Skip to content
2000
image of Applications of Biodegradable Polymeric Nanomaterials as Drug Delivery Systems

Abstract

There are a variety of biodegradable polymers, including natural polysaccharides, proteins, nucleic acids, ., in animals and plants, as well as some polymers that are synthesized by microorganisms, such as poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). At present, the most common polymers are those that are artificially synthesized, such as polyethylene glycol, polylactic acid, and polycaprolactone. These polymers can degrade hydrolytic and enzymatic processes in the body into low-molecular-weight products that are then reabsorbed or excreted, making them the most suitable materials for the synthesis of biodegradable nanoparticles. Biodegradable polymers can react with other substances to form nanocomposites, which have superior biocompatibility, degradability, and safety. Biodegradable polymer-based nanocomposites exhibit targeting capabilities, including passive (enhanced permeability and retention effect), active (ligand-receptor interactions), tumor microenvironment-responsive, and external stimulus-responsive (., magnetic, electric, and light-driven) targeting. In addition, synthesized biodegradable nanomaterials can alter the solubility of the loaded drug and improve its bioavailability. Thus, these materials have been widely used in drug delivery systems. This review aimed to summarize the recent advances in biodegradable polymeric nanomaterials for biomedical drug delivery, analyze their design advantages and clinical translation potential, and explore their future prospects and challenges in precision therapy and targeted delivery.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018392176250722113903
2025-07-30
2025-09-25
Loading full text...

Full text loading...

References

  1. Ali E.S. Sharker S.M. Islam M.T. Khan I.N. Shaw S. Rahman M.A. Uddin S.J. Shill M.C. Rehman S. Das N. Ahmad S. Shilpi J.A. Tripathi S. Mishra S.K. Mubarak M.S. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin. Cancer Biol. 2021 69 52 68 10.1016/j.semcancer.2020.01.011 32014609
    [Google Scholar]
  2. Sharma H. Narayanan K.B. Ghosh S. Singh K.K. Rehan P. Amist A.D. Bhaskar R. Sinha J.K. Nanotherapeutics for meningitis: Enhancing drug delivery across the blood-brain barrier. Biomimetics 2025 10 1 25 10.3390/biomimetics10010025 39851741
    [Google Scholar]
  3. Altalbawy F.M.A. Ali E. Aptamer-magnetic nanoparticle complexes for powerful biosensing: A comprehensive review. Crit. Rev. Anal. Chem. 2024 1 14
    [Google Scholar]
  4. Sun Z. Zhao H. Ma L. Shi Y. Ji M. Sun X. Ma D. Zhou W. Huang T. Zhang D. The quest for nanoparticle-powered vaccines in cancer immunotherapy. J. Nanobiotechnology 2024 22 1 61 10.1186/s12951‑024‑02311‑z 38355548
    [Google Scholar]
  5. Kučuk N. Primožič M. Knez Ž. Leitgeb M. Sustainable biodegradable biopolymer-based nanoparticles for healthcare applications. Int. J. Mol. Sci. 2023 24 4 3188 10.3390/ijms24043188 36834596
    [Google Scholar]
  6. Verma M.L. Dhanya B.S. Sukriti V. Rani V. Thakur M. Jeslin J. Kushwaha R. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. Int. J. Biol. Macromol. 2020 154 390 412 10.1016/j.ijbiomac.2020.03.105 32194126
    [Google Scholar]
  7. Sohrabi Kashani A. Packirisamy M. Cancer-nano-interaction: From cellular uptake to mechanobiological responses. Int. J. Mol. Sci. 2021 22 17 9587 10.3390/ijms22179587 34502495
    [Google Scholar]
  8. Anselmo A.C. Mitragotri S. Nanoparticles in the clinic: An update post COVID ‐19 vaccines. Bioeng. Transl. Med. 2021 6 3 10246 10.1002/btm2.10246 34514159
    [Google Scholar]
  9. Merle P. Camus P. Abergel A. Pageaux G.P. Masliah C. Bronowicki J.P. Zarski J.P. Pelletier G. Bouattour M. Farloux L. Dorval E. verset, G.; Si-Ahmed, S.N.; Doffoel, M.; Couzigou, P.; Taieb, J.; Vasseur, B.; Attali, P. Safety and efficacy of intra-arterial hepatic chemotherapy with doxorubicin-loaded nanoparticles in hepatocellular carcinoma. ESMO Open 2017 2 4 000238 10.1136/esmoopen‑2017‑000238 29104762
    [Google Scholar]
  10. Najahi-Missaoui W. Arnold R.D. Cummings B.S. Safe nanoparticles: Are we there yet? Int. J. Mol. Sci. 2020 22 1 385 10.3390/ijms22010385 33396561
    [Google Scholar]
  11. San H.H.M. Alcantara K.P. Bulatao B.P.I. Chaichompoo W. Nalinratana N. Suksamrarn A. Vajragupta O. Rojsitthisak P. Rojsitthisak P. Development of turmeric oil-loaded chitosan/alginate nanocapsules for cytotoxicity enhancement against breast cancer. Polymers 2022 14 9 1835 10.3390/polym14091835 35567007
    [Google Scholar]
  12. Mehandole A. Walke N. Mahajan S. Aalhate M. Maji I. Gupta U. Mehra N.K. Singh P.K. Core-shell type lipidic and polymeric nanocapsules: The transformative multifaceted delivery systems. AAPS PharmSciTech 2023 24 1 50 10.1208/s12249‑023‑02504‑z 36703085
    [Google Scholar]
  13. Bao H. Wang N. Chen S. Wang Y. Shao H. Ni Y. Li Y. Liu X. Han X. Multimodal theranostic nanoparticles for necrosis targeting, fluorescence/spect imaging, and radiotherapy of residual tumors after hepatocellular carcinoma ablation. Mol. Pharm. 2024 21 4 1729 1744 10.1021/acs.molpharmaceut.3c01081 38449426
    [Google Scholar]
  14. Hasannia M. Aliabadi A. Abnous K. Taghdisi S.M. Ramezani M. Alibolandi M. Synthesis of block copolymers used in polymersome fabrication: Application in drug delivery. J. Control. Release 2022 341 95 117 10.1016/j.jconrel.2021.11.010 34774891
    [Google Scholar]
  15. Gabel M. Knauss A. Fischer D. Neurath M.F. Weigmann B. Surface design options in polymer- and lipid-based sirna nanoparticles using antibodies. Int. J. Mol. Sci. 2022 23 22 13929 10.3390/ijms232213929 36430411
    [Google Scholar]
  16. Choi K.Y. Correa S. Min J. Li J. Roy S. Laccetti K.H. Dreaden E. Kong S. Heo R. Roh Y.H. Lawson E.C. Palmer P.A. Hammond P.T. Binary targeting of siRNA to hematologic cancer cells in vivo using layer‐by‐layer nanoparticles. Adv. Funct. Mater. 2019 29 20 1900018 10.1002/adfm.201900018 31839764
    [Google Scholar]
  17. Yin M. Lei D. Liu Y. Qin T. Gao H. Lv W. Liu Q. Qin L. Jin W. Chen Y. Liang H. Wang B. Gao M. Zhang J. Lu J. NIR triggered polydopamine coated cerium dioxide nanozyme for ameliorating acute lung injury via enhanced ROS scavenging. J. Nanobiotechnology 2024 22 1 321 10.1186/s12951‑024‑02570‑w 38849841
    [Google Scholar]
  18. Zhang F. Lees E. Amin F. Rivera Gil P. Yang F. Mulvaney P. Parak W.J. Polymer-coated nanoparticles: A universal tool for biolabelling experiments. Small 2011 7 22 3113 3127 10.1002/smll.201100608 21928301
    [Google Scholar]
  19. Iacobazzi R.M. Porcelli L. Lopedota A.A. Laquintana V. Lopalco A. Cutrignelli A. Altamura E. Di Fonte R. Azzariti A. Franco M. Denora N. Targeting human liver cancer cells with lactobionic acid-G(4)-PAMAM-FITC sorafenib loaded dendrimers. Int. J. Pharm. 2017 528 1-2 485 497 10.1016/j.ijpharm.2017.06.049 28624661
    [Google Scholar]
  20. Ghaffari M. Dehghan G. Abedi-Gaballu F. Kashanian S. Baradaran B. Ezzati Nazhad Dolatabadi J. Losic D. Surface functionalized dendrimers as controlled-release delivery nanosystems for tumor targeting. Eur. J. Pharm. Sci. 2018 122 311 330 10.1016/j.ejps.2018.07.020 30003954
    [Google Scholar]
  21. George A. Shah P.A. Shrivastav P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharm. 2019 561 244 264 10.1016/j.ijpharm.2019.03.011 30851391
    [Google Scholar]
  22. Elmowafy M. Shalaby K. Elkomy M.H. Alsaidan O.A. Gomaa H.A.M. Abdelgawad M.A. Mostafa E.M. Polymeric nanoparticles for delivery of natural bioactive agents: Recent advances and challenges. Polymers 2023 15 5 1123 10.3390/polym15051123 36904364
    [Google Scholar]
  23. Geszke-Moritz M. Moritz M. Biodegradable polymeric nanoparticle-based drug delivery systems: Comprehensive overview, perspectives and challenges. Polymers 2024 16 17 2536 10.3390/polym16172536 39274168
    [Google Scholar]
  24. Indoria S. Singh V. Hsieh M.F. Recent advances in theranostic polymeric nanoparticles for cancer treatment: A review. Int. J. Pharm. 2020 582 119314 10.1016/j.ijpharm.2020.119314 32283197
    [Google Scholar]
  25. Moritz M. Geszke-Moritz M. Recent developments in application of polymeric nanoparticles as drug carriers. Adv. Clin. Exp. Med. 2015 24 5 749 758 10.17219/acem/31802 26768624
    [Google Scholar]
  26. Karabasz A. Bzowska M. Szczepanowicz K. Biomedical applications of multifunctional polymeric nanocarriers: A review of current literature. Int. J. Nanomedicine 2020 15 8673 8696 10.2147/IJN.S231477 33192061
    [Google Scholar]
  27. Tewari A.K. Upadhyay S.C. Kumar M. Pathak K. Kaushik D. Verma R. Bhatt S. Massoud E.E.S. Rahman M.H. Cavalu S. Insights on development aspects of polymeric nanocarriers: The translation from bench to clinic. Polymers 2022 14 17 3545 10.3390/polym14173545 36080620
    [Google Scholar]
  28. Su S. Kang P.M. Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials 2020 10 4 656 10.3390/nano10040656 32244653
    [Google Scholar]
  29. Zhao K. Li D. Shi C. Ma X. Rong G. Kang H. Wang X. Sun B. Biodegradable polymeric nanoparticles as the delivery carrier for drug. Curr. Drug Deliv. 2016 13 4 494 499 10.2174/156720181304160521004609 27230997
    [Google Scholar]
  30. Kamaly N. Yameen B. Wu J. Farokhzad O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016 116 4 2602 2663 10.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  31. Choi S.Y. Cho I.J. Lee Y. Kim Y.J. Kim K.J. Lee S.Y. Microbial polyhydroxyalkanoates and nonnatural polyesters. Adv. Mater. 2020 32 35 1907138 10.1002/adma.201907138 32249983
    [Google Scholar]
  32. Qi W. Li T. Zhang Z. Wu T. Preparation and characterization of oleogel-in-water pickering emulsions stabilized by cellulose nanocrystals. Food Hydrocoll. 2021 110 106206 10.1016/j.foodhyd.2020.106206
    [Google Scholar]
  33. Li S. Zhang H. Chen K. Jin M. Vu S.H. Jung S. He N. Zheng Z. Lee M.S. Application of chitosan/alginate nanoparticle in oral drug delivery systems: Prospects and challenges. Drug Deliv. 2022 29 1 1142 1149 10.1080/10717544.2022.2058646 35384787
    [Google Scholar]
  34. Kothale D. Verma U. Dewangan N. Jana P. Jain A. Jain D. Alginate as promising natural polymer for pharmaceutical, food, and biomedical applications. Curr. Drug Deliv. 2020 17 9 755 775 10.2174/1567201817666200810110226 32778024
    [Google Scholar]
  35. Saeedi M. Vahidi O. Moghbeli M.R. Ahmadi S. Asadnia M. Akhavan O. Seidi F. Rabiee M. Saeb M.R. Webster T.J. Varma R.S. Sharifi E. Zarrabi A. Rabiee N. Customizing nano-chitosan for sustainable drug delivery. J. Control. Release 2022 350 175 192 10.1016/j.jconrel.2022.07.038 35914615
    [Google Scholar]
  36. Sreena R. Nathanael A.J. Biodegradable biopolymeric nanoparticles for biomedical applications-challenges and future outlook. Mater. 2023 16 6 2364 10.3390/ma16062364
    [Google Scholar]
  37. Mir M. Ahmed N. Rehman A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf. B Biointerfaces 2017 159 217 231 10.1016/j.colsurfb.2017.07.038 28797972
    [Google Scholar]
  38. Yan L. Gao S. Shui S. Liu S. Qu H. Liu C. Zheng L. Small interfering RNA-loaded chitosan hydrochloride/carboxymethyl chitosan nanoparticles for ultrasound-triggered release to hamper colorectal cancer growth in vitro. Int. J. Biol. Macromol. 2020 162 1303 1310 10.1016/j.ijbiomac.2020.06.246 32603733
    [Google Scholar]
  39. Ewe A. Höbel S. Heine C. Merz L. Kallendrusch S. Bechmann I. Merz F. Franke H. Aigner A. Optimized polyethylenimine (PEI)-based nanoparticles for siRNA delivery, analyzed in vitro and in an ex vivo tumor tissue slice culture model. Drug Deliv. Transl. Res. 2017 7 2 206 216 10.1007/s13346‑016‑0306‑y 27334279
    [Google Scholar]
  40. Mazzotta E. Romeo M. Sacco G. De Benedittis S. Qualtieri A. Perrotta I.D. Muzzalupo R. The impact of hyaluronic acid coating on the cationic niosomal surface for doxorubicin delivery. Molecules 2025 30 5 1148 10.3390/molecules30051148 40076371
    [Google Scholar]
  41. Fan W. Wang X. Ding B. Cai H. Wang X. Fan Y. Li Y. Liu S. Nie S. Lu Q. Thioaptamer-conjugated CD44-targeted delivery system for the treatment of breast cancer in vitro and in vivo. J. Drug Target. 2016 24 4 359 371 10.3109/1061186X.2015.1077850 26299192
    [Google Scholar]
  42. Madkhali O.A. Drug delivery of gelatin nanoparticles as a biodegradable polymer for the treatment of infectious diseases: Perspectives and challenges. Polymers 2023 15 21 4327 10.3390/polym15214327 37960007
    [Google Scholar]
  43. Pandey G. Mittapelly N. Pant A. Sharma S. Singh P. Banala V.T. Trivedi R. Shukla P.K. Mishra P.R. Dual functioning microspheres embedded crosslinked gelatin cryogels for therapeutic intervention in osteomyelitis and associated bone loss. Eur. J. Pharm. Sci. 2016 91 105 113 10.1016/j.ejps.2016.06.008 27287423
    [Google Scholar]
  44. Fu Y. Kao W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 2010 7 4 429 444 10.1517/17425241003602259 20331353
    [Google Scholar]
  45. Javaid S. Ahmad N.M. Mahmood A. Nasir H. Iqbal M. Ahmad N. Irshad S. Cefotaxime loaded polycaprolactone based polymeric nanoparticles with antifouling properties for in-vitro drug release applications. Polymers 2021 13 13 2180 10.3390/polym13132180 34209144
    [Google Scholar]
  46. Mohammadian S. Khazaei M. Maghami P. Avan A. Rezaei M. Polycaprolactone-based nanocarriers containing 5-fluorouracil as a therapeutic guided drug delivery approach for enhancing anticancer activity. Curr. Cancer Drug Targets 2023 23 7 524 533 10.2174/1568009623666230210140212 36809944
    [Google Scholar]
  47. Guillon C. Mayol K. Terrat C. Compagnon C. Primard C. Charles M.H. Delair T. Munier S. Verrier B. Formulation of HIV-1 Tat and p24 antigens by PLA nanoparticles or MF59 impacts the breadth, but not the magnitude, of serum and faecal antibody responses in rabbits. Vaccine 2007 25 43 7491 7501 10.1016/j.vaccine.2007.08.060 17904700
    [Google Scholar]
  48. Peres C. Matos A.I. Conniot J. Sainz V. Zupančič E. Silva J.M. Graça L. Sá Gaspar R. Préat V. Florindo H.F. Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomater. 2017 48 41 57 10.1016/j.actbio.2016.11.012 27826003
    [Google Scholar]
  49. Ochi M. Wan B. Bao Q. Burgess D.J. Influence of PLGA molecular weight distribution on leuprolide release from microspheres. Int. J. Pharm. 2021 599 120450 10.1016/j.ijpharm.2021.120450 33675924
    [Google Scholar]
  50. Sun R. Chen Y. Pei Y. Wang W. Zhu Z. Zheng Z. Yang L. Sun L. The drug release of PLGA-based nanoparticles and their application in treatment of gastrointestinal cancers. Heliyon 2024 10 18 38165 10.1016/j.heliyon.2024.e38165 39364250
    [Google Scholar]
  51. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  52. Boshuizen J. Peeper D.S. Rational cancer treatment combinations: An urgent clinical need. Mol. Cell 2020 78 6 1002 1018 10.1016/j.molcel.2020.05.031 32559422
    [Google Scholar]
  53. Bodei L. Herrmann K. Schöder H. Scott A.M. Lewis J.S. Radiotheranostics in oncology: Current challenges and emerging opportunities. Nat. Rev. Clin. Oncol. 2022 19 8 534 550 10.1038/s41571‑022‑00652‑y 35725926
    [Google Scholar]
  54. Nussinov R. Tsai C.J. Jang H. Anticancer drug resistance: An update and perspective. Drug Resist. Updat. 2021 59 100796 10.1016/j.drup.2021.100796 34953682
    [Google Scholar]
  55. Gonçalves A.C. Richiardone E. Jorge J. Polónia B. Xavier C.P.R. Salaroglio I.C. Riganti C. Vasconcelos M.H. Corbet C. Sarmento-Ribeiro A.B. Impact of cancer metabolism on therapy resistance - Clinical implications. Drug Resist. Updat. 2021 59 100797 10.1016/j.drup.2021.100797 34955385
    [Google Scholar]
  56. Martinez J.O. Molinaro R. Hartman K.A. Boada C. Sukhovershin R. De Rosa E. Kuri D. Zhang S. Evangelopoulos M. Carter A.M. Bibb J.A. Cooke J.P. Tasciotti E. Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery. Theranostics 2018 8 4 1131 1145 10.7150/thno.22078 29464004
    [Google Scholar]
  57. Maeda H. SMANCS and polymer-conjugated macromolecular drugs: Advantages in cancer chemotherapy. Adv. Drug Deliv. Rev. 2001 46 1-3 169 185 10.1016/S0169‑409X(00)00134‑4 11259839
    [Google Scholar]
  58. Iyer A.K. Khaled G. Fang J. Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 2006 11 17-18 812 818 10.1016/j.drudis.2006.07.005 16935749
    [Google Scholar]
  59. Maeda H. Bharate G.Y. Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 2009 71 3 409 419 10.1016/j.ejpb.2008.11.010 19070661
    [Google Scholar]
  60. Ikeda-Imafuku M. Wang L.L.W. Rodrigues D. Shaha S. Zhao Z. Mitragotri S. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation. J. Control. Release 2022 345 512 536 10.1016/j.jconrel.2022.03.043 35337939
    [Google Scholar]
  61. Barenholz Y.C. Doxil® - The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012 160 2 117 134 10.1016/j.jconrel.2012.03.020 22484195
    [Google Scholar]
  62. Sadat S. Saeidnia S. Nazarali A. Haddadi A. Nano-pharmaceutical formulations for targeted drug delivery against HER2 in breast cancer. Curr. Cancer Drug Targets 2015 15 1 71 86 10.2174/1568009615666150105115047 25564255
    [Google Scholar]
  63. Farran B. Montenegro R.C. Kasa P. Pavitra E. Huh Y.S. Han Y.K. Kamal M.A. Nagaraju G.P. Rama Raju G.S. Folate-conjugated nanovehicles: Strategies for cancer therapy. Mater. Sci. Eng. C 2020 107 110341 10.1016/j.msec.2019.110341 31761235
    [Google Scholar]
  64. Simonsen J.B. Lipid nanoparticle-based strategies for extrahepatic delivery of nucleic acid therapies - challenges and opportunities. J. Control. Release 2024 370 763 772 10.1016/j.jconrel.2024.04.022 38621638
    [Google Scholar]
  65. Algar W.R. Massey M. Rees K. Higgins R. Krause K.D. Darwish G.H. Peveler W.J. Xiao Z. Tsai H.Y. Gupta R. Lix K. Tran M.V. Kim H. Photoluminescent nanoparticles for chemical and biological analysis and imaging. Chem. Rev. 2021 121 15 9243 9358 10.1021/acs.chemrev.0c01176 34282906
    [Google Scholar]
  66. Guan L. Zeng Z. Liu W. Wang T. Tian S. Hu S. Tian D. Aggregation-induced emission (AIE) nanoparticles based on γ-cyclodextrin and their applications in biomedicine. Carbohydr. Polym. 2022 298 120130 10.1016/j.carbpol.2022.120130 36241331
    [Google Scholar]
  67. Mahani M. Bahmanpouri M. Khakbaz F. Divsar F. Doxorubicin-loaded polymeric micelles decorated with nitrogen-doped carbon dots for targeted breast cancer therapy. J. Drug Deliv. Sci. Technol. 2023 79 104055 10.1016/j.jddst.2022.104055
    [Google Scholar]
  68. Yudhistira T. Da Silva E.C. Combes A. Lehmann M. Reisch A. Klymchenko A.S. Biotinylated fluorescent polymeric nanoparticles for enhanced immunostaining. Small Methods 2023 7 4 2201452 10.1002/smtd.202201452 36808832
    [Google Scholar]
  69. Yoon H.Y. Koo H. Choi K.Y. Lee S.J. Kim K. Kwon I.C. Leary J.F. Park K. Yuk S.H. Park J.H. Choi K. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials 2012 33 15 3980 3989 10.1016/j.biomaterials.2012.02.016 22364699
    [Google Scholar]
  70. Pant K. Sedláček O. Nadar R.A. Hrubý M. Stephan H. Radiolabelled polymeric materials for imaging and treatment of cancer: Quo vadis? Adv. Healthc. Mater. 2017 6 6 1601115 10.1002/adhm.201601115 28218487
    [Google Scholar]
  71. Jeon J. Review of therapeutic applications of radiolabeled functional nanomaterials. Int. J. Mol. Sci. 2019 20 9 2323 10.3390/ijms20092323 31083402
    [Google Scholar]
  72. Poletto G. Evangelista L. Venturini F. Gramegna F. Seno F. Moro S. Vettor R. Realdon N. Cecchin D. Nanoparticles and radioisotopes: A long story in a nutshell. Pharmaceutics 2022 14 10 2024 10.3390/pharmaceutics14102024 36297457
    [Google Scholar]
  73. Goel M. Mackeyev Y. Krishnan S. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: Principles and concepts. Cancer Nanotechnol. 2023 14 1 15 10.1186/s12645‑023‑00165‑y 36865684
    [Google Scholar]
  74. Gharibkandi N.A. Gierałtowska J. Wawrowicz K. Bilewicz A. Nanostructures as radionuclide carriers in auger electron therapy. Materials 2022 15 3 1143 10.3390/ma15031143 35161087
    [Google Scholar]
  75. Wu S. Helal-Neto E. Matos A.P.S. Jafari A. Kozempel J. Silva Y.J.A. Serrano-Larrea C. Alves Junior, S. Ricci-Junior E. Alexis F. Santos-Oliveira R. Radioactive polymeric nanoparticles for biomedical application. Drug Deliv. 2020 27 1 1544 1561 10.1080/10717544.2020.1837296 33118416
    [Google Scholar]
  76. Jahangirian H. Ghasemian lemraski, E.; Webster, T.J.; Rafiee-Moghaddam, R.; Abdollahi, Y. A review of drug delivery systems based on nanotechnology and green chemistry: Green nanomedicine. Int. J. Nanomedicine 2017 12 2957 2978 10.2147/IJN.S127683 28442906
    [Google Scholar]
  77. Bavelaar B.M. Lee B.Q. Gill M.R. Falzone N. Vallis K.A. Subcellular targeting of theranostic radionuclides. Front. Pharmacol. 2018 9 996 10.3389/fphar.2018.00996 30233374
    [Google Scholar]
  78. Kim H.Y. Li R. Ng T.S.C. Courties G. Rodell C.B. Prytyskach M. Kohler R.H. Pittet M.J. Nahrendorf M. Weissleder R. Miller M.A. Quantitative imaging of tumor-associated macrophages and their response to therapy using 64 cu-labeled macrin. ACS Nano 2018 12 12 12015 12029 10.1021/acsnano.8b04338 30508377
    [Google Scholar]
  79. Kong L. Zhu J. Su H. Zhao L. Lu Y. Zhu M. Sun W. Phenylboronic acid conjugated multifunctional nanogels with 131I-labeling for targeted SPECT imaging and radiotherapy of breast adenocarcinoma. Front. Bioeng. Biotechnol. 2022 10 973141 10.3389/fbioe.2022.973141 35957646
    [Google Scholar]
  80. Tang T. Wei Y. Yang Q. Yang Y. Sailor M.J. Pang H.B. Rapid chelator-free radiolabeling of quantum dots for in vivo imaging. Nanoscale 2019 11 46 22248 22254 10.1039/C9NR08508D 31746913
    [Google Scholar]
  81. Liu J. Hu F. Wu M. Tian L. Gong F. Zhong X. Chen M. Liu Z. Liu B. Bioorthogonal coordination polymer nanoparticles with aggregation‐induced emission for deep tumor‐penetrating radio‐ and radiodynamic therapy. Adv. Mater. 2021 33 9 2007888 10.1002/adma.202007888 33491820
    [Google Scholar]
  82. Min Y. Caster J.M. Eblan M.J. Wang A.Z. Clinical translation of nanomedicine. Chem. Rev. 2015 115 19 11147 11190 10.1021/acs.chemrev.5b00116 26088284
    [Google Scholar]
  83. Braga T.L. Pinto S.R. dos Reis S.R.R. Portilho F.L. da Silva de Barros A.O. Bernardes E.S. dos Santos S.N. Alencar L.M.R. Ricci-Junior E. Santos-Oliveira R. Octreotide nanoparticles showed affinity for in vivo mia paca-2 inducted pancreas ductal adenocarcinoma mimicking pancreatic polypeptide-secreting tumor of the distal pancreas (PPoma). Pharm. Res. 2019 36 10 143 10.1007/s11095‑019‑2678‑4 31385111
    [Google Scholar]
  84. Zhou H. Zhang Q. Cheng Y. Xiang L. Shen G. Wu X. Cai H. Li D. Zhu H. Zhang R. Li L. Cheng Z. 64Cu-labeled melanin nanoparticles for PET/CT and radionuclide therapy of tumor. Nanomedicine 2020 29 102248 10.1016/j.nano.2020.102248 32574686
    [Google Scholar]
  85. Imlimthan S. Otaru S. Keinänen O. Correia A. Lintinen K. Santos H.A. Airaksinen A.J. Kostiainen M.A. Sarparanta M. Radiolabeled molecular imaging probes for the in vivo evaluation of cellulose nanocrystals for biomedical applications. Biomacromolecules 2019 20 2 674 683 10.1021/acs.biomac.8b01313 30380842
    [Google Scholar]
  86. Beckford Vera D.R. Fontaine S.D. VanBrocklin H.F. Hearn B.R. Reid R. Ashley G.W. Santi D.V. PET imaging of the EPR effect in tumor xenografts using small 15 nm diameter polyethylene glycols labeled with zirconium-89. Mol. Cancer Ther. 2020 19 2 673 679 10.1158/1535‑7163.MCT‑19‑0709 31744896
    [Google Scholar]
  87. Goos J.A.C.M. Cho A. Carter L.M. Dilling T.R. Davydova M. Mandleywala K. Puttick S. Gupta A. Price W.S. Quinn J.F. Whittaker M.R. Lewis J.S. Davis T.P. Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect. Theranostics 2020 10 2 567 584 10.7150/thno.36777 31903138
    [Google Scholar]
  88. Cousins A. Tsopelas C. Balalis G. Thompson S.K. Bartholomeusz D. Wedding A.B. Thierry B. Hybrid 99mTc-magnetite tracer for dual modality sentinel lymph node mapping. J. Mater. Sci. Mater. Med. 2018 29 6 76 10.1007/s10856‑018‑6080‑2 29845339
    [Google Scholar]
  89. Gibbens-Bandala B. Morales-Avila E. Ferro-Flores G. Santos-Cuevas C. Meléndez-Alafort L. Trujillo-Nolasco M. Ocampo-García B. 177Lu-Bombesin-PLGA (paclitaxel): A targeted controlled-release nanomedicine for bimodal therapy of breast cancer. Mater. Sci. Eng. C 2019 105 110043 10.1016/j.msec.2019.110043 31546458
    [Google Scholar]
  90. Jia B. Zhang X. Wang B. Chen M. Lv F. Wang S. Wang F. Dual-modal probe based on polythiophene derivative for pre- and intraoperative mapping of lymph nodes by SPECT/optical imaging. ACS Appl. Mater. Interfaces 2018 10 7 6646 6651 10.1021/acsami.8b01032 29373014
    [Google Scholar]
  91. Díez-Villares S. Pellico J. Gómez-Lado N. Grijalvo S. Alijas S. Eritja R. Herranz F. Aguiar P. de la Fuente M. Biodistribution of 68/67ga-radiolabeled sphingolipid nanoemulsions by PET and SPECT imaging. Int. J. Nanomedicine 2021 16 5923 5935 10.2147/IJN.S316767 34475757
    [Google Scholar]
  92. Chen L. Chen J. Qiu S. Wen L. Wu Y. Hou Y. Wang Y. Zeng J. Feng Y. Li Z. Shan H. Gao M. Biodegradable nanoagents with short biological half‐life for SPECT/PAI/MRI multimodality imaging and PTT therapy of tumors. Small 2018 14 4 1702700 10.1002/smll.201702700 29194958
    [Google Scholar]
  93. Yang Y. Alencar L.M.R. Pijeira M.S.O. Batista B.S. França A.R.S. Rates E.R.D. Lima R.C. Gemini-Piperni S. Santos-Oliveira R. [ 223 Ra] RaCl 2 nanomicelles showed potent effect against osteosarcoma: Targeted alpha therapy in the nanotechnology era. Drug Deliv. 2022 29 1 186 191 10.1080/10717544.2021.2005719 35191342
    [Google Scholar]
  94. Yi X. Xu M. Zhou H. Xiong S. Qian R. Chai Z. Zhao L. Yang K. Ultrasmall hyperbranched semiconducting polymer nanoparticles with different radioisotopes labeling for cancer theranostics. ACS Nano 2018 12 9 9142 9151 10.1021/acsnano.8b03514 30180555
    [Google Scholar]
  95. Yu B. Wei H. He Q. Ferreira C.A. Kutyreff C.J. Ni D. Rosenkrans Z.T. Cheng L. Yu F. Engle J.W. Lan X. Cai W. Efficient uptake of 177 lu‐porphyrin‐peg nanocomplexes by tumor mitochondria for multimodal‐imaging‐guided combination therapy. Angew. Chem. Int. Ed. 2018 57 1 218 222 10.1002/anie.201710232 29092090
    [Google Scholar]
  96. Jin Z. Chang J. Dou P. Jin S. Jiao M. Tang H. Jiang W. Ren W. Zheng S. Tumor targeted multifunctional magnetic nanobubbles for mr/us dual imaging and focused ultrasound triggered drug delivery. Front. Bioeng. Biotechnol. 2020 8 586874 10.3389/fbioe.2020.586874 33365305
    [Google Scholar]
  97. Falsafi M. Hassanzadeh Goji N. Sh Saljooghi A. Abnous K. Taghdisi S.M. Nekooei S. Ramezani M. Alibolandi M. Synthesis of a targeted, dual pH and redox-responsive nanoscale coordination polymer theranostic against metastatic breast cancer in vitro and in vivo. Expert Opin. Drug Deliv. 2022 19 6 743 754 10.1080/17425247.2022.2083602 35616345
    [Google Scholar]
  98. Han X. Taratula O. St Lorenz A. Moses A.S. Albarqi H.A. Jahangiri Y. Wu Q. Xu K. Taratula O. Farsad K. A novel multimodal nanoplatform for targeting tumor necrosis. RSC Advances 2021 11 47 29486 29497 10.1039/D1RA05658A 35479549
    [Google Scholar]
  99. Tsao C.W. Aday A.W. Almarzooq Z.I. Anderson C.A.M. Arora P. Avery C.L. Baker-Smith C.M. Beaton A.Z. Boehme A.K. Buxton A.E. Commodore-Mensah Y. Elkind M.S.V. Evenson K.R. Eze-Nliam C. Fugar S. Generoso G. Heard D.G. Hiremath S. Ho J.E. Kalani R. Kazi D.S. Ko D. Levine D.A. Liu J. Ma J. Magnani J.W. Michos E.D. Mussolino M.E. Navaneethan S.D. Parikh N.I. Poudel R. Rezk-Hanna M. Roth G.A. Shah N.S. St-Onge M.P. Thacker E.L. Virani S.S. Voeks J.H. Wang N.Y. Wong N.D. Wong S.S. Yaffe K. Martin S.S. Heart disease and stroke statistics-2023 update: A report from the american heart association. Circulation 2023 147 8 e93 e621 10.1161/CIR.0000000000001123 36695182
    [Google Scholar]
  100. Chen X. Zhang Y. Zhang H. Zhang L. Liu L. Cao Y. Ran H. Tian J. A non-invasive nanoparticles for multimodal imaging of ischemic myocardium in rats. J. Nanobiotechnology 2021 19 1 82 10.1186/s12951‑021‑00822‑7 33752679
    [Google Scholar]
  101. Wang K. Gao H. Zhang Y. Yan H. Si J. Mi X. Xia S. Feng X. Liu D. Kong D. Wang T. Ding D. Highly bright AIE nanoparticles by regulating the substituent of rhodanine for precise early detection of atherosclerosis and drug screening. Adv. Mater. 2022 34 9 2106994 10.1002/adma.202106994 34921573
    [Google Scholar]
  102. Ge X. Cui H. Kong J. Lu S.Y. Zhan R. Gao J. Xu Y. Lin S. Meng K. Zu L. Guo S. Zheng L. A non‐invasive nanoprobe for in vivo photoacoustic imaging of vulnerable atherosclerotic plaque. Adv. Mater. 2020 32 38 2000037 10.1002/adma.202000037 32803803
    [Google Scholar]
  103. Ahn J.W. Kim J.H. Park K. In vitro photodynamic effects of the inclusion nanocomplexes of glucan and chlorin e6 on atherogenic foam cells. Int. J. Mol. Sci. 2020 22 1 177 10.3390/ijms22010177 33375356
    [Google Scholar]
  104. Matsumoto T. Yoshino S. Furuyama T. Morisaki K. Nakano K. Koga J. Maehara Y. Komori K. Mori M. Egashira K. Pitavastatin-incorporated nanoparticles for chronic limb threatening ischemia: A phase I/IIA clinical trial. J. Atheroscler. Thromb. 2022 29 5 731 746 10.5551/jat.58941 33907060
    [Google Scholar]
  105. Gao Q. Feng J. Liu W. Wen C. Wu Y. Liao Q. Zou L. Sui X. Xie T. Zhang J. Hu Y. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv. Drug Deliv. Rev. 2022 188 114445 10.1016/j.addr.2022.114445 35820601
    [Google Scholar]
  106. Zeinali M. Abbaspour-Ravasjani S. Ghorbani M. Babazadeh A. Soltanfam T. Santos A.C. Hamishehkar H. Hamblin M.R. Nanovehicles for co-delivery of anticancer agents. Drug Discov. Today 2020 25 8 1416 1430 10.1016/j.drudis.2020.06.027 32622880
    [Google Scholar]
  107. Fan C. Oduk Y. Zhao M. Lou X. Tang Y. Pretorius D. Valarmathi M.T. Walcott G.P. Yang J. Menasche P. Krishnamurthy P. Zhu W. Zhang J. Myocardial protection by nanomaterials formulated with CHIR99021 and FGF1. JCI Insight 2020 5 12 132796 10.1172/jci.insight.132796 32453715
    [Google Scholar]
  108. Jenča D. Melenovský V. Stehlik J. Staněk V. Kettner J. Kautzner J. Adámková V. Wohlfahrt P. Heart failure after myocardial infarction: Incidence and predictors. ESC Heart Fail. 2021 8 1 222 237 10.1002/ehf2.13144 33319509
    [Google Scholar]
  109. Fan C. Tang Y. Zhao M. Lou X. Pretorius D. Menasche P. Zhu W. Zhang J. CHIR99021 and fibroblast growth factor 1 enhance the regenerative potency of human cardiac muscle patch after myocardial infarction in mice. J. Mol. Cell. Cardiol. 2020 141 1 10 10.1016/j.yjmcc.2020.03.003 32169551
    [Google Scholar]
  110. Knox E.G. Aburto M.R. Clarke G. Cryan J.F. O’Driscoll C.M. The blood-brain barrier in aging and neurodegeneration. Mol. Psychiatry 2022 27 6 2659 2673 10.1038/s41380‑022‑01511‑z 35361905
    [Google Scholar]
  111. Ferreira M.D. Duarte J. Veiga F. Paiva-Santos A.C. Pires P.C. Nanosystems for brain targeting of antipsychotic drugs: An update on the most promising nanocarriers for increased bioavailability and therapeutic efficacy. Pharmaceutics 2023 15 2 678 10.3390/pharmaceutics15020678 36840000
    [Google Scholar]
  112. Ribeiro T.C. Sábio R.M. Carvalho G.C. Fonseca-Santos B. Chorilli M. Exploiting mesoporous silica, silver and gold nanoparticles for neurodegenerative diseases treatment. Int. J. Pharm. 2022 624 121978 10.1016/j.ijpharm.2022.121978 35792231
    [Google Scholar]
  113. Moujalled D. Strasser A. Liddell J.R. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ. 2021 28 7 2029 2044 10.1038/s41418‑021‑00814‑y 34099897
    [Google Scholar]
  114. Hou Y. Dan X. Babbar M. Wei Y. Hasselbalch S.G. Croteau D.L. Bohr V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019 15 10 565 581 10.1038/s41582‑019‑0244‑7 31501588
    [Google Scholar]
  115. Agosti E. Zeppieri M. Antonietti S. Battaglia L. Ius T. Gagliano C. Fontanella M.M. Panciani P.P. Navigating the nose-to-brain route: A systematic review on lipid-based nanocarriers for central nervous system disorders. Pharmaceutics 2024 16 3 329 10.3390/pharmaceutics16030329 38543223
    [Google Scholar]
  116. Sahebkar A. Zahedipour F. Hosseini S.A. Henney N.C. Barreto G.E. Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases. Neural Regen. Res. 2022 17 8 1675 1684 10.4103/1673‑5374.332128 35017414
    [Google Scholar]
  117. Abdolmaleky H. Zhou J.R. Underlying mechanisms of brain aging and neurodegenerative diseases as potential targets for preventive or therapeutic strategies using phytochemicals. Nutrients 2023 15 15 3456 10.3390/nu15153456 37571393
    [Google Scholar]
  118. Payne A. Nahashon S. Taka E. Adinew G.M. Soliman K.F.A. Epigallocatechin-3-gallate (EGCG): New therapeutic perspectives for neuroprotection, aging, and neuroinflammation for the modern age. Biomolecules 2022 12 3 371 10.3390/biom12030371 35327563
    [Google Scholar]
  119. Fukutomi R. Ohishi T. Koyama Y. Pervin M. Nakamura Y. Isemura M. Beneficial effects of epigallocatechin-3-O-gallate, chlorogenic acid, resveratrol, and curcumin on neurodegenerative diseases. Molecules 2021 26 2 415 10.3390/molecules26020415 33466849
    [Google Scholar]
  120. Cano A. Ettcheto M. Chang J.H. Barroso E. Espina M. Kühne B.A. Barenys M. Auladell C. Folch J. Souto E.B. Camins A. Turowski P. García M.L. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J. Control. Release 2019 301 62 75 10.1016/j.jconrel.2019.03.010 30876953
    [Google Scholar]
  121. Wu T. Fang X. Xu J. Jiang Y. Cao F. Zhao L. Synergistic effects of ginkgolide b and protocatechuic acid on the treatment of parkinson’s disease. Molecules 2020 25 17 3976 10.3390/molecules25173976 32878312
    [Google Scholar]
  122. Hua J. Yin N. Yang B. Zhang J. Ding J. Fan Y. Hu G. Ginkgolide B and bilobalide ameliorate neural cell apoptosis in α-synuclein aggregates. Biomed. Pharmacother. 2017 96 792 797 10.1016/j.biopha.2017.10.050 29054095
    [Google Scholar]
  123. Zhao Y. Xiong S. Liu P. Liu W. Wang Q. Liu Y. Tan H. Chen X. Shi X. Wang Q. Chen T. Polymeric nanoparticles-based brain delivery with improved therapeutic efficacy of ginkgolide b in parkinson’s disease. Int. J. Nanomedicine 2020 15 10453 10467 10.2147/IJN.S272831 33380795
    [Google Scholar]
  124. Breijyeh Z. Karaman R. Comprehensive review on alzheimer’s disease: Causes and treatment. Molecules 2020 25 24 5789 10.3390/molecules25245789 33302541
    [Google Scholar]
  125. Dighe S. Jog S. Momin M. Sawarkar S. Omri A. Intranasal drug delivery by nanotechnology: Advances in and challenges for alzheimer’s disease management. Pharmaceutics 2023 16 1 58 10.3390/pharmaceutics16010058 38258068
    [Google Scholar]
  126. Fortuna A. Schindowski K. Sonvico F. Editorial: Intranasal drug delivery: Challenges and opportunities. Front. Pharmacol. 2022 13 868986 10.3389/fphar.2022.868986 35308245
    [Google Scholar]
  127. LeWitt P.A. Levodopa therapy for Parkinson’s disease: Pharmacokinetics and pharmacodynamics. Mov. Disord. 2015 30 1 64 72 10.1002/mds.26082 25449210
    [Google Scholar]
  128. Ahmad M.Z. Sabri A.H.B. Anjani Q.K. Domínguez-Robles J. Abdul Latip N. Hamid K.A. Design and development of levodopa loaded polymeric nanoparticles for intranasal delivery. Pharmaceutics 2022 15 3 370 10.3390/ph15030370
    [Google Scholar]
  129. Jaiswal M.K. Riluzole and edaravone: A tale of two amyotrophic lateral sclerosis drugs. Med. Res. Rev. 2019 39 2 733 748 10.1002/med.21528 30101496
    [Google Scholar]
  130. Lu Y. Wang J.T.W. Li N. Zhu X. Li Y. Bansal S. Wang Y. Al-Jamal K.T. Intranasal administration of edaravone nanoparticles improves its stability and brain bioavailability. J. Control. Release 2023 359 257 267 10.1016/j.jconrel.2023.06.001 37290723
    [Google Scholar]
  131. Rommer P.S. Milo R. Han M.H. Satyanarayan S. Sellner J. Hauer L. Illes Z. Warnke C. Laurent S. Weber M.S. Zhang Y. Stuve O. Immunological aspects of approved ms therapeutics. Front. Immunol. 2019 10 1564 10.3389/fimmu.2019.01564 31354720
    [Google Scholar]
  132. Scheu S. Ali S. Mann-Nüttel R. Richter L. Arolt V. Dannlowski U. Kuhlmann T. Klotz L. Alferink J. Interferon β-mediated protective functions of microglia in central nervous system autoimmunity. Int. J. Mol. Sci. 2019 20 1 190 10.3390/ijms20010190 30621022
    [Google Scholar]
  133. González L.F. Acuña E. Arellano G. Morales P. Sotomayor P. Oyarzun-Ampuero F. Naves R. Intranasal delivery of interferon-β-loaded nanoparticles induces control of neuroinflammation in a preclinical model of multiple sclerosis: A promising simple, effective, non-invasive, and low-cost therapy. J. Control. Release 2021 331 443 459 10.1016/j.jconrel.2020.11.019 33220325
    [Google Scholar]
  134. Wathoni N. Herdiana Y. Suhandi C. Mohammed A. El-Rayyes A. Narsa A. Chitosan/alginate-based nanoparticles for antibacterial agents delivery. Int. J. Nanomedicine 2024 19 5021 5044 10.2147/IJN.S469572 38832335
    [Google Scholar]
  135. Roop R.M. Barton I.S. Hopersberger D. Martin D.W. Uncovering the hidden credentials of Brucella virulence. Microbiol. Mol. Biol. Rev. 2021 85 1 e00021 e19 10.1128/MMBR.00021‑19 33568459
    [Google Scholar]
  136. O’Callaghan D. Human brucellosis: Recent advances and future challenges. Infect. Dis. Poverty 2020 9 1 101 10.1186/s40249‑020‑00715‑1 32703319
    [Google Scholar]
  137. Lueth P. Haughney S.L. Binnebose A.M. Mullis A.S. Peroutka-Bigus N. Narasimhan B. Bellaire B.H. Nanotherapeutic provides dose sparing and improved antimicrobial activity against Brucella melitensis infections. J. Control. Release 2019 294 288 297 10.1016/j.jconrel.2018.12.024 30572034
    [Google Scholar]
  138. Wibowo D. Jorritsma S.H.T. Gonzaga Z.J. Evert B. Chen S. Rehm B.H.A. Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials 2021 268 120597 10.1016/j.biomaterials.2020.120597 33360074
    [Google Scholar]
  139. Mao L. Chen Z. Wang Y. Chen C. Design and application of nanoparticles as vaccine adjuvants against human corona virus infection. J. Inorg. Biochem. 2021 219 111454 10.1016/j.jinorgbio.2021.111454 33878530
    [Google Scholar]
  140. Zhuo S.H. Wu J.J. Zhao L. Li W.H. Zhao Y.F. Li Y.M. A chitosan-mediated inhalable nanovaccine against SARS-CoV-2. Nano Res. 2022 15 5 4191 4200 10.1007/s12274‑021‑4012‑9 35126879
    [Google Scholar]
  141. Otten G.R. Schaefer M. Doe B. Liu H. Srivastava I. zur Megede J. Kazzaz J. Lian Y. Singh M. Ugozzoli M. Montefiori D. Lewis M. Driver D.A. Dubensky T. Polo J.M. Donnelly J. O’Hagan D.T. Barnett S. Ulmer J.B. Enhanced potency of plasmid DNA microparticle human immunodeficiency virus vaccines in rhesus macaques by using a priming-boosting regimen with recombinant proteins. J. Virol. 2005 79 13 8189 8200 10.1128/JVI.79.13.8189‑8200.2005 15956564
    [Google Scholar]
  142. Lisziewicz J. Trocio J. Whitman L. Varga G. Xu J. Bakare N. Erbacher P. Fox C. Woodward R. Markham P. Arya S. Behr J.P. Lori F. DermaVir: A novel topical vaccine for HIV/AIDS. J. Invest. Dermatol. 2005 124 1 160 169 10.1111/j.0022‑202X.2004.23535.x 15654970
    [Google Scholar]
  143. Garcia F. Petry K.U. Muderspach L. Gold M.A. Braly P. Crum C.P. Magill M. Silverman M. Urban R.G. Hedley M.L. Beach K.J. ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: A randomized controlled trial. Obstet. Gynecol. 2004 103 2 317 326 10.1097/01.AOG.0000110246.93627.17 14754702
    [Google Scholar]
  144. Bivas-Benita M. van Meijgaarden K.E. Franken K.L.M.C. Junginger H.E. Borchard G. Ottenhoff T.H.M. Geluk A. Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine 2004 22 13-14 1609 1615 10.1016/j.vaccine.2003.09.044 15068842
    [Google Scholar]
  145. Bolhassani A. Javanzad S. Saleh T. Hashemi M. Aghasadeghi M.R. Sadat S.M. Polymeric nanoparticles. Hum. Vaccin. Immunother. 2014 10 2 321 332 10.4161/hv.26796 24128651
    [Google Scholar]
  146. Yang X. Chen M. Weng C. Zhuge D. Jin F. Xiao Y. Tian D. Yin Q. Li L. Zhang X. Shi G. Lu X. Yan L. Wang L. Wen B. Zhao Y. Lin J. Wang F. Zhang W. Chen Y. Red blood cell membrane‐coated nanoparticles enable incompatible blood transfusions. Adv. Sci. 2024 11 29 2310230 10.1002/advs.202310230 38837643
    [Google Scholar]
  147. García G. Moreno-Serna V. Saavedra M. Cordoba A. Canales D. Alfaro A. Guzmán-Soria A. Orihuela P. Zapata S. Grande-Tovar C.D. Valencia-Llano C.H. Zapata P.A. Electrospun scaffolds based on a PCL/starch blend reinforced with CaO nanoparticles for bone tissue engineering. Int. J. Biol. Macromol. 2024 273 Pt 1 132891 10.1016/j.ijbiomac.2024.132891 38848852
    [Google Scholar]
  148. Balto H. Bekhit M.S. Auda S.H. Elansary A. Bhat R.S. Marraiki N. Al-Hadlaq S. Synergistic effect of Salvadora persica and chitosan nanoparticles against oropharyngeal microorganisms. Sci. Rep. 2024 14 1 12997 10.1038/s41598‑024‑63636‑1 38844768
    [Google Scholar]
  149. Zhou J. Zhou L. Chen Z. Sun J. Guo X. Wang H. Zhang X. Liu Z. Liu J. Zhang K. Zhang X. Remineralization and bacterial inhibition of early enamel caries surfaces by carboxymethyl chitosan lysozyme nanogels loaded with antibacterial drugs. J. Dent. 2025 152 105489 10.1016/j.jdent.2024.105489 39617165
    [Google Scholar]
  150. Yang L. Li J. Zhou B. Wang Y. An injectable copolymer for in situ lubrication effectively relieves dry eye disease. ACS Mater. Lett 2025 7 3 884 890 10.1021/acsmaterialslett.4c02327
    [Google Scholar]
  151. Patel A. Patel M. Yang X. Mitra A. Recent advances in protein and Peptide drug delivery: A special emphasis on polymeric nanoparticles. Protein Pept. Lett. 2014 21 11 1102 1120 10.2174/0929866521666140807114240 25106908
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018392176250722113903
Loading
/content/journals/cdd/10.2174/0115672018392176250722113903
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test