Skip to content
2000
image of Nanotechnology-Enabled Antibiotic Therapy: The Promise of Transfersomal Tigecycline in Combating Methicillin-Resistant Staphylococcus aureus

Abstract

Introduction

Methicillin-Resistant Staphylococcus Aureus (MRSA) is a major cause of purulent Skin and Soft-Tissue Infections (SSTIs), posing significant global health and economic challenges. This study aims to optimize a drug delivery system, specifically Tigecycline-loaded transfersomes, to address the limitations of current treatments, including bacterial resistance, systemic side effects, and poor drug penetration, thereby offering a safer and more effective alternative for MRSA-related SSTIs.

Methods

A novel Tigecycline transfersomal formulation was developed using the thin film hydration method. The study investigated the effects of varying drug-to-lipid ratios, lipid-to-edge activator ratios, and different hydration media on the characteristics of the Tigecycline-loaded transfersomes. The formulation’s morphology, release profile, and antibacterial activity against clinical MRSA strains were also evaluated.

Results

The Tigecycline-loaded transfersomes were successfully prepared with particle sizes ranging from 92.3 to 290.8 nm, zeta potential values from -16.22 to -48.7 mV, and encapsulation efficiencies ranging from 54.8% to 84.39%. The formulation prepared using distilled water as the hydration medium, a lipid-to-edge activator ratio of 80:20, and a drug-to-lipid ratio of 3:8 was selected for further assessment due to its optimal characteristics. The selected transfersomes were spherical with an average diameter of 131 nm. The formulation exhibited a controlled drug release profile and demonstrated a twofold increase in antibacterial activity against MRSA compared to non-liposomal Tigecycline.

Discussion

The results highlighted the significant role of formulation parameters in tailoring transferosomal characteristics and enhancing therapeutic performance. The study builds on existing research by introducing Tigecycline—a broad-spectrum antibiotic—into transfersomal systems for the first time. However, further validation is necessary.

Conclusion

Tigecycline-loaded transfersomes demonstrated improved drug delivery and antibacterial efficacy against MRSA. This novel formulation shows promise as an effective topical therapy for antibiotic-resistant SSTIs.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018390651250801094728
2025-08-12
2025-09-25
Loading full text...

Full text loading...

References

  1. Salatin S. Lotfipour F. Jelvehgari M. A brief overview on nano-sized materials used in the topical treatment of skin and soft tissue bacterial infections. Expert Opin. Drug Deliv. 2019 16 12 1313 1331 10.1080/17425247.2020.1693998 31738622
    [Google Scholar]
  2. Tong S.Y.C. Davis J.S. Eichenberger E. Holland T.L. Fowler V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015 28 3 603 661 10.1128/CMR.00134‑14 26016486
    [Google Scholar]
  3. Golan Y. Current treatment options for acute skin and skin-structure infections. Clin. Infect. Dis. 2019 68 S206 S212 (Suppl. 3). 10.1093/cid/ciz004 30957166
    [Google Scholar]
  4. Leong H.N. Kurup A. Tan M.Y. Kwa A.L.H. Liau K.H. Wilcox M. Management of complicated skin and soft tissue infections with a special focus on the role of newer antibiotics. Infect. Drug Resist. 2018 11 1959 1974 10.2147/IDR.S172366 30464538
    [Google Scholar]
  5. Caputo W.J. Monterosa P. Beggs D. Antibiotic misuse in wound care: Can bacterial localization through fluorescence imaging help? Diagnostics 2022 12 12 3207 10.3390/diagnostics12123207 36553214
    [Google Scholar]
  6. Nwabuife J.C. Pant A.M. Govender T. Liposomal delivery systems and their applications against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Adv. Drug Deliv. Rev. 2021 178 113861 10.1016/j.addr.2021.113861 34242712
    [Google Scholar]
  7. Koya S.F. Ganesh S. Selvaraj S. Wirtz V.J. Galea S. Rockers P.C. Consumption of systemic antibiotics in India in 2019. Lancet Reg Health. Southeast Asia 2022 4 100025 10.1016/j.lansea.2022.100025 37383993
    [Google Scholar]
  8. Zorec B. Préat V. Miklavčič D. Pavselj N. Active enhancement methods for intra-and transdermal drug delivery: A review. Slov Med. J. 2013 82 5 339 356 10.6016/1889
    [Google Scholar]
  9. Ferreira M. Ogren M. Dias J.N.R. Silva M. Gil S. Tavares L. Aires-da-Silva F. Gaspar M.M. Aguiar S.I. Liposomes as antibiotic delivery systems: A promising nanotechnological strategy against antimicrobial resistance. Molecules 2021 26 7 2047 10.3390/molecules26072047 33918529
    [Google Scholar]
  10. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  11. Sercombe L. Veerati T. Moheimani F. Wu S.Y. Sood A.K. Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015 6 DEC 286 10.3389/fphar.2015.00286 26648870
    [Google Scholar]
  12. Li M. Du C. Guo N. Teng Y. Meng X. Sun H. Li S. Yu P. Galons H. Composition design and medical application of liposomes. Eur. J. Med. Chem. 2019 164 640 653 10.1016/j.ejmech.2019.01.007 30640028
    [Google Scholar]
  13. Ghosh R. De M. Liposome-based antibacterial delivery: An emergent approach to combat bacterial infections. ACS Omega 2023 8 39 35442 35451 10.1021/acsomega.3c04893 37810644
    [Google Scholar]
  14. Rani N.N.I.M. Chen X.Y. Al-Zubaidi Z.M. Azhari H. Khaitir T.M.N. Ng P.Y. Buang F. Tan G.C. Wong Y.P. Said M.M. Butt A.M. Hamid A.A. Amin M.C.I.M. Surface-engineered liposomes for dual-drug delivery targeting strategy against methicillin-resistant Staphylococcus aureus (MRSA). Asian J. Pharm. Sci. 2022 17 1 102 119 10.1016/j.ajps.2021.11.004 35261647
    [Google Scholar]
  15. Hajiahmadi F. Alikhani M.Y. Shariatifar H. Arabestani M.R. Ahmadvand D. The bactericidal effect of liposomal vancomycin as a topical combating system against Methicillin-resistant Staphylococcus aureus skin wound infection in mice. Med. J. Islam. Repub. Iran 2019 33 1 153 10.47176/mjiri.33.153 32280659
    [Google Scholar]
  16. Hajiahmadi F. Alikhani M.Y. Shariatifar H. Arabestani M.R. Ahmadvand D. The bactericidal effect of lysostaphin coupled with liposomal vancomycin as a dual combating system applied directly on methicillin-resistant Staphylococcus aureus infected skin wounds in mice. Int. J. Nanomedicine 2019 14 5943 5955 10.2147/IJN.S214521 31447553
    [Google Scholar]
  17. Rukavina Z. Šegvić Klarić M. Filipović-Grčić J. Lovrić J. Vanić Ž. Azithromycin-loaded liposomes for enhanced topical treatment of methicillin-resistant Staphyloccocus aureus (MRSA) infections. Int. J. Pharm. 2018 553 1-2 109 119 10.1016/j.ijpharm.2018.10.024 30312749
    [Google Scholar]
  18. Vanić Ž. Rukavina Z. Manner S. Fallarero A. Uzelac L. Kralj M. Amidžić Klarić D. Bogdanov A. Raffai T. Virok D.P. Filipović-Grčić J. Škalko-Basnet N. Azithromycin-liposomes as a novel approach for localized therapy of cervicovaginal bacterial infections. Int. J. Nanomedicine 2019 14 5957 5976 10.2147/IJN.S211691 31440052
    [Google Scholar]
  19. Nayak D. Tippavajhala V.K. A comprehensive review on preparation, evaluation and applications of deformable liposomes. Iran. J. Pharm. Res. 2021 20 1 186 205 10.22037/IJPR.2020.112878.13997 34400952
    [Google Scholar]
  20. Souto E.B. Macedo A.S. Dias-Ferreira J. Cano A. Zielińska A. Matos C.M. Elastic and ultradeformable liposomes for transdermal delivery of active pharmaceutical ingredients (APIs). Int. J. Mol. Sci. 2021 22 18 9743 10.3390/ijms22189743 34575907
    [Google Scholar]
  21. Karaz S. Senses E. Liposomes under shear: Structure, dynamics, and drug delivery applications. Adv. NanoBiomed Res. 2023 3 4 2200101 10.1002/anbr.202200101
    [Google Scholar]
  22. Khasawneh D.M. Oweis R.J. Alsmadi M. A comprehensive analysis of liposomal-based nanocarriers for treating skin and soft tissue infection. Curr. Drug Deliv 2024 21, 22 5 552 573 10.2174/0115672018328954240801110200 39136517
    [Google Scholar]
  23. Rarokar N.R. Saoji S.D. Deole N.V. Gaikwad M. Pandey A. Kamaraj C. Chinni S.V. Subramaniyan V. Ramachawolran G. Dharashivkar S. Preparation and formula optimization of cephalexin loaded transferosomal gel by QbD to enhance the transdermal delivery: In vitro, ex vivo and in vivo study. J. Drug Deliv. Sci. Technol. 2023 89 104968 10.1016/j.jddst.2023.104968
    [Google Scholar]
  24. Ontong J.C. Singh S. Siriyong T. Voravuthikunchai S.P. Transferosomes stabilized hydrogel incorporated rhodomyrtone-rich extract from Rhodomyrtus tomentosa leaf fortified with phosphatidylcholine for the management of skin and soft-tissue infections. Biotechnol. Lett. 2024 46 1 127 142 10.1007/s10529‑023‑03452‑1 38150096
    [Google Scholar]
  25. Ali Alghamdi B. Al-Johani I. Al-Shamrani J.M. Musamed Alshamrani H. Al-Otaibi B.G. Almazmomi K. Yusnoraini Yusof N. Antimicrobial resistance in methicillin-resistant staphylococcus aureus. Saudi J. Biol. Sci. 2023 30 4 103604 10.1016/j.sjbs.2023.103604 36936699
    [Google Scholar]
  26. Mat Rani N.N.I. Mustafa Hussein Z. Mustapa F. Azhari H. Sekar M. Chen X.Y. Mohd Amin M.C.I. Exploring the possible targeting strategies of liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Pharm. Biopharm. 2021 165 84 105 10.1016/j.ejpb.2021.04.021 33974973
    [Google Scholar]
  27. Grossman T.H. Tetracycline antibiotics and resistance. Cold Spring Harb. Perspect. Med. 2016 6 4 a025387 10.1101/cshperspect.a025387 26989065
    [Google Scholar]
  28. Yaghoubi S. Zekiy A.O. Krutova M. Gholami M. Kouhsari E. Sholeh M. Ghafouri Z. Maleki F. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: Narrative review. Eur. J. Clin. Microbiol. Infect. Dis. 2022 41 7 1003 1022 10.1007/s10096‑020‑04121‑1 33403565
    [Google Scholar]
  29. Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol. Biol. 2017 1522 17 22 10.1007/978‑1‑4939‑6591‑5_2 27837527
    [Google Scholar]
  30. Smith M.C. Crist R.M. Clogston J.D. McNeil S.E. Zeta potential: A case study of cationic, anionic, and neutral liposomes. Anal. Bioanal. Chem. 2017 409 24 5779 5787 10.1007/s00216‑017‑0527‑z 28762066
    [Google Scholar]
  31. Surianarayanan R. Gurumallappa Shivakumar H. Varma Vegesna N.S.K. Srivastava A. Effect of sample concentration on the characterization of liposomes using dynamic light scattering technique. Pharm. Methods 2016 7 1 70 74 10.5530/phm.2016.7.11
    [Google Scholar]
  32. Karpuz M. Atlihan-Gundogdu E. Demir E.S. Senyigit Z. Radiolabeled tedizolid phosphate liposomes for topical application: Design, characterization, and evaluation of cellular binding capacity. AAPS PharmSciTech 2021 22 2 62 10.1208/s12249‑020‑01917‑4 33528714
    [Google Scholar]
  33. Han B. Yang Y. Chen J. Tang H. Sun Y. Zhang Z. Wang Z. Li Y. Li Y. Luan X. Li Q. Ren Z. Zhou X. Cong D. Liu Z. Meng Q. Sun F. Pei J. Preparation, characterization, and pharmacokinetic study of a novel long-acting targeted paclitaxel liposome with antitumor activity. Int. J. Nanomedicine 2020 15 553 571 10.2147/IJN.S228715 32158208
    [Google Scholar]
  34. Moyá M.L. López-López M. Lebrón J.A. Ostos F.J. Pérez D. Camacho V. Beck I. Merino-Bohórquez V. Camean M. Madinabeitia N. López-Cornejo P. Preparation and characterization of new liposomes. Bactericidal activity of cefepime encapsulated into cationic liposomes. Pharmaceutics 2019 11 2 69 10.3390/pharmaceutics11020069 30736367
    [Google Scholar]
  35. Marwah M. Perrie Y. Badhan R.K.S. Lowry D. Intracellular uptake of EGCG-loaded deformable controlled release liposomes for skin cancer. J. Liposome Res. 2020 30 2 136 149 10.1080/08982104.2019.1604746 31010367
    [Google Scholar]
  36. Zhang Z.J. Michniak-Kohn B. Flavosomes, novel deformable liposomes for the co-delivery of anti-inflammatory compounds to skin. Int. J. Pharm. 2020 585 119500 10.1016/j.ijpharm.2020.119500 32512226
    [Google Scholar]
  37. Marwah M. Badhan R.K.S. Lowry D. Development of a novel polymer-based carrier for deformable liposomes for the controlled dermal delivery of naringenin. J. Liposome Res. 2022 32 2 181 194 10.1080/08982104.2021.1956529 34423727
    [Google Scholar]
  38. Solomon D. Gupta N. Mulla N.S. Shukla S. Guerrero Y.A. Gupta V. Role of in vitro release methods in liposomal formulation development: Challenges and regulatory perspective. AAPS J. 2017 19 6 1669 1681 10.1208/s12248‑017‑0142‑0 28924630
    [Google Scholar]
  39. Barnes V. L.; Heithoff, D.M.; Mahan, S.P.; House, J.K.; Mahan, M.J. Antimicrobial susceptibility testing to evaluate minimum inhibitory concentration values of clinically relevant antibiotics. STAR Protocols 2023 4 3 102512 10.1016/j.xpro.2023.102512 37566547
    [Google Scholar]
  40. Odunitan T.T. Oyaronbi A.O. Adebayo F.A. Adekoyeni P.A. Apanisile B.T. Oladunni T.D. Saibu O.A. Antimicrobial peptides: A novel and promising arsenal against methicillin-resistant Staphylococcus aureus (MRSA) infections. Pharm. Sci. Adv. 2024 2 100034 10.1016/j.pscia.2023.100034
    [Google Scholar]
  41. Majumdar S. Mahanti B. Kar A.K. Parya H. Ghosh A. Kar B. Nanoliposome: As a smart nanocarrier in transdermal drug delivery system. Intelligent Pharmacy 2024 2 6 768 776 10.1016/j.ipha.2024.04.004
    [Google Scholar]
  42. Obeid M.A. Khadra I. Mullen A.B. Tate R.J. Ferro V.A. The effects of hydration media on the characteristics of non-ionic surfactant vesicles (NISV) prepared by microfluidics. Int. J. Pharm. 2017 516 1-2 52 60 10.1016/j.ijpharm.2016.11.015 27836752
    [Google Scholar]
  43. Moghaddam B. McNeil S.E. Zheng Q. Mohammed A.R. Perrie Y. Exploring the correlation between lipid packaging in lipoplexes and their transfection efficacy. Pharmaceutics 2011 3 4 848 864 10.3390/pharmaceutics3040848 24309311
    [Google Scholar]
  44. Jia Y. Liang X. Zhang L. Zhang J. Zafar H. Huang S. Shi Y. Chen J. Shen Q. Machine learning-assisted microfluidic approach for broad-spectrum liposome size control. J. Pharm. Anal. 2025 101221 101221 10.1016/j.jpha.2025.101221
    [Google Scholar]
  45. Sarkar N. Bose S. Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl. Mater. Interfaces 2019 11 19 17184 17192 10.1021/acsami.9b01218 30924639
    [Google Scholar]
  46. Naeem S. Kiew L.V. Chung L.Y. Fui K.S. Misran M.B. A comparative approach for the preparation and physicochemical characterization of lecithin liposomes using chloroform and non‐halogenated solvents. J. Surfactants Deterg. 2015 18 4 579 587 10.1007/s11743‑015‑1689‑3
    [Google Scholar]
  47. Madrigal-Carballo S. Vila A.O. Sibaja M. Reed J.D. Molina F. In vitro uptake of lysozyme-loaded liposomes coated with chitosan biopolymer as model immunoadjuvants. J. Liposome Res. 2010 20 1 1 8 10.3109/08982100903015009 19514859
    [Google Scholar]
  48. Suleiman E. Damm D. Batzoni M. Temchura V. Wagner A. Überla K. Vorauer-Uhl K. Electrostatically driven encapsulation of hydrophilic, non-conformational peptide epitopes into liposomes. Pharmaceutics 2019 11 11 619 10.3390/pharmaceutics11110619 31752070
    [Google Scholar]
  49. Alghurabi H. Jassim Muhammad H. Tagami T. Ogawa K. Ozeki T. Optimization, cellular uptake, and in vivo evaluation of Eudragit S100-coated bile salt-containing liposomes for oral colonic delivery of 5-aminosalicylic acid. Int. J. Pharm. 2023 648 123597 10.1016/j.ijpharm.2023.123597 37952559
    [Google Scholar]
  50. Qushawy M. Nasr A. Abd-Alhaseeb M. Swidan S. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics 2018 10 1 26 10.3390/pharmaceutics10010026 29473897
    [Google Scholar]
  51. Barbosa R.M. Severino P. Preté P.S.C. Santana M.H.A. Influence of different surfactants on the physicochemical properties of elastic liposomes. Pharm. Dev. Technol. 2017 22 3 360 369 10.3109/10837450.2016.1163387 27050395
    [Google Scholar]
  52. Bnyan R. Khan I. Ehtezazi T. Saleem I. Gordon S. O’Neill F. Roberts M. Formulation and optimisation of novel transfersomes for sustained release of local anaesthetic. J. Pharm. Pharmacol. 2019 71 10 1508 1519 10.1111/jphp.13149 31373700
    [Google Scholar]
  53. Vasanth S. Dubey A. G S, R.; Lewis, S.A.; Ghate, V.M.; El-Zahaby, S.A.; Hebbar, S. Development and investigation of vitamin C-enriched adapalene-loaded transfersome gel: A collegial approach for the treatment of acne vulgaris. AAPS PharmSciTech 2020 21 2 61 10.1208/s12249‑019‑1518‑5 31915948
    [Google Scholar]
  54. Bnyan R. Khan I. Ehtezazi T. Saleem I. Gordon S. O’Neill F. Roberts M. Surfactant effects on lipid-based vesicles properties. J. Pharm. Sci. 2018 107 5 1237 1246 10.1016/j.xphs.2018.01.005 29336980
    [Google Scholar]
  55. Webster T. Singh S. Vardhan H. Kotla N. Maddiboyina B. Sharma D. The role of surfactants in the formulation of elastic liposomal gels containing a synthetic opioid analgesic. Int. J. Nanomedicine 2016 11 1475 1482 10.2147/IJN.S100253 27114707
    [Google Scholar]
  56. Mangrulkar S.V. Kulkarni S.S. Nanepag P.V. Neje P.S. Chaple D.R. Taksande B.G. Umekar M.J. A comprehensive review on pleiotropic effects and therapeutic potential of soy lecithin. Adv. Tradit Med. 2025 25 1 145 164 10.1007/s13596‑024‑00770‑1
    [Google Scholar]
  57. Hussain A. Samad A. Ramzan M. Ahsan M.N. Ur Rehman Z. Ahmad F.J. Elastic liposome-based gel for topical delivery of 5-fluorouracil: In vitro and in vivo investigation. Drug Deliv. 2016 23 4 1115 1129 10.3109/10717544.2014.976891 25379805
    [Google Scholar]
  58. Indrayani Dalimunthe G. Andi Syahputra R. Edge activator: Effect of concentration variation of Tween 80 on characteristics and Rate of Difusion transfersome sodium diclofenac. J. Syifa Sci. Clin. Res. 2021 3 2 78 86 10.37311/jsscr.v3i2.11914
    [Google Scholar]
  59. El Zaafarany G.M. Awad G.A.S. Holayel S.M. Mortada N.D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int. J. Pharm. 2010 397 1-2 164 172 10.1016/j.ijpharm.2010.06.034 20599487
    [Google Scholar]
  60. Al-mahallawi A.M. Khowessah O.M. Shoukri R.A. Nano-transfersomal ciprofloxacin loaded vesicles for non-invasive trans-tympanic ototopical delivery: In-vitro optimization, ex-vivo permeation studies, and in-vivo assessment. Int. J. Pharm. 2014 472 1-2 304 314 10.1016/j.ijpharm.2014.06.041 24971692
    [Google Scholar]
  61. Maritim S. Boulas P. Lin Y. Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes. Int. J. Pharm. 2021 592 120051 10.1016/j.ijpharm.2020.120051 33161039
    [Google Scholar]
  62. Ramana L.N. Sethuraman S. Ranga U. Krishnan U.M. Development of a liposomal nanodelivery system for nevirapine. J. Biomed. Sci. 2010 17 1 57 10.1186/1423‑0127‑17‑57 20624325
    [Google Scholar]
  63. Amin S. Formulation and evaluation of liposomes of fenofibrate prepared by thin film hydration technique. Preprint 2016 10.26226/morressier.57d92013d462b8028d88db7a
    [Google Scholar]
  64. Choi S. Kang B. Yang E. Kim K. Kwak M.K. Chang P.S. Jung H.S. Precise control of liposome size using characteristic time depends on solvent type and membrane properties. Sci. Rep. 2023 13 1 4728 10.1038/s41598‑023‑31895‑z 36959258
    [Google Scholar]
  65. Pippa N. Kaditi E. Pispas S. Demetzos C. PEO-b-PCL-DPPC chimeric nanocarriers: Self-assembly aspects in aqueous and biological media and drug incorporation. Soft Matter 2013 9 15 4073 4082 10.1039/c3sm27447k
    [Google Scholar]
  66. Chountoulesi M. Naziris N. Pippa N. Demetzos C. The significance of drug-to-lipid ratio to the development of optimized liposomal formulation. J. Liposome Res. 2018 28 3 249 258 10.1080/08982104.2017.1343836 28627268
    [Google Scholar]
  67. Palac Z. Engesland A. Flaten G.E. Škalko-Basnet N. Filipović-Grčić J. Vanić Ž. Liposomes for (trans)dermal drug delivery: The skin-PVPA as a novel in vitro stratum corneum model in formulation development. J. Liposome Res. 2014 24 4 313 322 10.3109/08982104.2014.899368 24646434
    [Google Scholar]
  68. Wood S. Koirala J. Methicillin-Resistant Staphylococcus aureus. Vulvar Disease. Breaking the Myths 2019 301-302 301 302 10.1007/978‑3‑319‑61621‑6_46
    [Google Scholar]
  69. Wu I.Y. Bala S. Škalko-Basnet N. di Cagno M.P. Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes. Eur. J. Pharm. Sci. 2019 138 105026 10.1016/j.ejps.2019.105026 31374254
    [Google Scholar]
  70. Dhavale R.P. Nadaf S.J. Bhatia M.S. Quantitative structure property relationship assisted development of Fluocinolone acetonide loaded transfersomes for targeted delivery. J. Drug Deliv. Sci. Technol. 2021 65 102758 10.1016/j.jddst.2021.102758
    [Google Scholar]
  71. Abdelwahd A. Abdul Rasool B.K. Optimizing and evaluating the transdermal permeation of hydrocortisone transfersomes formulation based on digital analysis of the in vitro drug release and ex vivo studies. Recent Adv. Drug Deliv Formul 2022 16 2 122 144 10.2174/2667387816666220608115605 35676851
    [Google Scholar]
  72. Jain A. Jain S.K. In vitro release kinetics model fitting of liposomes: An insight. Chem. Phys. Lipids 2016 201 28 40 10.1016/j.chemphyslip.2016.10.005 27983957
    [Google Scholar]
  73. Matharoo N. Mohd H. Michniak-Kohn B. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024 16 1 e1918 10.1002/wnan.1918 37527953
    [Google Scholar]
  74. Eroğlu İ. Aslan M. Yaman Ü. Gultekinoglu M. Çalamak S. Kart D. Ulubayram K. Liposome-based combination therapy for acne treatment. J. Liposome Res. 2020 30 3 263 273 10.1080/08982104.2019.1630646 31185768
    [Google Scholar]
  75. Wang D.Y. van der Mei H.C. Ren Y. Busscher H.J. Shi L. Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections. Front Chem. 2020 7 872 10.3389/fchem.2019.00872 31998680
    [Google Scholar]
  76. Scheeder A. Brockhoff M. Ward E.N. Kaminski Schierle G.S. Mela I. Kaminski C.F. Molecular mechanisms of cationic fusogenic liposome interactions with bacterial envelopes. J. Am. Chem. Soc. 2023 145 51 28240 28250 10.1021/jacs.3c11463 38085801
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018390651250801094728
Loading
/content/journals/cdd/10.2174/0115672018390651250801094728
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test