Skip to content
2000
Volume 22, Issue 9
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Introduction

Nanofiber (NF) films have emerged as a promising alternative for treating psoriasis. Based on their specific characteristics, they have distinguished themselves from other topical dosage forms, such as hydrogels, foams, and sponges. This research looks at making biocompatible and biodegradable nanofibers out of polyvinyl alcohol (PVA) and gelatin and adding hesperidin (HPN) and ofloxacin (OFX) as medicine.

Methods

HPN-OFX-integrated nanofiber (HPN-OFXNF) films were prepared using electrospinning. Subsequently, the surface morphology, entrapment efficiency, in vitro drug diffusion, and antimicrobial, anti-inflammatory, and anti-psoriasis properties were investigated.

Results

Scanning electron microscopy (SEM) analysis revealed that the produced nanofibers exhibited smooth surfaces with diameters from 50.67 to 114.4 nm, entrapment efficiencies from 69.3 ± 1.8% for OFX and 45.63 ± 1.6% for HPN. At the end of 48 h, nanofibers showed 90.8 ± 2.4% of OFX and 97.3± 3.1% of HPN release. In vitro, antimicrobial testing of the films demonstrated 24.89 ± 3.2 and 42.46 ± 4.4 mm zones of inhibition against E. coli and S. aureus. The total antioxidant activity of HPN is 198.67±2.38 (µ mol AAE/mg HPN), and HPN-OFXNF is 271.12 ± 3.56 (µ mol AAE/mg HPN-OFXNF), and their IC50 values against HaCaT cell growth of 80.5 ± 2.5 and 64.6 ± 3.4 µg/ml, respectively.

Discussion

HPN-OFXNFs have been developed successfully by the electrospinning method with moderate entrapment efficiencies, showing a biphasic trend of an early burst trailed by a sustained pattern of drug release, depending on the surface area and diameter of the fibers. Enhanced zones of inhibition and anti-inflammatory efficacy of NFs in comparison with their pure counterparts have been demonstrated to be beneficial. Stronger antioxidant efficacy, inducing anti-proliferation and promoting apoptosis in human keratinocytes, has made them the best versions over pure drug compounds.

Conclusion

This therapy, which includes a combined anti-inflammatory and antibacterial treatment strategy with an innovative drug delivery system, has proven to be a promising development in treating psoriasis.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018390944250505120443
2025-05-08
2025-12-19
Loading full text...

Full text loading...

References

  1. SharmaK.S. KumarS. Current strategies for the management of psoriasis with potential pharmacological pathways using herbals and immuno-biologicals.Curr. Mol. Pharmacol.202310.2174/187446721766623091512561337724681
    [Google Scholar]
  2. KimW.B. JeromeD. YeungJ. Diagnosis and management of psoriasis.Can. Fam. Physician201763427828528404701
    [Google Scholar]
  3. DhabaleA. NagpureS. Types of psoriasis and their effects on the immune system.Cureus2022149e2953610.7759/cureus.2953636312680
    [Google Scholar]
  4. EbrahimiA. MehrabiM. MiraghaeeS.S. MohammadiP. Fatehi KafashF. DelfaniM. KhodarahmiR. Flavonoid compounds and their synergistic effects: Promising approaches for the prevention and treatment of psoriasis with emphasis on keratinocytes – A systematic and mechanistic review.Int. Immunopharmacol.202413811256110.1016/j.intimp.2024.11256138941673
    [Google Scholar]
  5. KantV. JangirB.L. KumarV. NigamA. SharmaV. Quercetin accelerated cutaneous wound healing in rats by modulation of different cytokines and growth factors.Growth Factors202038210511910.1080/08977194.2020.182283032957814
    [Google Scholar]
  6. Torres-MartinezE.J. Cornejo BravoJ.M. Serrano MedinaA. Pérez GonzálezG.L. Villarreal GómezL.J. A summary of electrospun nanofibers as drug delivery system: Drugs loaded and biopolymers used as matrices.Curr. Drug Deliv.201815101360137410.2174/156720181566618072311432630033869
    [Google Scholar]
  7. OverviewU. StoicaA.E. ChircovC. Nanomaterials for wound dressings: An up-to-date overview.Molecules20202511269910.3390/molecules2511269932532089
    [Google Scholar]
  8. ChoiJ.S. KimH.S. YooH.S. Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery.Drug Deliv. Transl. Res.20155213714510.1007/s13346‑013‑0148‑925787739
    [Google Scholar]
  9. UnnithanA.R. BarakatN.A.M. Tirupathi PichiahP.B. GnanasekaranG. NirmalaR. ChaY.S. JungC.H. El-NewehyM. KimH.Y. Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl.Carbohydr. Polym.20129041786179310.1016/j.carbpol.2012.07.07122944448
    [Google Scholar]
  10. VarshosazJ. JannesariM. MorshedM. ZamaniM. Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs.Int. J. Nanomedicine20116993100310.2147/IJN.S1759521720511
    [Google Scholar]
  11. IqbalH. KhanB.A. KhanZ.U. RazzaqA. KhanN.U. MenaaB. MenaaF. Fabrication, physical characterizations and in vitro antibacterial activity of cefadroxil-loaded chitosan/poly(vinyl alcohol) nanofibers against Staphylococcus aureus clinical isolates.Int. J. Biol. Macromol.202014492193110.1016/j.ijbiomac.2019.09.16931704336
    [Google Scholar]
  12. HuangC. HuK. WeiZ. Comparison of cell behavior on PVA/PVA-gelatin electrospun nanofibers with random and aligned configuration.Sci. Rep.201663796010.1038/srep37960
    [Google Scholar]
  13. YangD. LiY. NieJ. Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs.Carbohydr. Polym.200769353854310.1016/j.carbpol.2007.01.008
    [Google Scholar]
  14. TangY. ZhouY. LanX. HuangD. LuoT. Electrospun gelatin nanofibers encapsulated with peppermint and chamomile essential oils as potential edible packaging.J. Agric. Food Chem.20196782227223410.1021/acs.jafc.8b0622630715872
    [Google Scholar]
  15. AnjumF. AgabalyanN.A. SparksH.D. RosinN.L. KallosM.S. BiernaskieJ. Biocomposite nanofiber matrices to support ECM remodeling by human dermal progenitors and enhanced wound closure.Sci. Rep.2017711029110.1038/s41598‑017‑10735‑x28860484
    [Google Scholar]
  16. Muratİ. MülazG. Production and characterization of bactericidal wound dressing material based on gelatin nanofiber.Int. J. Biol. Macromol.201913739240410.1016/j.ijbiomac.2019.06.11931233795
    [Google Scholar]
  17. WangL. HeT. FuA. MaoZ. YiL. Hesperidin enhances angiogenesis via modulating expression of growth and inflammatory factor in diabetic foot ulcer in rats.Eur. J. Inflamm.20181610.1177/2058739218775255
    [Google Scholar]
  18. LiW. KandhareA.D. MukherjeeA.A. BodhankarS.L. Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: Role of TGF-ß/Smads and Ang-1/Tie-2 signaling pathways.EXCLI J.20181739941910.17179/excli2018‑103629805347
    [Google Scholar]
  19. BagherZ. EhteramiA. SafdelM.H. KhastarH. SemiariH. AsefnejadA. DavachiS.M. MirzaiiM. SalehiM. Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model.J. Drug Deliv. Sci. Technol.20195510137910.1016/j.jddst.2019.101379
    [Google Scholar]
  20. Tsirigotis-ManieckaM. GancarzR. WilkK.A. Polysaccharide hydrogel particles for enhanced delivery of hesperidin: Fabrication, characterization and in vitro evaluation.Colloids Surf. A Physicochem. Eng. Asp.2017532485610.1016/j.colsurfa.2017.07.001
    [Google Scholar]
  21. MajumdarS. Solubility, stability, physicochemical characteristics and in vitro ocular tissue permeability of hesperidin: A natural bioflavonoid.Pharm. Res.20092651217122510.1007/s11095‑008‑9729‑618810327
    [Google Scholar]
  22. YuanG. LianF. YanY. WangY. ZhangL. ZhuJ. FatimaA. QianY. One earth-one health (OE-OH): Antibacterial effects of plant flavonoids in combination with clinical antibiotics with various mechanisms.Antibiotics2024141810.3390/antibiotics1401000839858294
    [Google Scholar]
  23. MonkJ.P. Campoli-RichardsD.M. Ofloxacin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use.Drugs198733434639110.2165/00003495‑198733040‑000033297617
    [Google Scholar]
  24. TejadaS. PinyaS. MartorellM. CapóX. TurJ.A. PonsA. SuredaA. Potential anti-inflammatory effects of hesperidin from the genus citrus.Curr. Med. Chem.201925374929494510.2174/092986732466617071810441228721824
    [Google Scholar]
  25. HiwraleA. BharatiS. PingaleP. RajputA. Nanofibers: A current era in drug delivery system.Heliyon202399e1891710.1016/j.heliyon.2023.e1891737674834
    [Google Scholar]
  26. ElamparithiA.A. PunnooseA.M. KuruvillaS. Electrospun type 1 collagen matrices preserving native ultrastructure using benign binary solvent for cardiac tissue engineering.Artif. Cells Nanomed. Biotechnol.20164451318132510.3109/21691401.2015.102962925960178
    [Google Scholar]
  27. Al-HazeemN.Z. Nanofibers and Electrospinning Method.Novel Nanomaterials - Synthesis and Applications. KyzasG.Z. MitropoulosA.C. RijekaIntechOpen201810.5772/intechopen.72060
    [Google Scholar]
  28. RadeP.P. GarnaikB. Ofloxacin-loaded PLLA nanofibrous mats for wound dressing applications.ACS Appl. Bio Mater.20203106648666010.1021/acsabm.0c0029035019391
    [Google Scholar]
  29. RenX. HuY. ChangL. XuS. MeiX. ChenZ. Electrospinning of antibacterial and anti-inflammatory Ag@hesperidin core-shell nanoparticles into nanofibers used for promoting infected wound healing.Regen. Biomater.20229rbac01210.1093/rb/rbac01235592139
    [Google Scholar]
  30. RezaeiM. SedaghatN. HedayatiS. GolmakaniM.T. Fabrication and characterization of novel electrospun nanofibers based on grass pea (Lathyrus sativus L.) protein isolate loaded with sumac (Rhus coriaria L.) extract.Curr. Res. Food Sci.2024910089110.1016/j.crfs.2024.10089139628598
    [Google Scholar]
  31. SinghB. GargT. GoyalA.K. RathG. Development, optimization, and characterization of polymeric electrospun nanofiber: A new attempt in sublingual delivery of nicorandil for the management of angina pectoris.Artif. Cells Nanomed. Biotechnol.20164461498150710.3109/21691401.2015.105247226134924
    [Google Scholar]
  32. EmbabyH.E. MiyakawaT. HachimuraS. MuramatsuT. NaraM. TanokuraM. Crystallization and melting properties studied by DSC and FTIR spectroscopy of goldenberry (Physalis peruviana) oil.Food Chem.202236613064510.1016/j.foodchem.2021.13064534325243
    [Google Scholar]
  33. ŠircJ. HobzováR. KostinaN. MunzarováM. JuklíčkováM. LhotkaM. KubinováŠ. ZajícováA. MichálekJ. Morphological characterization of nanofibers: Methods and application in practice.J. Nanomater.20122012132736910.1155/2012/327369
    [Google Scholar]
  34. NandhiniJ. KarthikeyanE. JegatheshwaranC. VigneshK. MuthuboopathiG. RajeshkumarS. Pitolisant nanofibers: A promising frontier in drug delivery for narcolepsy - Formulation, optimisation, and characterization insights.Biomedical Technology2024691610.1016/j.bmt.2023.10.002
    [Google Scholar]
  35. SomayehT. SaeedH. JalehV. MohsenM. ArdeshirT. Fabrication and evaluation of hesperidin loaded polyacrylonitrile/polyethylene oxide nanofibers for wound dressing application.J. Biomater. Sci. Polym. Ed.202132151944196510.1080/09205063.2021.195238034228587
    [Google Scholar]
  36. ArdalkarS. MathureD. PawarA. AwasthiR. Formulation and optimization of electrospun nanofiber films for ultrafast delivery of domperidone: In vitro and in-vivo characterization.J. Drug Deliv. Sci. Technol.20249510564510.1016/j.jddst.2024.105645
    [Google Scholar]
  37. AsatianiN. NovotnýV. LukášD. MikešP. A novel approach to studying the kinetics of release of Alaptide from Poly-ε-caprolactone nanofibers.J. Drug Deliv. Sci. Technol.20216310249210.1016/j.jddst.2021.102492
    [Google Scholar]
  38. Ulker TuranC. GuvenilirY. Electrospun poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan ternary nanofibers with antibacterial activity for treatment of skin infections.Eur. J. Pharm. Sci.202217010611310.1016/j.ejps.2021.10611334986416
    [Google Scholar]
  39. Can SunerS. YildirimY. YurtF. OzelD. OralA. OzturkI. Antibiotic loaded electrospun poly (lactic acid) nanofiber mats for drug delivery system.J. Drug Deliv. Sci. Technol.20227110326310.1016/j.jddst.2022.103263
    [Google Scholar]
  40. BardaniaH. MahmoudiR. BagheriH. SalehpourZ. FouaniM.H. DarabianB. KhoramroozS.S. MousavizadehA. KowsariM. MoosavifardS.E. ChristiansenG. JaveshghaniD. AlipourM. AkramiM. Facile preparation of a novel biogenic silver-loaded Nanofilm with intrinsic anti-bacterial and oxidant scavenging activities for wound healing.Sci. Rep.2020101612910.1038/s41598‑020‑63032‑532273549
    [Google Scholar]
  41. DasK. AsdaqS.M.B. KhanM.S. AmruthaS. AlamriA. AlhomraniM. AlsanieW.F. BhaskarA. Chandana shree, G.; Harshitha, P. Phytochemical investigation and evaluation of in vitro anti-inflammatory activity of Euphorbia hirta ethanol leaf and root extracts: A comparative study.J. King Saud Univ. Sci.202234710226110.1016/j.jksus.2022.102261
    [Google Scholar]
  42. LekouaghetA. BoutefnouchetA. BensuiciC. GaliL. GhenaietK. TichatiL. In vitro evaluation of antioxidant and anti-inflammatory activities of the hydroalcoholic extract and its fractions from Leuzea conifera L. roots.S. Afr. J. Bot.202013210310710.1016/j.sajb.2020.03.042
    [Google Scholar]
  43. SanniyasiE. GopalR.K. RajP.P. ShanmugavelA.K. Anti-inflammatory, remorin-like protein from green marine Macroalga Caulerpa sertularioides (S.G.Gmel.).M.Howe. Heliyon202398e1923910.1016/j.heliyon.2023.e1923937664755
    [Google Scholar]
  44. M, A.; i, M.A.; Ramalingam, K.; S, R. Evaluation of the anti-inflammatory, antimicrobial, antioxidant, and cytotoxic effects of chitosan thiocolchicoside-lauric acid nanogel.Cureus2023159e4600310.7759/cureus.4600337900405
    [Google Scholar]
  45. Gulcinİ. AlwaselS.H. DPPH Radical Scavenging Assay.Processes2023118224810.3390/pr11082248
    [Google Scholar]
  46. SolaberrietaI. JiménezA. CacciottiI. GarrigósM.C. Encapsulation of bioactive compounds from Aloe Vera agrowastes in electrospun poly (ethylene oxide) nanofibers.Polymers2020126132310.3390/polym1206132332531945
    [Google Scholar]
  47. BaliyanS. MukherjeeR. PriyadarshiniA. VibhutiA. GuptaA. PandeyR.P. ChangC.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa.Molecules2022274132610.3390/molecules2704132635209118
    [Google Scholar]
  48. SuarezJ. HerreraM.D. MarhuendaE. In vitro scavenger and antioxidant properties of hesperidin and neohesperidin dihydrochalcone.Phytomedicine19985646947310.1016/S0944‑7113(98)80044‑523196031
    [Google Scholar]
  49. HalliwellB. GutteridgeJ.M.C. AruomaO.I. The deoxyribose method: A simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals.Anal. Biochem.1987165121521910.1016/0003‑2697(87)90222‑33120621
    [Google Scholar]
  50. KimI.S. YangM.R. LeeO.H. KangS.N. Antioxidant activities of hot water extracts from various spices.Int. J. Mol. Sci.20111264120413110.3390/ijms1206412021747728
    [Google Scholar]
  51. AfsarT. RazakS. ShabbirM. KhanM.R. Antioxidant activity of polyphenolic compounds isolated from ethyl-acetate fraction of Acacia hydaspica R.Parker. Chem. Cent J.2018121510.1186/s13065‑018‑0373‑x29372439
    [Google Scholar]
  52. PrietoP. PinedaM. AguilarM. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E.Anal. Biochem.1999269233734110.1006/abio.1999.401910222007
    [Google Scholar]
  53. WangX. YaoY. LiY. GuoS. LiY. ZhangG. Experimental study on the effect of luteolin on the proliferation, apoptosis and expression of inflammation-related mediators in lipopolysaccharide-induced keratinocytes.Int. J. Immunopathol. Pharmacol.2023370394632023116917510.1177/0394632023116917537024790
    [Google Scholar]
  54. SinghS.K. ChouhanH.S. SahuA.N. NarayanG. Assessment of in vitro antipsoriatic activity of selected Indian medicinal plants.Pharm. Biol.20155391295130110.3109/13880209.2014.97671325856701
    [Google Scholar]
  55. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑46606682
    [Google Scholar]
  56. HsiaoY.P. HuangH.L. LaiW.W. ChungJ.G. YangJ.H. Antiproliferative effects of lactic acid via the induction of apoptosis and cell cycle arrest in a human keratinocyte cell line (HaCaT).J. Dermatol. Sci.200954317518410.1016/j.jdermsci.2009.02.01219339159
    [Google Scholar]
  57. NorouziM. AbdaliZ. LiuS. MillerD.W. Salinomycin-loaded nanofibers for glioblastoma therapy.Sci. Rep.201881937710.1038/s41598‑018‑27733‑229925966
    [Google Scholar]
  58. MalekniaL. DilamianM. PilehroodM. Sadeghi-AliabadiH. HekmatiA. Preparation, process optimization and characterization of core-shell polyurethane/chitosan nanofibers as a potential platform for bioactive scaffolds.Res. Pharm. Sci.201813327328210.4103/1735‑5362.22895729853936
    [Google Scholar]
  59. Siti SyazwaniN. Ervina EfzanM.N. KokC.K. NurhidayatullailiM.J. Analysis on extracted jute cellulose nanofibers by Fourier transform infrared and X-Ray diffraction.J. Build. Eng.20224810374410.1016/j.jobe.2021.103744
    [Google Scholar]
  60. AbouSamraM.M. El HoffyN.M. El-WakilN.A. AwadG.E.A. KamelR. Computational investigation to design ofloxacin-loaded hybridized nanocellulose/lipid nanogels for accelerated skin repair.Gels20228959310.3390/gels809059336135305
    [Google Scholar]
  61. BessarabovV. LisovyiV. LyzhniukV. KostiukV. SmishkoR. YaremenkoV. GoyA. DerkachT. KuzminaG. GureyevaS. Development and characterisation of polymeric solid dispersed systems of hesperidin, obtained by centrifugal fibre formation.Heliyon2025114e4270210.1016/j.heliyon.2025.e4270240083992
    [Google Scholar]
  62. CuiZ. ZhengZ. LinL. SiJ. WangQ. PengX. ChenW. Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery.Adv. Polym. Technol.20183761917192810.1002/adv.21850
    [Google Scholar]
  63. VashisthP. RaghuwanshiN. SrivastavaA.K. SinghH. NagarH. PruthiV. Ofloxacin loaded gellan/PVA nanofibers - Synthesis, characterization and evaluation of their gastroretentive/mucoadhesive drug delivery potential.Mater. Sci. Eng. C20177161161910.1016/j.msec.2016.10.05127987752
    [Google Scholar]
  64. KarataşA. Hilal AlganA. Pekel-BayramgilN. TurhanF. AltanlarN. Ofloxacin loaded electrospun fibers for ocular drug delivery: Effect of formulation variables on fiber morphology and drug release.Curr. Drug Deliv.201613343344310.2174/156720181266615103016225826521656
    [Google Scholar]
  65. BružauskaitėI. BironaitėD. BagdonasE. BernotienėE. Scaffolds and cells for tissue regeneration: Different scaffold pore sizes—different cell effects.Cytotechnology201668335536910.1007/s10616‑015‑9895‑4
    [Google Scholar]
  66. ShaikhR.P. KumarP. ChoonaraY.E. du ToitL.C. PillayV. Crosslinked electrospun PVA nanofibrous membranes: Elucidation of their physicochemical, physicomechanical and molecular disposition.Biofabrication20124202500210.1088/1758‑5082/4/2/02500222427482
    [Google Scholar]
  67. ZhouJ. WangP. YuD.G. ZhuY. Biphasic drug release from electrospun structures.Expert Opin. Drug Deliv.202320562164010.1080/17425247.2023.221083437140041
    [Google Scholar]
  68. AghabeigiE. ShabanlooR. AkbariS. AghajiA.G. Electrospun PLLA/PEI nanofibers for controlled drug release behaviors and antibacterial efficiency.J. Macromol. Sci. Part A Pure Appl. Chem.202461318620210.1080/10601325.2024.2322427
    [Google Scholar]
  69. HuoP. HanX. ZhangW. ZhangJ. KumarP. LiuB. Electrospun nanofibers of polycaprolactone/collagen as a sustained-release drug delivery system for artemisinin.Pharmaceutics2021138122810.3390/pharmaceutics1308122834452189
    [Google Scholar]
  70. MehriziM. PVA nanofibers containing ofloxacin-cyclodextrin inclusion complex: Improve optical stability of ofloxacin.Open J. Org Polym. Mater.201992294610.4236/ojopm.2019.92002
    [Google Scholar]
  71. KarakucukA. TortS. Preparation, characterization and antimicrobial activity evaluation of electrospun PCL nanofiber composites of resveratrol nanocrystals.Pharm. Dev. Technol.202025101216122510.1080/10837450.2020.180576132744472
    [Google Scholar]
  72. MirzaeeiS. TagheS. Asare-AddoK. NokhodchiA. Polyvinyl alcohol/chitosan single-layered and polyvinyl alcohol/chitosan/Eudragit RL100 multi-layered electrospun nanofibers as an ocular matrix for the controlled release of ofloxacin: An in vitro and in vivo evaluation.AAPS PharmSciTech202122517010.1208/s12249‑021‑02051‑534085150
    [Google Scholar]
  73. KumarasingheN. DharmadevaS. GalgamuwaL.S. PrasadinieC. In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method.Ayu201839423924210.4103/ayu.AYU_27_1831367147
    [Google Scholar]
  74. MehriziM. AmiriS. Hajir BahramiS. MirzaeeR. PVA nanofibers containing ofloxacin/α-cyclodextrin inclusion complexes: Improve ofloxacin water solubility.J. Text. Inst.2020111566968110.1080/00405000.2019.1657614
    [Google Scholar]
  75. ArnethB. AbdelmonemR. El-NabarawiM.A. TeaimaM.H. RashwanK.O. SolimanM.A. Al-SamadiI.E.I. Optimized hesperidin-loaded lipid nanoparticles with tea tree oil for enhanced wound healing: Formulation, characterization, and evaluation.Pharmaceuticals202518329010.3390/ph1803029040143069
    [Google Scholar]
  76. Paczkowska-WalendowskaM. MiklaszewskiA. Cielecka-PiontekJ. Improving solubility and permeability of hesperidin through electrospun orange-peel-extract-loaded nanofibers.Int. J. Mol. Sci.2023249796310.3390/ijms2409796337175671
    [Google Scholar]
  77. YangH.L. ChenS.C. Senthil KumarK.J. YuK.N. ChaoL. P.D.; Tsai, S.Y.; Hou, Y.C.; Hseu, Y.C. Antioxidant and anti-inflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: An ex vivo approach.J. Agric. Food Chem.201260152253210.1021/jf204067522098419
    [Google Scholar]
  78. LiX. XieX. ZhangL. MengY. LiN. WangM. ZhaiC. LiuZ. DiT. ZhangL. LiP. Hesperidin inhibits keratinocyte proliferation and imiquimod-induced psoriasis-like dermatitis via the IRS-1/ERK1/2 pathway.Life Sci.201921931132110.1016/j.lfs.2019.01.01930658103
    [Google Scholar]
  79. BirerM. KaraA.A. Yurdakok-DikmenB. UyarR. AralanG. BirerY.T. FilaziA. AcartürkF. Electrospun hesperidin nanofibers induce a cytoprotective effect on sodium-fluoride induced oxidative stress in vitro.J. Drug Deliv. Sci. Technol.20249210538810.1016/j.jddst.2024.105388
    [Google Scholar]
  80. DwivediA. MujtabaS.F. YadavN. KushwahaH.N. AmarS.K. SinghS.K. PantM.C. RayR.S. Cellular and molecular mechanism of ofloxacin induced apoptotic cell death under ambient UV-A and sunlight exposure.Free Radic. Res.201448333334610.3109/10715762.2013.86932424286391
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018390944250505120443
Loading
/content/journals/cdd/10.2174/0115672018390944250505120443
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test