Skip to content
2000
image of Formulation and Evaluation of Capecitabine-Loaded Microsponges for Colon Targeting

Abstract

Introduction

Capecitabine (CAP) is a chemotherapeutic drug used oral administration for the management of metastatic cancers of the breast and colon. CAP is a prodrug of 5-fluorouracil, which inhibits DNA synthesis and slows tumor growth. The objective of the current research was to develop colon-targeting CAP-loaded microsponges by quasi-emulsion solvent diffusion technique employing Hydroxypropyl Cellulose (HPC) and Ethyl Cellulose (EC) as constituent polymers at different ratios with varying stirring speeds (rpm).

Methods

In the present study, CAP-loaded microsponges were formulated by quasi-emulsion solvent diffusion method using HPC and EC as polymers at different ratios with varying stirring speeds. The 32-factorial design was used to perform the statistical optimization of CAP-loaded microsponges. The pharmacokinetic study of the optimized formulation of CAP-loaded microsponges was performed using Albino Wistar Rats.

Results

Based on the statistical optimization, the F1 formulation prepared using a 7:1 ratio of HPC and EC with 1000 rpm stirring speed was selected for its effective drug release (31.13 ± 1.73% after 8 hours and 69.57 ± 2.53% after 12 hours) and the highest drug entrapment efficiency (73.09 ± 3.54%). The 1.28-fold increase in indicated that the optimized CAP-loaded microsponge formulation significantly (< 0.05) improved the oral bioavailability of CAP compared to its aqueous solution, when administered orally.

Discussion

These findings indicated the potential delivery of CAP by these CAP-loaded microsponges to the colon, enabling sustained delivery and improving the bioavailability of CAP. However, comparative evaluation with existing marketed formulation and stability studies is essential to validate its therapeutic implications.

Conclusion

The developed CAP-loaded microsponges could serve as an effective carrier for the sustained release of CAP, thereby improving the oral bioavailability of CAP for the management of colon cancer.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018389882250704071618
2025-08-11
2025-09-25
Loading full text...

Full text loading...

References

  1. Xi Y. Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021 14 10 101174 10.1016/j.tranon.2021.101174 34243011
    [Google Scholar]
  2. Klimeck L. Heisser T. Hoffmeister M. Brenner H. Colorectal cancer: A health and economic problem. Best Pract. Res. Clin. Gastroenterol. 2023 66 101839 10.1016/j.bpg.2023.101839 37852707
    [Google Scholar]
  3. Deljavan Ghodrati A. Comoglu T. An overview on recent approaches for colonic drug delivery systems. Pharm. Dev. Technol. 2024 29 6 566 581 10.1080/10837450.2024.2362353 38813948
    [Google Scholar]
  4. Nasef N.A. Mehta S. Role of inflammation in pathophysiology of colonic disease: An update. Int. J. Mol. Sci. 2020 21 13 4748 10.3390/ijms21134748 32635383
    [Google Scholar]
  5. Kumar A. Vaiphei K.K. Singh N. Datta Chigurupati S.P. Paliwal S.R. Paliwal R. Gulbake A. Nanomedicine for colon-targeted drug delivery: Strategies focusing on inflammatory bowel disease and colon cancer. Nanomedicine 2024 19 15 1347 1368 10.1080/17435889.2024.2350356 39105753
    [Google Scholar]
  6. Abdalla Y. McCoubrey L.E. Ferraro F. Sonnleitner L.M. Guinet Y. Siepmann F. Hédoux A. Siepmann J. Basit A.W. Orlu M. Shorthouse D. Machine learning of Raman spectra predicts drug release from polysaccharide coatings for targeted colonic delivery. J. Control. Release 2024 374 103 111 10.1016/j.jconrel.2024.08.010 39127449
    [Google Scholar]
  7. McCoubrey L.E. Favaron A. Awad A. Orlu M. Gaisford S. Basit A.W. Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics. J. Control. Release 2023 353 1107 1126 10.1016/j.jconrel.2022.12.029 36528195
    [Google Scholar]
  8. Azman M. Sabri A.H. Anjani Q.K. Mustaffa M.F. Hamid K.A. Intestinal absorption study: Challenges and strategies in absorption enhancement improving oral drug delivery. Pharmaceuticals 2022 15 975 10.3390/ph15080975 36015123
    [Google Scholar]
  9. Amidon S. Brown J.E. Dave V.S. Colon-targeted oral drug delivery systems: Design trends and approaches. AAPS PharmSciTech 2015 16 4 731 741 10.1208/s12249‑015‑0350‑9 26070545
    [Google Scholar]
  10. Alshammari N.D. Elkanayati R. Vemula S.K. Advancements in colon-targeted drug delivery: A comprehensive review on recent techniques with emphasis on hot-melt extrusion and 3D printing technologies. AAPS PharmSciTech 2024 25 7 236 10.1208/s12249‑024‑02965‑w 39379609
    [Google Scholar]
  11. Lee S.H. Bajracharya R. Min J.Y. Han J.W. Park B.J. Han H.K. Strategic approaches for colon targeted drug delivery: An overview of recent advancements. Pharmaceutics 2020 12 1 68 10.3390/pharmaceutics12010068 31952340
    [Google Scholar]
  12. Entezar-Almahdi E. Mohammadi-Samani S. Tayebi L. Farjadian F. recent advances in designing 5-fluorouracil delivery systems: A stepping stone in the safe treatment of colorectal cancer. Int. J. Nanomedicine 2020 15 5445 5458 10.2147/IJN.S257700 32801699
    [Google Scholar]
  13. Adebayo A.S. Agbaje K. Adesina S.K. Olajubutu O. Colorectal cancer: Disease process, current treatment options, and future perspectives. Pharmaceutics 2023 15 11 2620 10.3390/pharmaceutics15112620 38004598
    [Google Scholar]
  14. Awad A. Madla C.M. McCoubrey L.E. Ferraro F. Gavins F.K.H. Buanz A. Gaisford S. Orlu M. Siepmann F. Siepmann J. Basit A.W. Clinical translation of advanced colonic drug delivery technologies. Adv. Drug Deliv. Rev. 2022 181 114076 10.1016/j.addr.2021.114076 34890739
    [Google Scholar]
  15. Almoshari Y. Osmotic pump drug delivery systems—A comprehensive review. Pharmaceuticals 2022 15 11 1430 10.3390/ph15111430 36422560
    [Google Scholar]
  16. Biharee A. Bhartiya S. Yadav A. Thareja S. Jain A.K. Microsponges as drug delivery system: Past, present, and future perspectives. Curr. Pharm. Des. 2023 29 13 1026 1045 10.2174/1381612829666230404082743 37013425
    [Google Scholar]
  17. Qureshi S. Alavi S.E. Mohammed Y. Microsponges: Development, characterization, and key physicochemical properties. Assay Drug Dev. Technol. 2024 22 5 229 245 10.1089/adt.2023.052 38661260
    [Google Scholar]
  18. Singhvi G. Manchanda P. Hans N. Dubey S.K. Gupta G. Microsponge: An emerging drug delivery strategy. Drug Dev. Res. 2019 80 2 200 208 10.1002/ddr.21492 30456763
    [Google Scholar]
  19. Rahman M. Almalki W.H. Panda S.K. Das A.K. Alghamdi S. Soni K. Hafeez A. Handa M. Beg S. Rahman Z. Therapeutic application of microsponges-based drug delivery systems. Curr. Pharm. Des. 2022 28 8 595 608 10.2174/1381612828666220118121536 35040411
    [Google Scholar]
  20. Roosendaal J. Jacobs B.A.W. Pluim D. Rosing H. de Vries N. van Werkhoven E. Nuijen B. Beijnen J.H. Huitema A.D.R. Schellens J.H.M. Marchetti S. Phase I pharmacological study of continuous chronomodulated capecitabine treatment. Pharm. Res. 2020 37 5 89 10.1007/s11095‑020‑02828‑6 32382808
    [Google Scholar]
  21. Li H. Shan R. Ding J. Zhang J. Liu B. Ge Q. Cheng D. Li L. Zhang C. Su H. Li X. Li H. Ye J. Li H. Li F. Zhou H. Huo Q. Su Y. Evaluation of bioequivalence and safety analysis of capecitabine tablets and Xeloda® under postprandial dosing conditions in Chinese patients with solid tumor. Expert Opin. Drug Metab. Toxicol. 2023 19 12 1015 1021 10.1080/17425255.2023.2292735 38059472
    [Google Scholar]
  22. Pouya F.D. Rasmi Y. Camci I.Y. Tutar Y. Nemati M. Performance of capecitabine in novel combination therapies in colorectal cancer. J. Chemother. 2021 33 6 375 389 10.1080/1120009X.2021.1920247 34019782
    [Google Scholar]
  23. Gupta A. Tiwari G. Tiwari R. Srivastava R. Factorial designed 5-fluorouracil-loaded microsponges and calcium pectinate beads plugged in hydroxypropyl methylcellulose capsules for colorectal cancer. Int. J. Pharm. Investig. 2015 5 4 234 246 10.4103/2230‑973X.167688 26682194
    [Google Scholar]
  24. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  25. Eugster R. Luciani P. Liposomes: Bridging the gap from lab to pharmaceuticals. Curr. Opin. Colloid Interface Sci. 2025 75 101875 10.1016/j.cocis.2024.101875
    [Google Scholar]
  26. Vigata M. Meinert C. Hutmacher D.W. Bock N. Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics 2020 12 12 1188 10.3390/pharmaceutics12121188 33297493
    [Google Scholar]
  27. Tiwari A. Tiwari V. Palaria B. Kumar M. Kaushik D. Microsponges: A breakthrough tool in pharmaceutical research. Future J. Pharm. Sci. 2022 8 1 31 10.1186/s43094‑022‑00421‑9
    [Google Scholar]
  28. Khattab A. Nattouf A. Optimization of entrapment efficiency and release of clindamycin in microsponge based gel. Sci. Rep. 2021 11 1 23345 10.1038/s41598‑021‑02826‑7 34857863
    [Google Scholar]
  29. Jafar M. Salahuddin M. Khan M.S.A. Alshehry Y. Alrwaili N.R. Alzahrani Y.A. Imam S.S. Alshehri S. Preparation and in vitro-in vivo evaluation of luteolin loaded gastroretentive microsponge for the eradication of helicobacter pylori infections. Pharmaceutics 2021 13 12 2094 10.3390/pharmaceutics13122094 34959375
    [Google Scholar]
  30. Behera S. Ghatuary C. Hasnain M.S. Nayak A.K. Losartan potassium-loaded linseed polysaccharide-alginate calcium silicate biomucoadhesive-floating beads for gastroretentive delivery. Polym.-. PlastTechnol Mater. 2024 63 975 10.1080/25740881.2024.2310541
    [Google Scholar]
  31. Sen S.O. Nayak A.K. Devbhuti P. Sen K.K. Development, characterization and evaluation of polymer-based hydrogel membrane patches for intestinal delivery of gliclazide. Polym.-. PlastTechnol Mater. 2024 63 1755
    [Google Scholar]
  32. Das S. Samanta A. Das S. Nayak A.K. Alginate-gellan gum and alginate-xanthan gum microbeads for sustained release of acyclovir. JCIS Open 2024 13 100106 10.1016/j.jciso.2024.100106
    [Google Scholar]
  33. Nayak A.K. Pal D. Santra K. Artocarpus heterophyllus L. seed starch-blended gellan gum mucoadhesive beads of metformin HCl. Int. J. Biol. Macromol. 2014 65 329 339 10.1016/j.ijbiomac.2014.01.022 24447799
    [Google Scholar]
  34. Fukao K. Nobori H. Kuroda T. Baba K. Matsumoto K. Tanaka Y. Tachibana Y. Kato T. Shishido T. Pharmacokinetic and pharmacodynamic analysis of the 3CL protease inhibitor ensitrelvir in a SARS-CoV-2 infection mouse model. Viruses 2023 15 10 2052 10.3390/v15102052 37896829
    [Google Scholar]
  35. Sinha P. Ubaidulla U. Hasnain M.S. Nayak A.K. Rama B. Alginate-okra gum blend beads of diclofenac sodium from aqueous template using ZnSO4 as a cross-linker. Int. J. Biol. Macromol. 2015 79 555 563 10.1016/j.ijbiomac.2015.04.067 25987461
    [Google Scholar]
  36. Sher M. Bukhari S.N.A. Sarfaraz R.M. Iqbal S. Hussain M.A. Naeem-ul Hassan, M.; Hassan, F. Formulation and evaluation of hydroxypropylmethylcellulose-dicyclomine microsponges for colon targeted drug delivery: In vitro and in vivo evaluation. Curr. Drug Deliv. 2022 19 6 686 696 10.2174/1567201818666210805153347 34353263
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018389882250704071618
Loading
/content/journals/cdd/10.2174/0115672018389882250704071618
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: microsponges ; drug delivery ; optimization ; colon cancer ; colon targeting ; Capecitabine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test