSP90), is reshaping BC immunotherapy, stimulating strong immune responses against tumors. Despite these advancements, obstacles persist in ensuring NP stability, mitigating immunogenicity, and scaling up manufacturing for clinical translation. Future directions include the integration of peptide-loaded NPs with CRISPR/Cas9 for gene-editing applications, the development of peptide nanovaccines, and the use of personalized nanomedicine approaches tailored to the molecular profiles of individual tumors. This review underscores the potential of peptide-loaded NPs as a next-generation therapeutic strategy, facilitating the development of more efficient and personalized treatments for BC.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018398707250911054410
2025-09-10
2025-11-16
Loading full text...

Full text loading...

References

  1. Hussain M.S. Zhang L. Ashique S. Extracellular vesicles-associated trfs as emerging biomarkers in breast cancer. Curr. Cancer Drug Targets 2025 ••• 25 40457968
    [Google Scholar]
  2. Lei S. Zheng R. Zhang S. Wang S. Chen R. Sun K. Zeng H. Zhou J. Wei W. Global patterns of breast cancer incidence and mortality: A population‐based cancer registry data analysis from 2000 to 2020. Cancer Commun. 2021 41 11 1183 1194 10.1002/cac2.12207 34399040
    [Google Scholar]
  3. Zeng Q. Chen C. Chen C. Song H. Li M. Yan J. Lv X. Serum Raman spectroscopy combined with convolutional neural network for rapid diagnosis of HER2-positive and triple-negative breast cancer. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 286 122000 10.1016/j.saa.2022.122000 36279798
    [Google Scholar]
  4. Ma X. Cheng H. Hou J. Jia Z. Wu G. Lü X. Li H. Zheng X. Chen C. Detection of breast cancer based on novel porous silicon Bragg reflector surface-enhanced Raman spectroscopy-active structure. Chin. Opt. Lett. 2020 18 5 051701 10.3788/COL202018.051701
    [Google Scholar]
  5. Ahmed H. Mushahid H. Overcoming challenges to breast cancer screening among Muslim women: Addressing barriers to early detection and treatment: A correspondence. Cancer Causes Control 2023 34 6 505 507 10.1007/s10552‑023‑01693‑z 37022632
    [Google Scholar]
  6. Ashrafizadeh M. Zarrabi A. Bigham A. Taheriazam A. Saghari Y. Mirzaei S. Hashemi M. Hushmandi K. Karimi-Maleh H. Nazarzadeh Zare E. Sharifi E. Ertas Y.N. Rabiee N. Sethi G. Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med. Res. Rev. 2023 43 6 2115 2176 10.1002/med.21971 37165896
    [Google Scholar]
  7. Hussain M.S. Mujwar S. Babu M.A. Goyal K. Chellappan D.K. Negi P. Singh T.G. Ali H. Singh S.K. Dua K. Gupta G. Balaraman A.K. Pharmacological, computational, and mechanistic insights into triptolide’s role in targeting drug-resistant cancers. Naunyn Schmiedebergs Arch. Pharmacol. 2025 398 6 6509 6530 10.1007/s00210‑025‑03809‑5
    [Google Scholar]
  8. Hussain M.S. Ramalingam P.S. Chellasamy G. Yun K. Bisht A.S. Gupta G. Harnessing artificial intelligence for precision diagnosis and treatment of triple negative breast cancer. Clin. Breast Cancer 2025 25 5 406 421 10.1016/j.clbc.2025.03.006 40158912
    [Google Scholar]
  9. Wei G. Wang Y. Yang G. Wang Y. Ju R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics 2021 11 13 6370 6392 10.7150/thno.57828 33995663
    [Google Scholar]
  10. Gote V. Nookala A.R. Bolla P.K. Pal D. Drug resistance in metastatic breast cancer: Tumor targeted nanomedicine to the rescue. Int. J. Mol. Sci. 2021 22 9 4673 10.3390/ijms22094673 33925129
    [Google Scholar]
  11. Zhao C. Song W. Wang J. Tang X. Jiang Z. Immunoadjuvant-functionalized metal-organic frameworks: Synthesis and applications in tumor immune modulation. Chem. Commun. 2025 61 10 10.1039/D4CC06510G
    [Google Scholar]
  12. Dong Q. Jiang Z. Platinum–iron nanoparticles for oxygen-enhanced sonodynamic tumor cell suppression. Inorganics 2024 12 12 331 10.3390/inorganics12120331
    [Google Scholar]
  13. Shi J. Votruba A.R. Farokhzad O.C. Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 2010 10 9 3223 3230 10.1021/nl102184c 20726522
    [Google Scholar]
  14. Abdullah K.M. Sharma G. Singh A.P. Siddiqui J.A. Nanomedicine in cancer therapeutics: Current perspectives from bench to bedside. Mol. Cancer 2025 24 1 169 10.1186/s12943‑025‑02368‑w 40490771
    [Google Scholar]
  15. Eltaib L. Polymeric nanoparticles in targeted drug delivery: Unveiling the impact of polymer characterization and fabrication. Polymers 2025 17 7 833 10.3390/polym17070833 40219222
    [Google Scholar]
  16. Wang Y. Xu Y. Song J. Liu X. Liu S. Yang N. Wang L. Liu Y. Zhao Y. Zhou W. Zhang Y. Tumor cell-targeting and tumor microenvironment–responsive nanoplatforms for the multimodal imaging-guided photodynamic/photothermal/chemodynamic treatment of cervical cancer. Int. J. Nanomedicine 2024 19 5837 5858 10.2147/IJN.S466042 38887692
    [Google Scholar]
  17. Thakur A. Thakur P. Suhag D. Advancements in Nanobiology: Characterization Techniques and Cutting-Edge Applications. Cham CRC Press 2025 10.1201/9781003472155
    [Google Scholar]
  18. Zhu G. Zhang F. Ni Q. Niu G. Chen X. Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano 2017 11 3 2387 2392 10.1021/acsnano.7b00978 28277646
    [Google Scholar]
  19. Wang X. Qiu Y. Wang M. Zhang C. Zhang T. Zhou H. Zhao W. Zhao W. Xia G. Shao R. Endocytosis and organelle targeting of nanomedicines in cancer therapy. Int. J. Nanomedicine 2020 15 9447 9467 10.2147/IJN.S274289 33268987
    [Google Scholar]
  20. Juan A. Cimas F.J. Bravo I. Pandiella A. Ocaña A. Alonso-Moreno C. Antibody conjugation of nanoparticles as therapeutics for breast cancer treatment. Int. J. Mol. Sci. 2020 21 17 6018 10.3390/ijms21176018 32825618
    [Google Scholar]
  21. Liu M. Wang L. Lo Y. Shiu S.C.C. Kinghorn A.B. Tanner J.A. Aptamer-enabled nanomaterials for therapeutics, drug targeting and imaging. Cells 2022 11 1 159 10.3390/cells11010159 35011722
    [Google Scholar]
  22. Franco Y. Vaidya T. Ait-Oudhia S. Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer (Dove Med. Press) 2018 10 131 141 10.2147/BCTT.S170239 30237735
    [Google Scholar]
  23. Taghipour-Sabzevar V. Sharifi T. Moghaddam M.M. Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Ther. Deliv. 2019 10 8 527 550 10.4155/tde‑2019‑0044 31496433
    [Google Scholar]
  24. Al-Hawary S.I.S. Saleh E.A.M. Mamajanov N.A. Gilmanova S. N.; Alsaab, H.O.; Alghamdi, A.; Ansari, S.A.; Alawady, A.H.R.; Alsaalamy, A.H.; Ibrahim, A.J. Breast cancer vaccines; A comprehensive and updated review. Pathol. Res. Pract. 2023 249 154735 10.1016/j.prp.2023.154735 37611432
    [Google Scholar]
  25. Mu Q. Kievit F.M. Kant R.J. Lin G. Jeon M. Zhang M. Anti-HER2/neu peptide-conjugated iron oxide nanoparticles for targeted delivery of paclitaxel to breast cancer cells. Nanoscale 2015 7 43 18010 18014 10.1039/C5NR04867B 26469772
    [Google Scholar]
  26. Tesauro D. Accardo A. Diaferia C. Milano V. Guillon J. Ronga L. Rossi F. Peptide-based drug-delivery systems in biotechnological applications: Recent advances and perspectives. Molecules 2019 24 2 351 10.3390/molecules24020351 30669445
    [Google Scholar]
  27. Duan L. Zhang S. Yan Q. Hu X. Comparative efficacy of different cognitive behavior therapy delivery formats for depression in patients with cancer: A network meta‐analysis of randomized controlled trials. Psychooncology 2025 34 1 70078 10.1002/pon.70078 39828669
    [Google Scholar]
  28. Fatima R. Khan Y. Maqbool M. Ramalingam P.S. Khan M.G. Bisht A.S. Hussain M.S. Amyloid-β clearance with monoclonal antibodies: Transforming alzheimer’s treatment. Curr. Protein Pept. Sci. 2025 26 7 515 545 10.2174/0113892037362037250205143911 39980294
    [Google Scholar]
  29. Valentine D. Teerlink C.C. Farnham J.M. Rowe K. Kaddas H. Tschanz J. Kauwe J.S.K. Cannon-Albright L.A. Comorbidity and cancer disease rates among those at high-risk for alzheimer’s disease: A population database analysis. Int. J. Environ. Res. Public Health 2022 19 24 16419 10.3390/ijerph192416419 36554301
    [Google Scholar]
  30. Yan X.Z. Lai L. Ao Q. Tian X.H. Zhang Y.H. Interleukin-17A in Alzheimer’s Disease: Recent Advances and Controversies. Curr. Neuropharmacol. 2022 20 2 372 383 10.2174/1570159X19666210823110004 34429057
    [Google Scholar]
  31. Chang S.H. T helper 17 (Th17) cells and interleukin-17 (IL-17) in cancer. Arch. Pharm. Res. 2019 42 7 549 559 10.1007/s12272‑019‑01146‑9 30941641
    [Google Scholar]
  32. Berry S.P.D.G. Dossou C. Kashif A. Sharifinejad N. Azizi G. Hamedifar H. Sabzvari A. Zian Z. The role of IL-17 and anti-IL-17 agents in the immunopathogenesis and management of autoimmune and inflammatory diseases. Int. Immunopharmacol. 2022 102 108402 10.1016/j.intimp.2021.108402 34863654
    [Google Scholar]
  33. Zhu Y.S. Tang K. Lv J. Peptide–drug conjugate-based novel molecular drug delivery system in cancer. Trends Pharmacol. Sci. 2021 42 10 857 869 10.1016/j.tips.2021.07.001 34334251
    [Google Scholar]
  34. Arosio D. Casagrande C. Manzoni L. Integrin-mediated drug delivery in cancer and cardiovascular diseases with peptide-functionalized nanoparticles. Curr. Med. Chem. 2012 19 19 3128 3151 10.2174/092986712800784748 22612699
    [Google Scholar]
  35. Egorova E.A. Nikitin M.P. Delivery of theranostic nanoparticles to various cancers by means of integrin-binding peptides. Int. J. Mol. Sci. 2022 23 22 13735 10.3390/ijms232213735 36430214
    [Google Scholar]
  36. Ducharme M. Lapi S.E. Peptide based imaging agents for her2 imaging in oncology. Mol. Imaging 2020 19 1536012120960258 10.1177/1536012120960258 32957830
    [Google Scholar]
  37. Pang J. Ding N. Liu X. He X. Zhou W. Xie H. Feng J. Li Y. He Y. Wang S. Xiao Z. Prognostic value of the baseline systemic immune-inflammation index in her2-positive metastatic breast cancer: Exploratory analysis of two prospective trials. Ann. Surg. Oncol. 2025 32 2 750 759 10.1245/s10434‑024‑16454‑8 39565489
    [Google Scholar]
  38. Nikitovic D. Kukovyakina E. Berdiaki A. Tzanakakis A. Luss A. Vlaskina E. Yagolovich A. Tsatsakis A. Kuskov A. Enhancing tumor targeted therapy: The role of irgd peptide in advanced drug delivery systems. Cancers 2024 16 22 3768 10.3390/cancers16223768 39594723
    [Google Scholar]
  39. Goltsev A.N. Babenko N.N. Gaevskaya Y.A. Bondarovich N.A. Dubrava T.G. Ostankov M.V. Chelombitko O.V. Malyukin Y.V. Klochkov V.K. Kavok N.S. Nanotechniques inactivate cancer stem cells. Nanoscale Res. Lett. 2017 12 1 415 10.1186/s11671‑017‑2175‑9 28622715
    [Google Scholar]
  40. Kot Y. Klochkov V. Prokopiuk V. Sedyh O. Tryfonyuk L. Grygorova G. Karpenko N. Tomchuk O. Kot K. Onishchenko A. Yefimova S. Tkachenko A. GdVO4:Eu3+ and LaVO4:Eu3+ nanoparticles exacerbate oxidative stress in L929 cells: Potential implications for cancer therapy. Int. J. Mol. Sci. 2024 25 21 11687 10.3390/ijms252111687 39519237
    [Google Scholar]
  41. Xie M. Liu D. Yang Y. Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification. Open Biol. 2020 10 7 200004 10.1098/rsob.200004 32692959
    [Google Scholar]
  42. Qiao X. Wang Y. Yu H. Progress in the mechanisms of anticancer peptides Chin. J. Biotechnol. 2019 35 8 1391 1400 31441610
    [Google Scholar]
  43. Alaei E. Hashemi F. Farahani N. Tahmasebi S. Nabavi N. Daneshi S. Mahmoodieh B. Rahimzadeh P. Taheriazam A. Hashemi M. Peptides in breast cancer therapy: From mechanisms to emerging drug delivery and immunotherapy strategies. Pathol. Res. Pract. 2025 269 155946 10.1016/j.prp.2025.155946 40174279
    [Google Scholar]
  44. Hilchie A.L. Hoskin D.W. Power Coombs M.R. Anticancer activities of natural and synthetic peptides. Adv. Exp. Med. Biol. 2019 1117 131 147 10.1007/978‑981‑13‑3588‑4_9 30980357
    [Google Scholar]
  45. Hayashi M.A.F. Ducancel F. Konno K. Natural peptides with potential applications in drug development, diagnosis, and/or biotechnology. Int. J. Pept. 2012 2012 1 2 10.1155/2012/757838 22927866
    [Google Scholar]
  46. Marqus S. Pirogova E. Piva T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci. 2017 24 1 21 10.1186/s12929‑017‑0328‑x 28320393
    [Google Scholar]
  47. Bidwell G.L. Raucher D. Therapeutic peptides for cancer therapy. Part I – peptide inhibitors of signal transduction cascades. Expert Opin. Drug Deliv. 2009 6 10 1033 1047 10.1517/17425240903143745 19637980
    [Google Scholar]
  48. Draeger L.J. Mullen G.P. Interaction of the bHLH-zip domain of c-Myc with H1-type peptides. Characterization of helicity in the H1 peptides by NMR. J. Biol. Chem. 1994 269 3 1785 1793 10.1016/S0021‑9258(17)42096‑5 8294427
    [Google Scholar]
  49. Chen I.T. Akamatsu M. Smith M.L. Lung F.D. Duba D. Roller P.P. Fornace A.J. O’Connor P.M. Characterization of p21Cip1/Waf1 peptide domains required for cyclin E/Cdk2 and PCNA interaction. Oncogene 1996 12 3 595 607 8637717
    [Google Scholar]
  50. Vlieghe P. Lisowski V. Martinez J. Khrestchatisky M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today 2010 15 1-2 40 56 10.1016/j.drudis.2009.10.009 19879957
    [Google Scholar]
  51. Thundimadathil J. Cancer treatment using peptides: Current therapies and future prospects. J. Amino Acids 2012 2012 1 13 10.1155/2012/967347 23316341
    [Google Scholar]
  52. Thorpe P.E. Vascular targeting agents as cancer therapeutics. Clin. Cancer Res. 2004 10 2 415 427 10.1158/1078‑0432.CCR‑0642‑03 14760060
    [Google Scholar]
  53. Mori T. Cancer-specific ligands identified from screening of peptide-display libraries. Curr. Pharm. Des. 2004 10 19 2335 2343 10.2174/1381612043383944 15279612
    [Google Scholar]
  54. Reff M.E. Hariharan K. Braslawsky G. Future of monoclonal antibodies in the treatment of hematologic malignancies. Cancer Contr. 2002 9 2 152 166 10.1177/107327480200900207
    [Google Scholar]
  55. Konakbayeva D. Karlsson A.J. Strategies and opportunities for engineering antifungal peptides for therapeutic applications. Curr. Opin. Biotechnol. 2023 81 102926 10.1016/j.copbio.2023.102926 37028003
    [Google Scholar]
  56. Borghouts C. Kunz C. Groner B. Current strategies for the development of peptide-based anti-cancer therapeutics. J. Pept. Sci. 2005 11 11 713 726 10.1002/psc.717
    [Google Scholar]
  57. Amso Z. Cornish J. Brimble M.A. Short anabolic peptides for bone growth. Med. Res. Rev. 2016 36 4 579 640 10.1002/med.21388 27297498
    [Google Scholar]
  58. Kurrikoff K. Aphkhazava D. Langel Ü. The future of peptides in cancer treatment. Curr. Opin. Pharmacol. 2019 47 27 32 10.1016/j.coph.2019.01.008 30856511
    [Google Scholar]
  59. Ghaly G. Tallima H. Dabbish E. Badr ElDin N. Abd El-Rahman M.K. Ibrahim M.A.A. Shoeib T. Anti-cancer peptides: Status and future prospects. Molecules 2023 28 3 1148 10.3390/molecules28031148 36770815
    [Google Scholar]
  60. Méndez-Samperio P. The human cathelicidin hCAP18/LL-37: A multifunctional peptide involved in mycobacterial infections. Peptides 2010 31 9 1791 1798 10.1016/j.peptides.2010.06.016 20600427
    [Google Scholar]
  61. Oelkrug C. Hartke M. Schubert A. Mode of action of anticancer peptides (ACPs) from amphibian origin. Anticancer Res. 2015 35 2 635 643 25667440
    [Google Scholar]
  62. Eghtedari M. Jafari Porzani S. Nowruzi B. Anticancer potential of natural peptides from terrestrial and marine environments: A review. Phytochem. Lett. 2021 42 87 103 10.1016/j.phytol.2021.02.008
    [Google Scholar]
  63. Jafari Z. Sadeghi S. Dehaghi M.M. Bigham A. Honarmand S. Tavasoli A. Hoseini M.H.M. Varma R.S. Immunomodulatory activities and biomedical applications of melittin and its recent advances. Arch. Pharm. 2024 357 4 2300569 10.1002/ardp.202300569 38251938
    [Google Scholar]
  64. Ohradanova-Repic A. Praženicová R. Gebetsberger L. Moskalets T. Skrabana R. Cehlar O. Tajti G. Stockinger H. Leksa V. Time to kill and time to heal: The multifaceted role of lactoferrin and lactoferricin in host defense. Pharmaceutics 2023 15 4 1056 10.3390/pharmaceutics15041056 37111542
    [Google Scholar]
  65. Harris F. Dennison S.R. Singh J. Phoenix D.A. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med. Res. Rev. 2013 33 1 190 234 10.1002/med.20252 21922503
    [Google Scholar]
  66. Qin Y. Qin Z.D. Chen J. Cai C.G. Li L. Feng L.Y. Wang Z. Duns G.J. He N.Y. Chen Z.S. Luo X.F. From antimicrobial to anticancer peptides: The transformation of peptides. Recent Patents Anticancer Drug Discov. 2019 14 1 70 84 10.2174/1574892814666190119165157 30663573
    [Google Scholar]
  67. Omidian H. Wilson R.L. Castejon A.M. Recent advances in peptide-loaded plga nanocarriers for drug delivery and regenerative medicine. Pharmaceuticals 2025 18 1 127 10.3390/ph18010127 39861188
    [Google Scholar]
  68. Dai J. Ashrafizadeh M. Aref A.R. Sethi G. Ertas Y.N. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov. Today 2024 29 7 103981 10.1016/j.drudis.2024.103981 38614161
    [Google Scholar]
  69. Soni S. Kori S.K. Nema P. Iyer A.K. Soni V. Kashaw S.K. Cell-penetrating peptides as keys to endosomal escape and intracellular trafficking in nanomedicine delivery. Curr. Med. Chem. 2025 32 7 1288 1312 10.2174/0109298673278936240107121907 38362688
    [Google Scholar]
  70. Zhang Q. Liu N. Wang J. Liu Y. Wang K. Zhang J. Pan X. The recent advance of cell-penetrating and tumor-targeting peptides as drug delivery systems based on tumor microenvironment. Mol. Pharm. 2023 20 2 789 809 10.1021/acs.molpharmaceut.2c00629 36598861
    [Google Scholar]
  71. Sun W. Jang M.S. Zhan S. Liu C. Sheng L. Lee J.H. Fu Y. Yang H.Y. Tumor-targeting and redox-responsive photo-cross-linked nanogel derived from multifunctional hyaluronic acid-lipoic acid conjugates for enhanced in vivo protein delivery. Int. J. Biol. Macromol. 2025 314 144444 10.1016/j.ijbiomac.2025.144444 40403518
    [Google Scholar]
  72. Levine R.M. Kokkoli E. Dual-ligand α5β1 and α6β4 integrin targeting enhances gene delivery and selectivity to cancer cells. J. Control. Release 2017 251 24 36 10.1016/j.jconrel.2017.02.017 28215671
    [Google Scholar]
  73. Bai S. Jiang H. Song Y. Zhu Y. Qin M. He C. Du G. Sun X. Aluminum nanoparticles deliver a dual-epitope peptide for enhanced anti-tumor immunotherapy. J. Control. Release 2022 344 134 146 10.1016/j.jconrel.2022.02.027 35217098
    [Google Scholar]
  74. Hu S. Zhao R. Shen Y. Lyu B. Revolutionizing drug delivery: The power of stimulus-responsive nanoscale systems. Chem. Eng. J. 2024 496 154265 10.1016/j.cej.2024.154265
    [Google Scholar]
  75. Chauhan M. Sonali; Shekhar, S.; Yadav, B.; Garg, V.; Dutt, R.; Mehata, A.K.; Goswami, P.; Koch, B.; Muthu, M.S.; Singh, R.P. AS1411 aptamer/RGD dual functionalized theranostic chitosan-PLGA nanoparticles for brain cancer treatment and imaging. Biomater Adv. 2024 160 213833 10.1016/j.bioadv.2024.213833 38564997
    [Google Scholar]
  76. Yu X. Yang Z. Zhang Y. Xia J. Zhang J. Han Q. Yu H. Wu C. Xu Y. Xu W. Yang W. Lipid nanoparticle delivery of chemically modified NGFR100W mRNA alleviates peripheral neuropathy. Adv. Healthc. Mater. 2023 12 3 2202127 10.1002/adhm.202202127 36325948
    [Google Scholar]
  77. Rafiei M. Shojaei A. Chau Y. Machine learning-assisted design of immunomodulatory lipid nanoparticles for delivery of mRNA to repolarize hyperactivated microglia. Drug Deliv. 2025 32 1 2465909 10.1080/10717544.2025.2465909 40028722
    [Google Scholar]
  78. Sivadasan D. Sultan M.H. Madkhali O. Almoshari Y. Thangavel N. Polymeric lipid hybrid nanoparticles (plns) as emerging drug delivery platform—A comprehensive review of their properties, preparation methods, and therapeutic applications. Pharmaceutics 2021 13 8 1291 10.3390/pharmaceutics13081291 34452251
    [Google Scholar]
  79. Pal S. G, B.R.; Mohny, F.P.; Choudhury, S.G.; Karmakar, A.; Gupta, S.; Ganguli, M. Albumin nanoparticles surface decorated with a tumor-homing peptide help in selective killing of triple-negative breast cancer cells. ACS Appl. Mater. Interfaces 2023 15 40 46721 46737 10.1021/acsami.3c11561 37756635
    [Google Scholar]
  80. Kumar H. Gupta N.V. Jain R. Madhunapantula S.V. Babu S. Dey S. Soni A.G. Jain V. F3 peptide functionalized liquid crystalline nanoparticles for delivering Salinomycin against breast cancer. Int. J. Pharm. 2023 643 123226 10.1016/j.ijpharm.2023.123226 37451328
    [Google Scholar]
  81. Jiang C. Wang X. Teng B. Wang Z. Li F. Zhao Y. Guo Y. Zeng Q. Peptide-targeted high-density lipoprotein nanoparticles for combinatorial treatment against metastatic breast cancer. ACS Appl. Mater. Interfaces 2021 13 30 35248 35265 10.1021/acsami.1c02074 34284582
    [Google Scholar]
  82. Cagliani R. Fayed B. Jagal J. Shakartalla S.B. Soliman S.S.M. Haider M. Peptide-functionalized zinc oxide nanoparticles for the selective targeting of breast cancer expressing placenta-specific protein 1. Colloids Surf. B Biointerfaces 2023 227 113357 10.1016/j.colsurfb.2023.113357 37210795
    [Google Scholar]
  83. Cohen-Erez I. Issacson C. Lavi Y. Shaco-Levy R. Milam J. Laster B. Gheber L.A. Rapaport H. Antitumor effect of lonidamine-polypeptide-peptide nanoparticles in breast cancer models. ACS Appl. Mater. Interfaces 2019 11 36 32670 32678 10.1021/acsami.9b09886 31414594
    [Google Scholar]
  84. Glass K. Fines C. Coulter P. Jena L. McCarthy H.O. Buckley N. Development and characterization of a peptide-bisphosphonate nanoparticle for the treatment of breast cancer. Mol. Pharm. 2024 21 10 4970 4982 10.1021/acs.molpharmaceut.4c00299 39196792
    [Google Scholar]
  85. Xia F. Lee C.W. Altieri D.C. Tumor cell dependence on Ran-GTP-directed mitosis. Cancer Res. 2008 68 6 1826 1833 10.1158/0008‑5472.CAN‑07‑5279 18339863
    [Google Scholar]
  86. Haggag Y.A. Matchett K.B. Falconer R.A. Isreb M. Jones J. Faheem A. McCarron P. El-Tanani M. Novel Ran-RCC1 inhibitory peptide-loaded nanoparticles have anti-cancer efficacy in vitro and in vivo. Cancers 2019 11 2 222 10.3390/cancers11020222 30769871
    [Google Scholar]
  87. Niu S. Bremner D.H. Wu J. Wu J. Wang H. Li H. Qian Q. Zheng H. Zhu L. l -Peptide functionalized dual-responsive nanoparticles for controlled paclitaxel release and enhanced apoptosis in breast cancer cells. Drug Deliv. 2018 25 1 1275 1288 10.1080/10717544.2018.1477863 29847177
    [Google Scholar]
  88. Habibullah M.M. Mohan S. Syed N.K. Makeen H.A. Jamal Q.M.S. Alothaid H. Bantun F. Alhazmi A. Hakamy A. Kaabi Y.A. Samlan G. Lohani M. Thangavel N. Al-Kasim M.A. Human growth hormone fragment 176–191 peptide enhances the toxicity of doxorubicin-loaded chitosan nanoparticles against MCF-7 breast cancer cells. Drug Des. Devel. Ther. 2022 16 1963 1974 10.2147/DDDT.S367586 35783198
    [Google Scholar]
  89. Mohan A.K. M, M.; Kumar, T.R.S.; Kumar, G.S.V. Multi-layered PLGA-PEI nanoparticles functionalized with TKD peptide for targeted delivery of pep5 to breast tumor cells and spheroids. Int. J. Nanomedicine 2022 17 5581 5600 10.2147/IJN.S376358 36444195
    [Google Scholar]
  90. Hasanpoor Z. Mostafaie A. Nikokar I. Hassan Z.M. Curcumin-human serum albumin nanoparticles decorated with PDL1 binding peptide for targeting PDL1-expressing breast cancer cells. Int. J. Biol. Macromol. 2020 159 137 153 10.1016/j.ijbiomac.2020.04.130 32335119
    [Google Scholar]
  91. Li M. Tang Z. Zhang Y. Lv S. Li Q. Chen X. Targeted delivery of cisplatin by LHRH-peptide conjugated dextran nanoparticles suppresses breast cancer growth and metastasis. Acta Biomater. 2015 18 132 143 10.1016/j.actbio.2015.02.022 25735801
    [Google Scholar]
  92. Morshed R.A. Muroski M.E. Dai Q. Wegscheid M.L. Auffinger B. Yu D. Han Y. Zhang L. Wu M. Cheng Y. Lesniak M.S. Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Mol. Pharm. 2016 13 6 1843 1854 10.1021/acs.molpharmaceut.6b00004 27169484
    [Google Scholar]
  93. Yan H. You Y. Li X. Liu L. Guo F. Zhang Q. Liu D. Tong Y. Ding S. Wang J. Preparation of RGD peptide/folate acid double-targeted mesoporous silica nanoparticles and its application in human breast cancer MCF-7 cells. Front. Pharmacol. 2020 11 898 10.3389/fphar.2020.00898 32612532
    [Google Scholar]
  94. Gillogly M.E. Kallinteris N.L. Xu M. Gulfo J.V. Humphreys R.E. Murray J.L. Ii-Key/HER-2/neu MHC class-II antigenic epitope vaccine peptide for breast cancer. Cancer Immunol. Immunother. 2004 53 6 490 496 10.1007/s00262‑003‑0463‑y 14740174
    [Google Scholar]
  95. Mittendorf E.A. Storrer C.E. Foley R.J. Harris K. Jama Y. Shriver C.D. Ponniah S. Peoples G.E. Evaluation of the HER2/neu ‐derived peptide GP2 for use in a peptide‐based breast cancer vaccine trial. Cancer 2006 106 11 2309 2317 10.1002/cncr.21849 16596621
    [Google Scholar]
  96. Patil R. Clifton G.T. Holmes J.P. Amin A. Carmichael M.G. Gates J.D. Benavides L.H. Hueman M.T. Ponniah S. Peoples G.E. Clinical and immunologic responses of HLA-A3+ breast cancer patients vaccinated with the HER2/neu-derived peptide vaccine, E75, in a phase I/II clinical trial. J. Am. Coll. Surg. 2010 210 2 140 147 10.1016/j.jamcollsurg.2009.10.022 20113933
    [Google Scholar]
  97. Kang J. Lee H.J. Lee J. Hong J. Hong Kim Y. Disis M.L. Gim J.A. Park K.H. Novel peptide-based vaccine targeting heat shock protein 90 induces effective antitumor immunity in a HER2+ breast cancer murine model. J. Immunother. Cancer 2022 10 9 004702 10.1136/jitc‑2022‑004702 36109084
    [Google Scholar]
  98. Gates J.D. Clifton G.T. Benavides L.C. Sears A.K. Carmichael M.G. Hueman M.T. Holmes J.P. Jama Y.H. Mursal M. Zacharia A. Ciano K. Khoo S. Stojadinovic A. Ponniah S. Peoples G.E. Circulating regulatory T cells (CD4+CD25+FOXP3+) decrease in breast cancer patients after vaccination with a modified MHC class II HER2/neu (AE37) peptide. Vaccine 2010 28 47 7476 7482 10.1016/j.vaccine.2010.09.029 20858449
    [Google Scholar]
  99. Kalli K.R. Block M.S. Kasi P.M. Erskine C.L. Hobday T.J. Dietz A. Padley D. Gustafson M.P. Shreeder B. Puglisi-Knutson D. Visscher D.W. Mangskau T.K. Wilson G. Knutson K.L. Folate receptor alpha peptide vaccine generates immunity in breast and ovarian cancer patients. Clin. Cancer Res. 2018 24 13 3014 3025 10.1158/1078‑0432.CCR‑17‑2499 29545464
    [Google Scholar]
  100. Mittendorf E.A. Gurney J.M. Storrer C.E. Shriver C.D. Ponniah S. Peoples G.E. Vaccination with a HER2/neu peptide induces intra- and inter-antigenic epitope spreading in patients with early stage breast cancer. Surgery 2006 139 3 407 418 10.1016/j.surg.2005.06.059 16546506
    [Google Scholar]
  101. Arab A. Behravan J. Razazan A. Gholizadeh Z. Nikpoor A.R. Barati N. Mosaffa F. Badiee A. Jaafari M.R. A nano-liposome vaccine carrying E75, a HER-2/neu-derived peptide, exhibits significant antitumour activity in mice. J. Drug Target. 2018 26 4 365 372 10.1080/1061186X.2017.1387788 28972792
    [Google Scholar]
  102. Svane I.M. Pedersen A.E. Johansen J.S. Johnsen H.E. Nielsen D. Kamby C. Ottesen S. Balslev E. Gaarsdal E. Nikolajsen K. Claesson M.H. Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers. Cancer Immunol. Immunother. 2007 56 9 1485 1499 10.1007/s00262‑007‑0293‑4 17285289
    [Google Scholar]
  103. Svane I.M. Pedersen A.E. Johnsen H.E. Nielsen D. Kamby C. Gaarsdal E. Nikolajsen K. Buus S. Claesson M.H. Vaccination with p53-peptide?pulsed dendritic cells, of patients with advanced breast cancer: Report from a phase I study. Cancer Immunol. Immunother. 2004 53 7 633 641 10.1007/s00262‑003‑0493‑5 14985857
    [Google Scholar]
  104. Yi H. Rong Y. Yankai Z. Wentao L. Hongxia Z. Jie W. Rongyue C. Taiming L. Jingjing L. Improved efficacy of DNA vaccination against breast cancer by boosting with the repeat beta-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65. Vaccine 2006 24 14 2575 2584 10.1016/j.vaccine.2005.12.030 16420967
    [Google Scholar]
  105. He G.Z. Lin W.J. Peptide-Functionalized Nanoparticles-Encapsulated Cyclin-Dependent Kinases Inhibitor Seliciclib in Transferrin Receptor Overexpressed Cancer Cells. Nanomaterials 2021 11 3 772 10.3390/nano11030772 33803751
    [Google Scholar]
  106. Lo Y.C. Lin W.J. Improve BBB penetration and cytotoxicity of palbociclib in U87-MG glioblastoma cells delivered by dual peptide functionalized nanoparticles. Pharmaceutics 2023 15 10 2429 10.3390/pharmaceutics15102429 37896189
    [Google Scholar]
  107. Akhtar M.F. Afzaal A. Saleem A. Roheel A. Khan M.I. Imran M. A comprehensive review on the applications of ferrite nanoparticles in the diagnosis and treatment of breast cancer. Med. Oncol. 2024 41 2 53 10.1007/s12032‑023‑02277‑2 38198041
    [Google Scholar]
  108. Zalipsky S. Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv. Drug Deliv. Rev. 1995 16 2-3 157 182 10.1016/0169‑409X(95)00023‑Z
    [Google Scholar]
  109. Veronese F.M. Pasut G. PEGylation, successful approach to drug delivery. Drug Discov. Today 2005 10 21 1451 1458 10.1016/S1359‑6446(05)03575‑0 16243265
    [Google Scholar]
  110. Young T.S. Young D.D. Ahmad I. Louis J.M. Benkovic S.J. Schultz P.G. Evolution of cyclic peptide protease inhibitors. Proc. Natl. Acad. Sci. USA 2011 108 27 11052 11056 10.1073/pnas.1108045108 21690365
    [Google Scholar]
  111. Wan X. Liu C. Lin Y. Fu J. Lu G. Lu Z. pH sensitive peptide functionalized nanoparticles for co-delivery of erlotinib and DAPT to restrict the progress of triple negative breast cancer. Drug Deliv. 2019 26 1 470 480 10.1080/10717544.2019.1576801 30957572
    [Google Scholar]
  112. Nisticò N. Aloisio A. Lupia A. Zimbo A.M. Mimmi S. Maisano D. Russo R. Marino F. Scalise M. Chiarella E. Mancuso T. Fiume G. Omodei D. Zannetti A. Salvatore G. Quinto I. Iaccino E. Development of cyclic peptides targeting the epidermal growth factor receptor in mesenchymal triple-negative breast cancer subtype. Cells 2023 12 7 1078 10.3390/cells12071078 37048151
    [Google Scholar]
  113. Ramadhani D. Maharani R. Gazzali A.M. Muchtaridi M. Cyclic peptides for the treatment of cancers: A review. Molecules 2022 27 14 4428 10.3390/molecules27144428 35889301
    [Google Scholar]
  114. Xiao K. Li Y.P. Wang C. Ahmad S. Vu M. Kuma K. Cheng Y.Q. Lam K.S. Disulfide cross-linked micelles of novel HDAC inhibitor thailandepsin A for the treatment of breast cancer. Biomaterials 2015 67 183 193 10.1016/j.biomaterials.2015.07.033 26218744
    [Google Scholar]
  115. Kanathasan J.S. Palanisamy U.D. Radhakrishnan A.K. Chakravarthi S. Thong T.B. Swamy V. Protease-targeting peptide-functionalized porous silicon nanoparticles for cancer fluorescence imaging. Nanomedicine (Lond.) 2022 17 21 1511 1528 10.2217/nnm‑2022‑0017 36382634
    [Google Scholar]
  116. Aronson M.R. Medina S.H. Mitchell M.J. Peptide functionalized liposomes for receptor targeted cancer therapy. APL Bioeng. 2021 5 1 011501 10.1063/5.0029860 33532673
    [Google Scholar]
  117. Pérez-Herrero E. Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015 93 52 79 10.1016/j.ejpb.2015.03.018
    [Google Scholar]
  118. Garg N.K. Tandel N. Jadon R.S. Tyagi R.K. Katare O.P. Lipid–polymer hybrid nanocarrier-mediated cancer therapeutics: Current status and future directions. Drug Discov. Today 2018 23 9 1610 1621 10.1016/j.drudis.2018.05.033 29857164
    [Google Scholar]
  119. Kim K. Park M.H. Role of functionalized peptides in nanomedicine for effective cancer therapy. Biomedicines 2024 12 1 202 10.3390/biomedicines12010202 38255307
    [Google Scholar]
  120. Li X. Jian M. Sun Y. Zhu Q. Wang Z. The peptide functionalized inorganic nanoparticles for cancer-related bioanalytical and biomedical applications. Molecules 2021 26 11 3228 10.3390/molecules26113228 34072160
    [Google Scholar]
  121. Zong J. Cobb S.L. Cameron N.R. Peptide-functionalized gold nanoparticles: Versatile biomaterials for diagnostic and therapeutic applications. Biomater. Sci. 2017 5 5 872 886 10.1039/C7BM00006E 28304023
    [Google Scholar]
  122. Michalska M. Florczak A. Dams-Kozlowska H. Gapinski J. Jurga S. Schneider R. Peptide-functionalized ZCIS QDs as fluorescent nanoprobe for targeted HER2-positive breast cancer cells imaging. Acta Biomater. 2016 35 293 304 10.1016/j.actbio.2016.02.002 26850146
    [Google Scholar]
  123. Xiang Z. Yang X. Xu J. Lai W. Wang Z. Hu Z. Tian J. Geng L. Fang Q. Tumor detection using magnetosome nanoparticles functionalized with a newly screened EGFR/HER2 targeting peptide. Biomaterials 2017 115 53 64 10.1016/j.biomaterials.2016.11.022 27888699
    [Google Scholar]
  124. Zhang N. Xia Y. Zou Y. Yang W. Zhang J. Zhong Z. Meng F. ATN-161 peptide functionalized reversibly cross-linked polymersomes mediate targeted doxorubicin delivery into melanoma-bearing C57BL/6 mice. Mol. Pharm. 2017 14 8 2538 2547 10.1021/acs.molpharmaceut.6b00800 28005375
    [Google Scholar]
  125. Chu B. Qu Y. Huang Y. Zhang L. Chen X. Long C. He Y. Ou C. Qian Z. PEG-derivatized octacosanol as micellar carrier for paclitaxel delivery. Int. J. Pharm. 2016 500 1-2 345 359 10.1016/j.ijpharm.2016.01.030 26794876
    [Google Scholar]
  126. Wang D.P. Zheng J. Jiang F.Y. Wu L.F. Wang M.Y. Wang Y.L. Qin C.Y. Ning J.Y. Cao J.M. Zhou X. Facile and green fabrication of tumor- and mitochondria-targeted AIEgen-protein nanoparticles for imaging-guided photodynamic cancer therapy. Acta Biomater. 2023 168 551 564 10.1016/j.actbio.2023.06.048 37414113
    [Google Scholar]
  127. Subhan M.A. Muzibur Rahman M. Recent development in metallic nanoparticles for breast cancer therapy and diagnosis. Chem. Rec. 2022 22 7 202100331 10.1002/tcr.202100331 35146897
    [Google Scholar]
  128. Lin X. Wang Y. Fang K. Guo Z. Lin N. Li L. The application of nanoparticles in theranostic systems targeting breast cancer stem cells: Current progress and future challenges. Stem Cell Res. Ther. 2023 14 1 356 10.1186/s13287‑023‑03584‑1 38072976
    [Google Scholar]
  129. Lv L. Shi Y. Wu J. Li G. Nanosized drug delivery systems for breast cancer stem cell targeting. Int. J. Nanomedicine 2021 16 1487 1508 10.2147/IJN.S282110 33654398
    [Google Scholar]
  130. Herdiana Y. Wathoni N. Shamsuddin S. Muchtaridi M. α-Mangostin nanoparticles cytotoxicity and cell death modalities in breast cancer cell lines. Molecules 2021 26 17 5119 10.3390/molecules26175119 34500560
    [Google Scholar]
  131. Elgqvist J. Nanoparticles as theranostic vehicles in experimental and clinical applications—focus on prostate and breast cancer. Int. J. Mol. Sci. 2017 18 5 1102 10.3390/ijms18051102 28531102
    [Google Scholar]
  132. Liu S. Li J. Gu L. Wu K. Xing H. Nanoparticles for chemoimmunotherapy against triple-negative breast cancer. Int. J. Nanomedicine 2022 17 5209 5227 10.2147/IJN.S388075 36388877
    [Google Scholar]
  133. Kunde S.S. Wairkar S. Targeted delivery of albumin nanoparticles for breast cancer: A review. Colloids Surf. B Biointerfaces 2022 213 112422 10.1016/j.colsurfb.2022.112422 35231688
    [Google Scholar]
  134. Rajana N. Mounika A. Chary P.S. Bhavana V. Urati A. Khatri D. Singh S.B. Mehra N.K. Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer. J. Control. Release 2022 352 1024 1047 10.1016/j.jconrel.2022.11.009 36379278
    [Google Scholar]
  135. Kumar L. Baldi A. Verma S. Utreja P. Exploring therapeutic potential of nanocarrier systems against breast cancer. Pharm. Nanotechnol. 2018 6 2 94 110 10.2174/2211738506666180604101920 29866028
    [Google Scholar]
  136. Malliappan S.P. Kandasamy P. Chidambaram S. Venkatasubbu D. Perumal S.K. Sugumaran A. Breast cancer targeted treatment strategies: Promising nanocarrier approaches. Anticancer. Agents Med. Chem. 2020 20 11 1300 1310 10.2174/1871520619666191022175003 31642415
    [Google Scholar]
  137. Cavallaro P.A. De Santo M. Belsito E.L. Longobucco C. Curcio M. Morelli C. Pasqua L. Leggio A. Peptides targeting HER2-positive breast cancer cells and applications in tumor imaging and delivery of chemotherapeutics. Nanomaterials 2023 13 17 2476 10.3390/nano13172476 37686984
    [Google Scholar]
  138. Wang R. Zhu Q.Y. Ye W.W. Huang Y. Chen Z.H. Zheng Y.B. Zou X. Wang J. Jiang D.L. Wang X.J. Xu Z.Y. Cao W.M. Characterizing the efficacy and safety of chemotherapy plus everolimus in HER2-negative metastatic breast cancer harboring altered PI3K/AKT/mTOR. Discov. Med. 2024 36 182 527 537 10.24976/Discov.Med.202436182.49 38531793
    [Google Scholar]
  139. Quijia C.R. Enríquez A.Q. Zappia C.D. Peroni R.N. Chorilli M. Administration of inhibitory molecules through nanoparticles in breast cancer therapy. Curr. Med. Chem. 2024 31 6 726 761 10.2174/0929867330666230608145125 37291791
    [Google Scholar]
  140. Tian F. Dahmani F.Z. Qiao J. Ni J. Xiong H. Liu T. Zhou J. Yao J. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer. Acta Biomater. 2018 75 398 412 10.1016/j.actbio.2018.05.050 29874597
    [Google Scholar]
  141. Gandidzanwa S. Beukes N. Joseph S.V. Janse Van Vuuren A. Mashazi P. Britton J. Kilian G. Roux S. Nyokong T. Lee M.E. Frost C.L. Tshentu Z.R. The development of folate-functionalised palladium nanoparticles for folate receptor targeting in breast cancer cells. Nanotechnology 2023 34 46 465705 10.1088/1361‑6528/acec52 37527629
    [Google Scholar]
  142. Lin Q. Ma W. Xu M. Xu Z. Wang J. Liang Z. Zhu L. Wu M. Luo J. Liu H. Liu J. Jin Y. A clinical prognostic model related to T cells based on machine learning for predicting the prognosis and immune response of ovarian cancer. Heliyon 2024 10 17 36898 10.1016/j.heliyon.2024.e36898 39296051
    [Google Scholar]
  143. Kadkhoda J. Tarighatnia A. Tohidkia M.R. Nader N.D. Aghanejad A. Photothermal therapy-mediated autophagy in breast cancer treatment: Progress and trends. Life Sci. 2022 298 120499 10.1016/j.lfs.2022.120499 35346674
    [Google Scholar]
  144. Alamdari S.G. Amini M. Jalilzadeh N. Baradaran B. Mohammadzadeh R. Mokhtarzadeh A. Oroojalian F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J. Control. Release 2022 349 269 303 10.1016/j.jconrel.2022.06.050 35787915
    [Google Scholar]
  145. Wang R. Kumar P. Reda M. Wallstrum A.G. Crumrine N.A. Ngamcherdtrakul W. Nanotechnology applications in breast cancer immunotherapy. Small 2024 20 41 e2308639 10.1002/smll.202308639
    [Google Scholar]
  146. Yang L. Hu Q. Huang T. Breast cancer treatment strategies targeting the tumor microenvironment: How to convert “Cold” tumors to “Hot” tumors. Int. J. Mol. Sci. 2024 25 13 7208 10.3390/ijms25137208 39000314
    [Google Scholar]
  147. Thakur V. Kutty R.V. Recent advances in nanotheranostics for triple negative breast cancer treatment. J. Exp. Clin. Cancer Res. 2019 38 1 430 10.1186/s13046‑019‑1443‑1 31661003
    [Google Scholar]
  148. Wang M. Liu Y. Shao B. Liu X. Hu Z. Wang C. Li H. Zhu L. Li P. Yang Y. HER2 status of CTCs by peptide-functionalized nanoparticles as the diagnostic biomarker of breast cancer and predicting the efficacy of anti-HER2 treatment. Front. Bioeng. Biotechnol. 2022 10 1015295 10.3389/fbioe.2022.1015295 36246381
    [Google Scholar]
  149. Bazzazan M.A. Fathollazadeh P. Keshavarz Shahbaz S. Rezaei N. Polymeric nanoparticles as a promising platform for treating triple-negative breast cancer: Current status and future perspectives. Int. J. Pharm. 2024 664 124639 10.1016/j.ijpharm.2024.124639 39187034
    [Google Scholar]
  150. Naghib S.M. Mohammad-Jafari K. Microfluidics-mediated Liposomal Nanoparticles for Cancer Therapy: Recent Developments on Advanced Devices and Technologies. Curr. Top. Med. Chem. 2024 24 14 1185 1211 10.2174/0115680266286460240220073334 38424436
    [Google Scholar]
  151. Reddy Baddam S. Ganta S. Nalla S. Banoth C. Vudari B. Akkiraju P.C. Srinivas E. Tade R.S. Polymeric nanomaterials-based theranostic platforms for triple-negative breast cancer (TNBC) treatment. Int. J. Pharm. 2024 660 124346 10.1016/j.ijpharm.2024.124346 38889853
    [Google Scholar]
  152. Ray S.K. Mukherjee S. Innovative nanomaterials for targeting hypoxia to improve treatment for triple-negative breast cancer. Recent Pat. Biotechnol. 2024 18 4 269 272 10.2174/0118722083270521231027074157 37957916
    [Google Scholar]
  153. Zhou J. Guo Z. Peng X. Wu B. Meng Q. Lu X. Feng L. Guo T. Chrysotoxine regulates ferroptosis and the PI3K/AKT/mTOR pathway to prevent cervical cancer. J. Ethnopharmacol. 2025 338 Pt 3 119126 10.1016/j.jep.2024.119126 39557107
    [Google Scholar]
  154. Egorova A. Pyankov I. Maretina M. Baranov V. Kiselev A. Peptide nanoparticle-mediated combinatorial delivery of cancer-related siRNAs for synergistic anti-proliferative activity in triple negative breast cancer cells. Pharmaceuticals 2021 14 10 957 10.3390/ph14100957 34681181
    [Google Scholar]
  155. H.; Hong, G.; Yang, J.; Duo, Z.; Li, F.; WeiCai, C.; XueYing, L.; YouSheng, M.; YiWen, O.; Yue, P.; Zou, C. siRNA-Mediated suppression of collagen type iv alpha 2 (COL4A2) mRNA inhibits triple-negative breast cancer cell proliferation and migration. Oncotarget 2017 8 2 2585 2593 10.18632/oncotarget.13716 27906681
    [Google Scholar]
  156. Du C. Qi Y. Zhang Y. Wang Y. Zhao X. Min H. Han X. Lang J. Qin H. Shi Q. Zhang Z. Tian X. Anderson G.J. Zhao Y. Nie G. Yang Y. Epidermal growth factor receptor-targeting peptide nanoparticles simultaneously deliver gemcitabine and olaparib to treat pancreatic cancer with breast cancer 2 (BRCA2) mutation. ACS Nano 2018 12 11 10785 10796 10.1021/acsnano.8b01573 30407790
    [Google Scholar]
  157. Jeong W.J. Bu J. Jafari R. Rehak P. Kubiatowicz L.J. Drelich A.J. Hierarchically multivalent peptide-nanoparticle architectures: A systematic approach to engineer surface adhesion. Adv. Sci. 2022 9 4 e2103098 10.1002/advs.202103098
    [Google Scholar]
  158. Galbiati E. Cassani M. Verderio P. Martegani E. Colombo M. Tortora P. Mazzucchelli S. Prosperi D. Peptide-nanoparticle ligation mediated by cutinase fusion for the development of cancer cell-targeted nanoconjugates. Bioconjug. Chem. 2015 26 4 680 689 10.1021/acs.bioconjchem.5b00005 25741889
    [Google Scholar]
  159. Wei T. Cheng Q. Min Y.L. Olson E.N. Siegwart D.J. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat. Commun. 2020 11 1 3232 10.1038/s41467‑020‑17029‑3 32591530
    [Google Scholar]
  160. Stahl E.C. Sabo J.K. Kang M.H. Allen R. Applegate E. Kim S.E. Kwon Y. Seth A. Lemus N. Salinas-Rios V. Soczek K.M. Trinidad M. Vo L.T. Jeans C. Wozniak A. Morris T. Kimberlin A. Foti T. Savage D.F. Doudna J.A. Genome editing in the mouse brain with minimally immunogenic Cas9 RNPs. Mol. Ther. 2023 31 8 2422 2438 10.1016/j.ymthe.2023.06.019 37403358
    [Google Scholar]
  161. Bloomer H. Khirallah J. Li Y. Xu Q. CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells. Adv. Drug Deliv. Rev. 2022 181 114087 10.1016/j.addr.2021.114087 34942274
    [Google Scholar]
  162. Pei W.D. Zhang Y. Yin T.L. Yu Y. Epigenome editing by CRISPR/Cas9 in clinical settings: Possibilities and challenges. Brief. Funct. Genomics 2020 19 3 215 228 10.1093/bfgp/elz035 31819946
    [Google Scholar]
  163. Cheng X. Fan S. Wen C. Du X. CRISPR/Cas9 for cancer treatment: Technology, clinical applications and challenges. Brief. Funct. Genomics 2020 19 3 209 214 10.1093/bfgp/elaa001 32052006
    [Google Scholar]
  164. Chen M. Mao A. Xu M. Weng Q. Mao J. Ji J. CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Lett. 2019 447 48 55 10.1016/j.canlet.2019.01.017 30684591
    [Google Scholar]
  165. Zhang C. Quan R. Wang J. Development and application of CRISPR/Cas9 technologies in genomic editing. Hum. Mol. Genet. 2018 27 R2 R79 R88 10.1093/hmg/ddy120 29659822
    [Google Scholar]
  166. Sun J. Wang J. Zheng D. Hu X. Advances in therapeutic application of CRISPR-Cas9. Brief. Funct. Genomics 2020 19 3 164 174 10.1093/bfgp/elz031 31769791
    [Google Scholar]
  167. Ebrahimi V. Hashemi A. Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review. Gene 2020 753 144813 10.1016/j.gene.2020.144813 32470504
    [Google Scholar]
  168. Liu W. Yang C. Liu Y. Jiang G. CRISPR/Cas9 system and its research progress in gene therapy. Anticancer. Agents Med. Chem. 2020 19 16 1912 1919 10.2174/1871520619666191014103711 31633477
    [Google Scholar]
  169. Winter J. Perez-Pinera P. Directed evolution of CRISPR-Cas9 base editors. Trends Biotechnol. 2019 37 11 1151 1153 10.1016/j.tibtech.2019.09.005 31623959
    [Google Scholar]
  170. Hashemi A. CRISPR-cas System as a Genome Engineering Platform: Applications in Biomedicine and Biotechnology. Curr. Gene Ther. 2018 18 2 115 124 10.2174/1566523218666180221110627 29473500
    [Google Scholar]
  171. Hryhorowicz M. Lipiński D. Zeyland J. Słomski R. CRISPR/Cas9 immune system as a tool for genome engineering. Arch. Immunol. Ther. Exp. 2017 65 3 233 240 10.1007/s00005‑016‑0427‑5 27699445
    [Google Scholar]
  172. Sampson T.R. Weiss D.S. Exploiting CRISPR/C as systems for biotechnology. BioEssays 2014 36 1 34 38 10.1002/bies.201300135 24323919
    [Google Scholar]
  173. Barzaman K. Karami J. Zarei Z. Hosseinzadeh A. Kazemi M.H. Moradi-Kalbolandi S. Safari E. Farahmand L. Breast cancer: Biology, biomarkers, and treatments. Int. Immunopharmacol. 2020 84 106535 10.1016/j.intimp.2020.106535 32361569
    [Google Scholar]
  174. Xu F. Yuan Y. Wang Y. Yin Q. Emerging peptide-based nanovaccines: From design synthesis to defense against cancer and infection. Biomed. Pharmacother. 2023 158 114117 10.1016/j.biopha.2022.114117 36528914
    [Google Scholar]
  175. Li Z. Wei H. Li S. Wu P. Mao X. The Role of Progesterone Receptors in Breast Cancer. Drug Des. Devel. Ther. 2022 16 305 314 10.2147/DDDT.S336643 35115765
    [Google Scholar]
  176. Gadaleta E. Thorn G.J. Ross-Adams H. Jones L.J. Chelala C. Field cancerization in breast cancer. J. Pathol. 2022 257 4 561 574 10.1002/path.5902 35362092
    [Google Scholar]
  177. Tiwari M. Nano cancer therapy strategies. J. Cancer Res. Ther. 2012 8 1 19 22 10.4103/0973‑1482.95168 22531508
    [Google Scholar]
  178. Farooqi A.A. Gadaleta C.D. Ranieri G. Fayyaz S. Marech I. New frontiers in promoting trail-mediated cell death: Focus on natural sensitizers, miRNAs, and nanotechnological advancements. Cell Biochem. Biophys. 2016 74 1 3 10 10.1007/s12013‑015‑0712‑7 26972296
    [Google Scholar]
  179. Shahwar D. Iqbal M.J. Nisa M. Todorovska M. Attar R. Sabitaliyevich U.Y. Farooqi A.A. Ahmad A. Xu B. Natural product mediated regulation of death receptors and intracellular machinery: Fresh from the pipeline about TRAIL-mediated signaling and natural trail sensitizers. Int. J. Mol. Sci. 2019 20 8 2010 10.3390/ijms20082010 31022877
    [Google Scholar]
  180. Yuan X. Gajan A. Chu Q. Xiong H. Wu K. Wu G.S. Developing TRAIL/TRAIL death receptor-based cancer therapies. Cancer Metastasis Rev. 2018 37 4 733 748 10.1007/s10555‑018‑9728‑y 29541897
    [Google Scholar]
  181. Yhee J.Y. Lee S. Kim K. Advances in targeting strategies for nanoparticles in cancer imaging and therapy. Nanoscale 2014 6 22 13383 13390 10.1039/C4NR04334K 25273283
    [Google Scholar]
  182. Skwarczynski M. Toth I. Peptide-based subunit nanovaccines. Curr. Drug Deliv. 2011 8 3 282 289 10.2174/156720111795256192 21291373
    [Google Scholar]
  183. Koirala P. Bashiri S. Toth I. Skwarczynski M. Current prospects in peptide-based subunit nanovaccines. Methods Mol. Biol. 2022 2412 309 338 10.1007/978‑1‑0716‑1892‑9_16 34918253
    [Google Scholar]
  184. Negahdaripour M. Golkar N. Hajighahramani N. Kianpour S. Nezafat N. Ghasemi Y. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnol. Adv. 2017 35 5 575 596 10.1016/j.biotechadv.2017.05.002 28522213
    [Google Scholar]
  185. Kakwere H. Ingham E.S. Allen R. Mahakian L.M. Tam S.M. Zhang H. Silvestrini M.T. Lewis J.S. Ferrara K.W. Toward personalized peptide-based cancer nanovaccines: A facile and versatile synthetic approach. Bioconjug. Chem. 2017 28 11 2756 2771 10.1021/acs.bioconjchem.7b00502 28956907
    [Google Scholar]
  186. Liu Y. Yao L. Cao W. Liu Y. Zhai W. Wu Y. Wang B. Gou S. Qin Y. Qi Y. Chen Z. Gao Y. Dendritic cell targeting peptide-based nanovaccines for enhanced cancer immunotherapy. ACS Appl. Bio Mater. 2019 2 3 1241 1254 10.1021/acsabm.8b00811 35021373
    [Google Scholar]
  187. Liu J. Cui Y. Cabral H. Tong A. Yue Q. Zhao L. Sun X. Mi P. Glucosylated Nanovaccines for Dendritic Cell-Targeted Antigen Delivery and Amplified Cancer Immunotherapy. ACS Nano 2024 18 37 25826 25840 10.1021/acsnano.4c09053 39196858
    [Google Scholar]
  188. Gurunathan S. Thangaraj P. Wang L. Cao Q. Kim J.H. Nanovaccines: An effective therapeutic approach for cancer therapy. Biomed. Pharmacother. 2024 170 115992 10.1016/j.biopha.2023.115992 38070247
    [Google Scholar]
  189. Khazaei S. Varela-Calviño R. Rad-Malekshahi M. Quattrini F. Jokar S. Rezaei N. Balalaie S. Haririan I. Csaba N. Garcia-Fuentes M. Self-assembled peptide/polymer hybrid nanoplatform for cancer immunostimulating therapies. Drug Deliv. Transl. Res. 2024 14 2 455 473 10.1007/s13346‑023‑01410‑y 37721693
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018398707250911054410
Loading
/content/journals/cdd/10.2174/0115672018398707250911054410
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test