Skip to content
2000
image of Electrospun Nanofiber Films Containing Hesperidin and Ofloxacin for the Inhibition of Inflammation and Psoriasis: A Potential In vitro Study

Abstract

Introduction

Nanofiber (NF) films have emerged as a promising alternative for treating psoriasis. Based on their specific characteristics, they have distinguished themselves from other topical dosage forms, such as hydrogels, foams, and sponges. This research looks at making biocompatible and biodegradable nanofibers out of polyvinyl alcohol (PVA) and gelatin and adding hesperidin (HPN) and ofloxacin (OFX) as medicine.

Methods

HPN-OFX-integrated nanofiber (HPN-OFXNF) films were prepared using electrospinning. Subsequently, the surface morphology, entrapment efficiency, in vitro drug diffusion, and antimicrobial, anti-inflammatory, and anti-psoriasis properties were investigated.

Results

Scanning electron microscopy (SEM) analysis revealed that the produced nanofibers exhibited smooth surfaces with diameters from 50.67 to 114.4 nm, entrapment efficiencies from 69.3 ± 1.8% for OFX and 45.63 ± 1.6% for HPN. At the end of 48 h, nanofibers showed 90.8 ± 2.4% of OFX and 97.3± 3.1% of HPN release. In vitro, antimicrobial testing of the films demonstrated 24.89 ± 3.2 and 42.46 ± 4.4 mm zones of inhibition against E. coli and S. aureus. The total antioxidant activity of HPN is 198.67±2.38 (µ mol AAE/mg HPN), and HPN-OFXNF is 271.12 ± 3.56 (µ mol AAE/mg HPN-OFXNF), and their IC50 values against HaCaT cell growth of 80.5 ± 2.5 and 64.6 ± 3.4 µg/ml, respectively.

Discussion

HPN-OFXNFs have been developed successfully by the electrospinning method with moderate entrapment efficiencies, showing a biphasic trend of an early burst trailed by a sustained pattern of drug release, depending on the surface area and diameter of the fibers. Enhanced zones of inhibition and anti-inflammatory efficacy of NFs in comparison with their pure counterparts have been demonstrated to be beneficial. Stronger antioxidant efficacy, inducing anti-proliferation and promoting apoptosis in human keratinocytes, has made them the best versions over pure drug compounds.

Conclusion

This therapy, which includes a combined anti-inflammatory and antibacterial treatment strategy with an innovative drug delivery system, has proven to be a promising development in treating psoriasis.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018390944250505120443
2025-05-08
2025-08-13
Loading full text...

Full text loading...

References

  1. Sharma K.S. Kumar S. Current strategies for the management of psoriasis with potential pharmacological pathways using herbals and immuno-biologicals. Curr. Mol. Pharmacol. 2023 10.2174/1874467217666230915125613 37724681
    [Google Scholar]
  2. Kim W.B. Jerome D. Yeung J. Diagnosis and management of psoriasis. Can. Fam. Physician 2017 63 4 278 285 28404701
    [Google Scholar]
  3. Dhabale A. Nagpure S. Types of psoriasis and their effects on the immune system. Cureus 2022 14 9 e29536 10.7759/cureus.29536 36312680
    [Google Scholar]
  4. Ebrahimi A. Mehrabi M. Miraghaee S.S. Mohammadi P. Fatehi Kafash F. Delfani M. Khodarahmi R. Flavonoid compounds and their synergistic effects: Promising approaches for the prevention and treatment of psoriasis with emphasis on keratinocytes – A systematic and mechanistic review. Int. Immunopharmacol. 2024 138 112561 10.1016/j.intimp.2024.112561 38941673
    [Google Scholar]
  5. Kant V. Jangir B.L. Kumar V. Nigam A. Sharma V. Quercetin accelerated cutaneous wound healing in rats by modulation of different cytokines and growth factors. Growth Factors 2020 38 2 105 119 10.1080/08977194.2020.1822830 32957814
    [Google Scholar]
  6. Torres-Martinez E.J. Cornejo Bravo J.M. Serrano Medina A. Pérez González G.L. Villarreal Gómez L.J. A summary of electrospun nanofibers as drug delivery system: Drugs loaded and biopolymers used as matrices. Curr. Drug Deliv. 2018 15 10 1360 1374 10.2174/1567201815666180723114326 30033869
    [Google Scholar]
  7. Overview U. Stoica A.E. Chircov C. Nanomaterials for wound dressings: An up-to-date overview. Molecules 2020 25 11 2699 10.3390/molecules25112699 32532089
    [Google Scholar]
  8. Choi J.S. Kim H.S. Yoo H.S. Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv Transl Res 2015 5 2 137 145 10.1007/s13346‑013‑0148‑9 25787739
    [Google Scholar]
  9. Unnithan A.R. Barakat N.A.M. Tirupathi Pichiah P.B. Gnanasekaran G. Nirmala R. Cha Y.S. Jung C.H. El-Newehy M. Kim H.Y. Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr. Polym. 2012 90 4 1786 1793 10.1016/j.carbpol.2012.07.071 22944448
    [Google Scholar]
  10. Varshosaz J. Jannesari M. Morshed M. Zamani M. Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int. J. Nanomedicine 2011 6 993 1003 10.2147/IJN.S17595 21720511
    [Google Scholar]
  11. Iqbal H. Khan B.A. Khan Z.U. Razzaq A. Khan N.U. Menaa B. Menaa F. Fabrication, physical characterizations and in vitro antibacterial activity of cefadroxil-loaded chitosan/poly(vinyl alcohol) nanofibers against Staphylococcus aureus clinical isolates. Int. J. Biol. Macromol. 2020 144 921 931 10.1016/j.ijbiomac.2019.09.169 31704336
    [Google Scholar]
  12. Huang C. Hu K. Wei Z. Comparison of cell behavior on PVA/PVA-gelatin electrospun nanofibers with random and aligned configuration. Sci Rep 2016 6 37960 10.1038/srep37960
    [Google Scholar]
  13. Yang D. Li Y. Nie J. Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohydr. Polym. 2007 69 3 538 543 10.1016/j.carbpol.2007.01.008
    [Google Scholar]
  14. Tang Y. Zhou Y. Lan X. Huang D. Luo T. Electrospun gelatin nanofibers encapsulated with peppermint and chamomile essential oils as potential edible packaging. J Agric Food Chem 2019 67 8 2227 2234 10.1021/acs.jafc.8b06226 30715872
    [Google Scholar]
  15. Anjum F. Agabalyan N.A. Sparks H.D. Rosin N.L. Kallos M.S. Biernaskie J. Biocomposite nanofiber matrices to support ECM remodeling by human dermal progenitors and enhanced wound closure. Sci. Rep. 2017 7 1 10291 10.1038/s41598‑017‑10735‑x 28860484
    [Google Scholar]
  16. Murat İ. Mülaz G. Production and characterization of bactericidal wound dressing material based on gelatin nanofiber. Int J Biol Macromol 2019 137 392 404 10.1016/j.ijbiomac.2019.06.119 31233795
    [Google Scholar]
  17. Wang L. He T. Fu A. Mao Z. Yi L. Hesperidin enhances angiogenesis via modulating expression of growth and inflammatory factor in diabetic foot ulcer in rats. Eur. J. Inflamm. 2018 16 10.1177/2058739218775255
    [Google Scholar]
  18. Li W. Kandhare A.D. Mukherjee A.A. Bodhankar S.L. Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: Role of TGF-ß/Smads and Ang-1/Tie-2 signaling pathways. EXCLI J 2018 17 399 419 10.17179/excli2018‑1036 29805347
    [Google Scholar]
  19. Bagher Z. Ehterami A. Safdel M.H. Khastar H. Semiari H. Asefnejad A. Davachi S.M. Mirzaii M. Salehi M. Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J. Drug Deliv. Sci. Technol. 2019 101379 10.1016/j.jddst.2019.101379
    [Google Scholar]
  20. Tsirigotis-Maniecka M. Gancarz R. Wilk K.A. Polysaccharide hydrogel particles for enhanced delivery of hesperidin: Fabrication, characterization and in vitro evaluation. Colloids Surf. A Physicochem. Eng. Asp. 2017 532 48 56 10.1016/j.colsurfa.2017.07.001
    [Google Scholar]
  21. Majumdar S. Solubility, stability, physicochemical characteristics and in vitro ocular tissue permeability of hesperidin: A natural bioflavonoid. Pharm Res 2009 26 5 1217 1225 10.1007/s11095‑008‑9729‑6 18810327
    [Google Scholar]
  22. Yuan G. Lian F. Yan Y. Wang Y. Zhang L. Zhu J. Fatima A. Qian Y. One earth-one health (OE-OH): Antibacterial effects of plant flavonoids in combination with clinical antibiotics with various mechanisms. Antibiotics 2024 14 1 8 10.3390/antibiotics14010008 39858294
    [Google Scholar]
  23. Monk J.P. Campoli-Richards D.M. Ofloxacin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 1987 33 4 346 391 10.2165/00003495‑198733040‑00003 3297617
    [Google Scholar]
  24. Tejada S. Pinya S. Martorell M. Capó X. Tur J.A. Pons A. Sureda A. Potential anti-inflammatory effects of hesperidin from the genus citrus. Curr. Med. Chem. 2019 25 37 4929 4945 10.2174/0929867324666170718104412 28721824
    [Google Scholar]
  25. Hiwrale A. Bharati S. Pingale P. Rajput A. Nanofibers: A current era in drug delivery system. Heliyon 2023 9 9 e18917 10.1016/j.heliyon.2023.e18917 37674834
    [Google Scholar]
  26. Elamparithi A. A Punnoose A.M. Kuruvilla S. Electrospun type 1 collagen matrices preserving native ultrastructure using benign binary solvent for cardiac tissue engineering. Artif Cells Nanomed Biotechnol 2016 44 5 1318 1325 10.3109/21691401.2015.1029629 25960178
    [Google Scholar]
  27. Al-Hazeem N.Z. Kyzas G.Z. Mitropoulos A.C. Nanofibers and Electrospinning Method. Novel Nanomaterials - Synthesis and Applications IntechOpen. Rijeka 2018 10.5772/intechopen.72060
    [Google Scholar]
  28. Rade P.P. Garnaik B. Ofloxacin-loaded PLLA nanofibrous mats for wound dressing applications. ACS Appl. Bio Mater. 2020 3 10 6648 6660 10.1021/acsabm.0c00290 35019391
    [Google Scholar]
  29. Ren X. Hu Y. Chang L. Xu S. Mei X. Chen Z. Electrospinning of antibacterial and anti-inflammatory Ag@hesperidin core-shell nanoparticles into nanofibers used for promoting infected wound healing. Regen. Biomater. 2022 9 rbac012 10.1093/rb/rbac012 35592139
    [Google Scholar]
  30. Rezaei M. Sedaghat N. Hedayati S. Golmakani M.T. Fabrication and characterization of novel electrospun nanofibers based on grass pea (Lathyrus sativus L.) protein isolate loaded with sumac (Rhus coriaria L.) extract. Curr. Res. Food Sci. 2024 9 100891 10.1016/j.crfs.2024.100891 39628598
    [Google Scholar]
  31. Singh B. Garg T. Goyal A.K. Rath G. Development, optimization, and characterization of polymeric electrospun nanofiber: A new attempt in sublingual delivery of nicorandil for the management of angina pectoris. Artif. Cells Nanomed. Biotechnol. 2016 44 6 1498 1507 10.3109/21691401.2015.1052472 26134924
    [Google Scholar]
  32. Embaby H.E. Miyakawa T. Hachimura S. Muramatsu T. Nara M. Tanokura M. Crystallization and melting properties studied by DSC and FTIR spectroscopy of goldenberry (Physalis peruviana) oil. Food Chem. 2022 366 130645 10.1016/j.foodchem.2021.130645 34325243
    [Google Scholar]
  33. Širc J. Hobzová R. Kostina N. Munzarová M. Juklíčková M. Lhotka M. Kubinová Š. Zajícová A. Michálek J. Morphological characterization of nanofibers: Methods and application in practice. J. Nanomater. 2012 2012 1 327369 10.1155/2012/327369
    [Google Scholar]
  34. Nandhini J. Karthikeyan E. Jegatheshwaran C. Vignesh K. Muthuboopathi G. Rajeshkumar S. Pitolisant nanofibers: A promising frontier in drug delivery for narcolepsy - Formulation, optimisation, and characterization insights. Biomedical Technology 2024 6 9 16 10.1016/j.bmt.2023.10.002
    [Google Scholar]
  35. Somayeh T. Saeed H. Jaleh V. Mohsen M. Ardeshir T. Fabrication and evaluation of hesperidin loaded polyacrylonitrile/polyethylene oxide nanofibers for wound dressing application. J Biomater Sci Polym Ed 2021 32 15 1944 1965 10.1080/09205063.2021.1952380 34228587
    [Google Scholar]
  36. Ardalkar S. Mathure D. Pawar A. Awasthi R. Formulation and optimization of electrospun nanofiber films for ultrafast delivery of domperidone: In vitro and in-vivo characterization. J. Drug Deliv. Sci. Technol. 2024 95 105645 10.1016/j.jddst.2024.105645
    [Google Scholar]
  37. Asatiani N. Novotný V. Lukáš D. Mikeš P. A novel approach to studying the kinetics of release of Alaptide from Poly-ε-caprolactone nanofibers. J. Drug Deliv. Sci. Technol. 2021 63 102492 10.1016/j.jddst.2021.102492
    [Google Scholar]
  38. Ulker Turan C. Guvenilir Y. Electrospun poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan ternary nanofibers with antibacterial activity for treatment of skin infections. Eur. J. Pharm. Sci. 2022 170 106113 10.1016/j.ejps.2021.106113 34986416
    [Google Scholar]
  39. Can Suner S. Yildirim Y. Yurt F. Ozel D. Oral A. Ozturk I. Antibiotic loaded electrospun poly (lactic acid) nanofiber mats for drug delivery system. J. Drug Deliv. Sci. Technol. 2022 71 103263 10.1016/j.jddst.2022.103263
    [Google Scholar]
  40. Bardania H. Mahmoudi R. Bagheri H. Salehpour Z. Fouani M.H. Darabian B. Khoramrooz S.S. Mousavizadeh A. Kowsari M. Moosavifard S.E. Christiansen G. Javeshghani D. Alipour M. Akrami M. Facile preparation of a novel biogenic silver-loaded Nanofilm with intrinsic anti-bacterial and oxidant scavenging activities for wound healing. Sci. Rep. 2020 10 1 6129 10.1038/s41598‑020‑63032‑5 32273549
    [Google Scholar]
  41. Das K. Asdaq S.M.B. Khan M.S. Amrutha S. Alamri A. Alhomrani M. Alsanie W.F. Bhaskar A. Chandana shree G. Harshitha P. Phytochemical investigation and evaluation of in vitro anti-inflammatory activity of Euphorbia hirta ethanol leaf and root extracts: A comparative study. J. King Saud Univ. Sci. 2022 34 7 102261 10.1016/j.jksus.2022.102261
    [Google Scholar]
  42. Lekouaghet A. Boutefnouchet A. Bensuici C. Gali L. Ghenaiet K. Tichati L. In vitro evaluation of antioxidant and anti-inflammatory activities of the hydroalcoholic extract and its fractions from Leuzea conifera L. roots. S. Afr. J. Bot. 2020 132 103 107 10.1016/j.sajb.2020.03.042
    [Google Scholar]
  43. Sanniyasi E. Gopal R.K. Raj P.P. Shanmugavel A.K. Anti-inflammatory, remorin-like protein from green marine Macroalga Caulerpa sertularioides (S.G.Gmel.) M.Howe. Heliyon 2023 9 8 e19239 10.1016/j.heliyon.2023.e19239 37664755
    [Google Scholar]
  44. M A. i M.A. Ramalingam K. S R. Evaluation of the anti-inflammatory, antimicrobial, antioxidant, and cytotoxic effects of chitosan thiocolchicoside-lauric acid nanogel. Cureus 2023 15 9 e46003 10.7759/cureus.46003 37900405
    [Google Scholar]
  45. Gulcin İ. Alwasel S.H. DPPH Radical Scavenging Assay. Processes 2023 11 8 2248 10.3390/pr11082248
    [Google Scholar]
  46. Solaberrieta I. Jiménez A. Cacciotti I. Garrigós M.C. Encapsulation of bioactive compounds from Aloe Vera agrowastes in electrospun poly (ethylene oxide) nanofibers. Polymers 2020 12 6 1323 10.3390/polym12061323 32531945
    [Google Scholar]
  47. Baliyan S. Mukherjee R. Priyadarshini A. Vibhuti A. Gupta A. Pandey R.P. Chang C.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 2022 27 4 1326 10.3390/molecules27041326 35209118
    [Google Scholar]
  48. Suarez J. Herrera M.D. Marhuenda E. In vitro scavenger and antioxidant properties of hesperidin and neohesperidin dihydrochalcone. Phytomedicine 1998 5 6 469 473 10.1016/S0944‑7113(98)80044‑5 23196031
    [Google Scholar]
  49. Halliwell B. Gutteridge J.M.C. Aruoma O.I. The deoxyribose method: A simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 1987 165 1 215 219 10.1016/0003‑2697(87)90222‑3 3120621
    [Google Scholar]
  50. Kim I.S. Yang M.R. Lee O.H. Kang S.N. Antioxidant activities of hot water extracts from various spices. Int. J. Mol. Sci. 2011 12 6 4120 4131 10.3390/ijms12064120 21747728
    [Google Scholar]
  51. Afsar T. Razak S. Shabbir M. Khan M.R. Antioxidant activity of polyphenolic compounds isolated from ethyl-acetate fraction of Acacia hydaspica R. Parker. Chem. Cent. J. 2018 12 1 5 10.1186/s13065‑018‑0373‑x 29372439
    [Google Scholar]
  52. Prieto P. Pineda M. Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999 269 2 337 341 10.1006/abio.1999.4019 10222007
    [Google Scholar]
  53. Wang X. Yao Y. Li Y. Guo S. Li Y. Zhang G. Experimental study on the effect of luteolin on the proliferation, apoptosis and expression of inflammation-related mediators in lipopolysaccharide-induced keratinocytes. Int. J. Immunopathol. Pharmacol. 2023 37 03946320231169175 10.1177/03946320231169175 37024790
    [Google Scholar]
  54. Singh S.K. Chouhan H.S. Sahu A.N. Narayan G. Assessment of in vitro antipsoriatic activity of selected Indian medicinal plants. Pharm. Biol. 2015 53 9 1295 1301 10.3109/13880209.2014.976713 25856701
    [Google Scholar]
  55. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983 65 1-2 55 63 10.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  56. Hsiao Y.P. Huang H.L. Lai W.W. Chung J.G. Yang J.H. Antiproliferative effects of lactic acid via the induction of apoptosis and cell cycle arrest in a human keratinocyte cell line (HaCaT). J. Dermatol. Sci. 2009 54 3 175 184 10.1016/j.jdermsci.2009.02.012 19339159
    [Google Scholar]
  57. Norouzi M. Abdali Z. Liu S. Miller D.W. Salinomycin-loaded nanofibers for glioblastoma therapy. Sci. Rep. 2018 8 1 9377 10.1038/s41598‑018‑27733‑2 29925966
    [Google Scholar]
  58. Maleknia L. Dilamian M. Pilehrood M. Sadeghi-Aliabadi H. Hekmati A. Preparation, process optimization and characterization of core-shell polyurethane/chitosan nanofibers as a potential platform for bioactive scaffolds. Res. Pharm. Sci. 2018 13 3 273 282 10.4103/1735‑5362.228957 29853936
    [Google Scholar]
  59. Siti Syazwani N. Ervina Efzan M.N. Kok C.K. Nurhidayatullaili M.J. Analysis on extracted jute cellulose nanofibers by Fourier transform infrared and X-Ray diffraction. J. Build. Eng. 2022 48 103744 10.1016/j.jobe.2021.103744
    [Google Scholar]
  60. AbouSamra M.M. El Hoffy N.M. El-Wakil N.A. Awad G.E.A. Kamel R. Computational investigation to design ofloxacin-loaded hybridized nanocellulose/lipid nanogels for accelerated skin repair. Gels 2022 8 9 593 10.3390/gels8090593 36135305
    [Google Scholar]
  61. Bessarabov V. Lisovyi V. Lyzhniuk V. Kostiuk V. Smishko R. Yaremenko V. Goy A. Derkach T. Kuzmina G. Gureyeva S. Development and characterisation of polymeric solid dispersed systems of hesperidin, obtained by centrifugal fibre formation. Heliyon 2025 11 4 e42702 10.1016/j.heliyon.2025.e42702 40083992
    [Google Scholar]
  62. Cui Z. Zheng Z. Lin L. Si J. Wang Q. Peng X. Chen W. Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Adv. Polym. Technol. 2018 37 6 1917 1928 10.1002/adv.21850
    [Google Scholar]
  63. Vashisth P. Raghuwanshi N. Srivastava A.K. Singh H. Nagar H. Pruthi V. Ofloxacin loaded gellan/PVA nanofibers - Synthesis, characterization and evaluation of their gastroretentive/mucoadhesive drug delivery potential. Mater. Sci. Eng. C 2017 71 611 619 10.1016/j.msec.2016.10.051 27987752
    [Google Scholar]
  64. Karataş A. Hilal Algan A. Pekel-Bayramgil N. Turhan F. Altanlar N. Ofloxacin loaded electrospun fibers for ocular drug delivery: Effect of formulation variables on fiber morphology and drug release. Curr. Drug Deliv. 2016 13 3 433 443 10.2174/1567201812666151030162258 26521656
    [Google Scholar]
  65. Bružauskaitė I. Bironaitė D. Bagdonas E. Bernotienė E. Scaffolds and cells for tissue regeneration: Different scaffold pore sizes—different cell effects. Cytotechnology 2016 68 3 355 369 10.1007/s10616‑015‑9895‑4
    [Google Scholar]
  66. Shaikh R.P. Kumar P. Choonara Y.E. du Toit L.C. Pillay V. Crosslinked electrospun PVA nanofibrous membranes: Elucidation of their physicochemical, physicomechanical and molecular disposition. Biofabrication 2012 4 2 025002 10.1088/1758‑5082/4/2/025002 22427482
    [Google Scholar]
  67. Zhou J. Wang P. Yu D.G. Zhu Y. Biphasic drug release from electrospun structures. Expert Opin. Drug Deliv. 2023 20 5 621 640 10.1080/17425247.2023.2210834 37140041
    [Google Scholar]
  68. Aghabeigi E. Shabanloo R. Akbari S. Aghaji A.G. Electrospun PLLA/PEI nanofibers for controlled drug release behaviors and antibacterial efficiency. J. Macromol. Sci. Part A Pure Appl. Chem. 2024 61 3 186 202 10.1080/10601325.2024.2322427
    [Google Scholar]
  69. Huo P. Han X. Zhang W. Zhang J. Kumar P. Liu B. Electrospun nanofibers of polycaprolactone/collagen as a sustained-release drug delivery system for artemisinin. Pharmaceutics 2021 13 8 1228 10.3390/pharmaceutics13081228 34452189
    [Google Scholar]
  70. Mehrizi M. PVA nanofibers containing ofloxacin-cyclodextrin inclusion complex: Improve optical stability of ofloxacin. Open J. Org. Polym. Mater. 2019 9 2 29 46 10.4236/ojopm.2019.92002.
    [Google Scholar]
  71. Karakucuk A. Tort S. Preparation, characterization and antimicrobial activity evaluation of electrospun PCL nanofiber composites of resveratrol nanocrystals. Pharm. Dev. Technol. 2020 25 10 1216 1225 10.1080/10837450.2020.1805761 32744472
    [Google Scholar]
  72. Mirzaeei S. Taghe S. Asare-Addo K. Nokhodchi A. Polyvinyl alcohol/chitosan single-layered and polyvinyl alcohol/chitosan/Eudragit RL100 multi-layered electrospun nanofibers as an ocular matrix for the controlled release of ofloxacin: An in vitro and in vivo evaluation. AAPS PharmSciTech 2021 22 5 170 10.1208/s12249‑021‑02051‑5 34085150
    [Google Scholar]
  73. Kumarasinghe N. Dharmadeva S. Galgamuwa L.S. Prasadinie C. In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. Ayu 2018 39 4 239 242 10.4103/ayu.AYU_27_18 31367147
    [Google Scholar]
  74. Mehrizi M. Amiri S. Hajir Bahrami S. Mirzaee R. PVA nanofibers containing ofloxacin/α-cyclodextrin inclusion complexes: Improve ofloxacin water solubility. J. Text. Inst. 2020 111 5 669 681 10.1080/00405000.2019.1657614
    [Google Scholar]
  75. Arneth B. Abdelmonem R. El-Nabarawi M.A. Teaima M.H. Rashwan K.O. Soliman M.A. Al-Samadi I.E.I. Optimized hesperidin-loaded lipid nanoparticles with tea tree oil for enhanced wound healing: Formulation, characterization, and evaluation. Pharmaceuticals 2025 18 3 290 10.3390/ph18030290 40143069
    [Google Scholar]
  76. Paczkowska-Walendowska M. Miklaszewski A. Cielecka-Piontek J. Improving solubility and permeability of hesperidin through electrospun orange-peel-extract-loaded nanofibers. Int. J. Mol. Sci. 2023 24 9 7963 10.3390/ijms24097963 37175671
    [Google Scholar]
  77. Yang H.L. Chen S.C. Senthil Kumar K.J. Yu K.N. Lee Chao P.D. Tsai S.Y. Hou Y.C. Hseu Y.C. Antioxidant and anti-inflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: An ex vivo approach. J. Agric. Food Chem. 2012 60 1 522 532 10.1021/jf2040675 22098419
    [Google Scholar]
  78. Li X. Xie X. Zhang L. Meng Y. Li N. Wang M. Zhai C. Liu Z. Di T. Zhang L. Li P. Hesperidin inhibits keratinocyte proliferation and imiquimod-induced psoriasis-like dermatitis via the IRS-1/ERK1/2 pathway. Life Sci. 2019 219 311 321 10.1016/j.lfs.2019.01.019 30658103
    [Google Scholar]
  79. Birer M. Kara A.A. Yurdakok-Dikmen B. Uyar R. Aralan G. Birer Y.T. Filazi A. Acartürk F. Electrospun hesperidin nanofibers induce a cytoprotective effect on sodium-fluoride induced oxidative stress in vitro. J. Drug Deliv. Sci. Technol. 2024 92 105388 10.1016/j.jddst.2024.105388
    [Google Scholar]
  80. Dwivedi A. Mujtaba S.F. Yadav N. Kushwaha H.N. Amar S.K. Singh S.K. Pant M.C. Ray R.S. Cellular and molecular mechanism of ofloxacin induced apoptotic cell death under ambient UV-A and sunlight exposure. Free Radic. Res. 2014 48 3 333 346 10.3109/10715762.2013.869324 24286391
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018390944250505120443
Loading
/content/journals/cdd/10.2174/0115672018390944250505120443
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test