Skip to content
2000
image of Starch Biopolymer Functionalized with Ipomoea batatas Extract: A Natural System for Bioactive Delivery in Type II Diabetes

Abstract

Introduction

Type 2 diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia. Natural compounds derived from plants, such as , have shown therapeutic potential for its treatment.

Methods

A starch-based biopolymer was developed and functionalized with a methanolic extract of (IBM). Its physicochemical properties, such as swelling capacity, encapsulation efficiency, and extract release, were evaluated. tests were conducted on diabetic using two administration routes: immersion and oral delivery.

Results

The biopolymer exhibited a swelling capacity of 333.03% and an encapsulation efficiency of 47.78%. In the zebrafish model, significant reductions in glucose, triglycerides, and cholesterol levels were observed, along with inhibition of advanced glycation end products (AGEs) formation in groups treated with IBM and BP-IBM.

Discussion

The results suggest that the biopolymer preserves the chemical integrity of the extract and improves its bioavailability, enabling a significant therapeutic effect. The dual administration routes provide flexibility and demonstrate the efficacy of the delivery system.

Conclusion

The starch-based system functionalized with extract proved to be a promising and non-toxic platform for the delivery of bioactive metabolites in type 2 diabetes models, with potential for future therapeutic applications.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018385495250801091747
2025-08-12
2025-09-25
Loading full text...

Full text loading...

References

  1. Salahuddin A. Ashraf A. Ahmad K. Hou H. Recent advances in chitosan-based smart hydrogel for drug delivery systems. Int. J. Biol. Macromol. 2024 280 135803 10.1016/j.ijbiomac.2024.135803 39419682
    [Google Scholar]
  2. Arora S. Trivedi R. Lamptey R.N.L. Chaulagain B. Layek B. Singh J. Smart biopolymers for controlled drug delivery applications. Tailor-Made and Functionalized Biopolymer Systems. Woodhead Publishing 2021 53 83 10.1016/B978‑0‑12‑821437‑4.00005‑0
    [Google Scholar]
  3. Król-Kilińska Ż. Kulig D. Zimoch-Korzycka A. Reszke E. Bobak Ł. Jurić S. Jarmoluk A. Characterization of biopolymer hydrogels prepared with water exposed to indirect plasma treatment. Int. J. Mol. Sci. 2024 25 24 13427 10.3390/ijms252413427 39769190
    [Google Scholar]
  4. García-González C.A. Alnaief M. Smirnova I. Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems. Carbohydr. Polym. 2011 86 4 1425 1438 10.1016/j.carbpol.2011.06.066
    [Google Scholar]
  5. Wang Z. Wang S. Xu Q. Kong Q. Li F. Lu L. Xu Y. Wei Y. Synthesis and functions of resistant starch. Adv. Nutr. 2023 14 5 1131 1144 10.1016/j.advnut.2023.06.001 37276960
    [Google Scholar]
  6. Zhou B. Chen N. Wu Y. Peng X. Han K. Chen Z. Xu M. Liu X. Starch-lipid complexes and their application: A review. Int. J. Biol. Macromol. 2025 310 Pt 2 142928 10.1016/j.ijbiomac.2025.142928 40210070
    [Google Scholar]
  7. Guo Q. Zheng B. Yang D. Chen L. Structural changes in chestnut resistant starch constructed by starch-lipid interactions during digestion and their effects on gut microbiota: An in vitro study. Food Hydrocoll. 2024 146 109228 10.1016/j.foodhyd.2023.109228
    [Google Scholar]
  8. Ramchandani M. Rath G. Goyal A.K. Chapter 11 - Advances in hydrogel-based controlled drug-delivery systems. In: Smart Polymeric Nano-Constructs in Drug Delivery. Academic Press 2023 329 350 10.1016/B978‑0‑323‑91248‑8.00011‑8
    [Google Scholar]
  9. Shah B.R. Bajaj H.S. Butalia S. Dasgupta K. Eurich D.T. Jain R. Leung K. Mansell K. Simpson S. Pharmacologic glycemic management of type 2 diabetes in adults - 2024 update. Can. J. Diabetes 2024 48 7 415 424 10.1016/j.jcjd.2024.08.002 39550176
    [Google Scholar]
  10. Egan A.M. Dinneen S.F. What is diabetes? Medicine 2022 50 10 615 618 10.1016/j.mpmed.2022.07.001
    [Google Scholar]
  11. Peppa M. Uribarri J. Vlassara H. Glucose, advanced glycation end products, and diabetes complications: What is new and what works. Clin. Diabetes 2003 21 4 186 187 10.2337/diaclin.21.4.186
    [Google Scholar]
  12. Asami R. Sato T. Sakiyama K. Measurement of advanced glycation end products (AGEs) accumulated in dentin collagen. J. Oral Biosci./JAOB, Jpn. Assoc. Oral Biol. 2025 67 1 100600 10.1016/j.job.2024.100600 39672376
    [Google Scholar]
  13. Li H. Ping Y. Niranjan K. Wu Q. Chen Z. Zhang L. Zhao B. Liu K. Structure, antioxidant properties and AGEs (advanced glycation end products) formation of modified wheat gluten protein after enzymatic hydrolysis and Maillard reaction. J. Food Compos. Anal. 2024 136 106795 10.1016/j.jfca.2024.106795
    [Google Scholar]
  14. Shi B. Guo X. Liu H. Jiang K. Liu L. Yan N. Farag M.A. Liu L. Dissecting Maillard reaction production in fried foods: Formation mechanisms, sensory characteristic attribution, control strategy, and gut homeostasis regulation. Food Chem. 2024 438 137994 10.1016/j.foodchem.2023.137994 37984001
    [Google Scholar]
  15. Xu L. Li Y. Dai Y. Peng J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol. Res. 2018 130 451 465 10.1016/j.phrs.2018.01.015 29395440
    [Google Scholar]
  16. Zhao L. Wang Y. Wang Z. Niu T. Yu J. Yue T. Secondary metabolites from Scindapsus officinalis (Roxb.) Schott. with in vitro antidiabetic activities. Fitoterapia 2024 173 105822 10.1016/j.fitote.2024.105822 38224899
    [Google Scholar]
  17. Lestari M. Mustopa A.Z. Masniawati A. Fatimah F. Irawan H. Wibowo D.S. Mamangkey J. Manguntungi B. Rohmah N. Hartanto A. Bioactive metabolites, antioxidant, and antidiabetic activities of fermented local rice (Pare ambo) by Pleurotus spp.: In-vitro and in-silico approach. Biocatal. Agric. Biotechnol. 2024 58 103185 10.1016/j.bcab.2024.103185
    [Google Scholar]
  18. Abdallah I.I. Shawky E. Mustafa R. Celik I. Selim D.A. Dekinash M.F. UPLC-MS/MS based metabolomic insights into antidiabetic potential of Astragalus: Deciphering species-specific bioactive metabolites in correlation to α-amylase and α-glucosidase inhibitory activities. Microchem. J. 2025 208 112481 10.1016/j.microc.2024.112481
    [Google Scholar]
  19. Tshibangu D.S.T. Kavugho F.S. Kabengele C.N. Masunda A.T. Bongo G.N. Kasiama G.N. Mwanangombo D.T. Inkoto C.L. Mbadiko C.M. Gbolo B.Z. Musuyu D.M. Tshilanda D.D. Ngbolua J.P.K.N. Mpiana P.T. Phytochemical study and evaluation of the antidiabetic and antihyperglycemic activities of the fruit extracts of Physalis peruviana L. (Solanaceae). Phytomedicine Plus 2025 5 1 100675 10.1016/j.phyplu.2024.100675
    [Google Scholar]
  20. Laveriano-Santos E.P. López-Yerena A. Jaime-Rodríguez C. González-Coria J. Lamuela-Raventós R.M. Vallverdú-Queralt A. Romanyà J. Pérez M. Sweet potato is not simply an abundant food crop: A comprehensive review of its phytochemical constituents, biological activities, and the effects of processing. Antioxidants 2022 11 9 1648 10.3390/antiox11091648 36139723
    [Google Scholar]
  21. Bi H. Teng W. Wang J. Wang X. Zhang Z. Wang M. Recent developments in non-starch Ipomoea batatas (L.) Lam. polysaccharides: Extractions and purifications, structural characteristics, pharmacological activities, structure-activity relationships, and applications A review. Int. J. Biol. Macromol. 2025 309 Pt 1 142808 10.1016/j.ijbiomac.2025.142808 40188924
    [Google Scholar]
  22. Wu J. Zhang Y. Zhang F. Mi S. Yu W. Sang Y. Wang X. Preparation of chitosan/polyvinyl alcohol antibacterial indicator composite film loaded with AgNPs and purple sweet potato anthocyanins and its application in strawberry preservation. Food Chem. 2025 463 Pt 1 141442 10.1016/j.foodchem.2024.141442 39342685
    [Google Scholar]
  23. Chijioke-Agu O.E. Emelike C.U. Modulation of oxidative stress markers, antioxidant status and inflammatory mediator levels in alloxan-induced diabetic male wistar rats by (Ipomoea batatas) sweet potatoes. Pharmacol. Res. -. Nat. Prod 2025 7 100205 10.1016/j.prenap.2025.100205
    [Google Scholar]
  24. Akomolafe S.F. Ajayi O.O. Agboola O.E. Adewale O.O. Comparative evaluation of the antidiabetic potential of three varieties of Ipomoea batatas L. Toxicol. Rep. 2025 14 102015 10.1016/j.toxrep.2025.102015 40230512
    [Google Scholar]
  25. Saing M. Harahap U. Sitorus P. Combination of purple sweet potato (Ipomoea batatas L.) leaf extract with metformin on blood glucose and total cholesterol levels of albino rats induced by high-fat diet and streptozotocin. Int. J. Basic Clin. Pharmacol. 2024 13 2 203 207 10.18203/2319‑2003.ijbcp20240001
    [Google Scholar]
  26. Shi J. Fang D. Sui Y. Xiong T. Chen X. Fan C. Zhou D. Cai F. Mei X. Polyphenol content, antioxidant capacity, and composition in different varieties of sweet potato (Ipomoea batatas L.) leaves during growth stages. Sci. Hortic. 2025 342 113925 10.1016/j.scienta.2024.113925
    [Google Scholar]
  27. Lieschke G.J. Currie P.D. Animal models of human disease: Zebrafish swim into view. Nat. Rev. Genet. 2007 8 5 353 367 10.1038/nrg2091 17440532
    [Google Scholar]
  28. Athmuri D.N. Shiekh P.A. Experimental diabetic animal models to study diabetes and diabetic complications. MethodsX 2023 11 102474 10.1016/j.mex.2023.102474 38023309
    [Google Scholar]
  29. Oyelaja-Akinsipo O.B. Dare E.O. Katare D.P. Protective role of diosgenin against hyperglycaemia-mediated cerebral ischemic brain injury in zebrafish model of type II diabetes mellitus. Heliyon 2020 6 1 e03296 10.1016/j.heliyon.2020.e03296 32051868
    [Google Scholar]
  30. Arulmozhi S. Zebrafish models for screening of metabolic diseases. Zebrafish Model for Biomedical Research 2022 61 79 10.1007/978‑981‑16‑5217‑2_4
    [Google Scholar]
  31. MacRae C.A. Peterson R.T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 2015 14 10 721 731 10.1038/nrd4627 26361349
    [Google Scholar]
  32. Poudel R. Dutta N. Karak N. A mechanically robust biodegradable bioplastic of citric acid modified plasticized yam starch with anthocyanin as a fish spoilage auto-detecting smart film. Int. J. Biol. Macromol. 2023 242 Pt 2 125020 10.1016/j.ijbiomac.2023.125020 37217054
    [Google Scholar]
  33. Flores-Arriaga J.C. Chavarría-Bolaños D. Pozos-Guillén A.J. Escobar-Barrios V.A. Cerda-Cristerna B.I. Synthesis of a PVA drug delivery system for controlled release of a Tramadol–Dexketoprofen combination. J. Mater. Sci. Mater. Med. 2021 32 5 56 10.1007/s10856‑021‑06529‑3 33961138
    [Google Scholar]
  34. Li C. Li F. Wang K. Wang Q. Liu H. Sun X. Xie D. Synthesis, characterizations, and release mechanisms of carboxymethyl chitosan-graphene oxide-gelatin composite hydrogel for controlled delivery of drug. Inorg. Chem. Commun. 2023 155 110965 10.1016/j.inoche.2023.110965
    [Google Scholar]
  35. Lipatova I.M. Yusova A.A. Effect of mechanical activation on starch crosslinking with citric acid. Int. J. Biol. Macromol. 2021 185 688 695 10.1016/j.ijbiomac.2021.06.139 34174309
    [Google Scholar]
  36. Brodkorb A. Egger L. Alminger M. Alvito P. Assunção R. Ballance S. Bohn T. Bourlieu-Lacanal C. Boutrou R. Carrière F. Clemente A. Corredig M. Dupont D. Dufour C. Edwards C. Golding M. Karakaya S. Kirkhus B. Le Feunteun S. Lesmes U. Macierzanka A. Mackie A.R. Martins C. Marze S. McClements D.J. Ménard O. Minekus M. Portmann R. Santos C.N. Souchon I. Singh R.P. Vegarud G.E. Wickham M.S.J. Weitschies W. Recio I. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019 14 4 991 1014 10.1038/s41596‑018‑0119‑1 30886367
    [Google Scholar]
  37. Minekus M. Alminger M. Alvito P. Ballance S. Bohn T. Bourlieu C. Carrière F. Boutrou R. Corredig M. Dupont D. Dufour C. Egger L. Golding M. Karakaya S. Kirkhus B. Le Feunteun S. Lesmes U. Macierzanka A. Mackie A. Marze S. McClements D.J. Ménard O. Recio I. Santos C.N. Singh R.P. Vegarud G.E. Wickham M.S.J. Weitschies W. Brodkorb A. A standardised static in vitro digestion method suitable for food – An international consensus. Food Funct. 2014 5 6 1113 1124 10.1039/C3FO60702J 24803111
    [Google Scholar]
  38. Muñiz-Ramirez A. Garcia-Campoy A.H. Pérez Gutiérrez R.M. Garcia Báez E.V. Mota Flores J.M. Evaluation of the antidiabetic and antihyperlipidemic activity of Spondias purpurea seeds in a diabetic zebrafish model. Plants 2021 10 7 1417 10.3390/plants10071417 34371620
    [Google Scholar]
  39. Flores E.L. Lapuz B.L. Navarrete I. Hallare A. Comparative toxicological analysis of metformin (biguanide) and glibenclamide (sulfonylureas), using zebrafish embryotoxicity test (ZFET). Philippine J. Health. Res. Develop 2020 24 1 52 63
    [Google Scholar]
  40. Xu Y. Jia Y. Wang Z. Wang Z. Mathematical modeling and finite element simulation of slow release of drugs using hydrogels as carriers with various drug concentration distributions. J. Pharm. Sci. 2013 102 5 1532 1543 10.1002/jps.23497 23526640
    [Google Scholar]
  41. Holback H. Yeo Y. Park K. Hydrogel swelling behavior and its biomedical applications. In: Biomedical Hydrogels. USA Woodhead Publishing 2011 3 24 10.1533/9780857091383.1.3
    [Google Scholar]
  42. Enoch K. Rakavi C.S. Somasundaram A.A. Thixotropic chitosan hydrogels for biomedical applications: Unravelling the effect of chitosan concentration on the mechanical behaviour. Surf. Interfaces 2024 50 104475 10.1016/j.surfin.2024.104475
    [Google Scholar]
  43. Enoch K. Somasundaram A.A. Tailoring the rheological properties of biosynthesized Copper oxide nanoparticles decorated Carboxymethyl cellulose hydrogels for biomedical applications. Colloids Surf. A Physicochem. Eng. Asp. 2024 682 132890 10.1016/j.colsurfa.2023.132890
    [Google Scholar]
  44. Chauhan M. Roopmani P. Rajendran J. Narayan K.P. Giri J. Injectable, in-situ forming, tunable, biocompatible gelatin hydrogels for biomedical applications. Int. J. Biol. Macromol. 2025 285 138200 10.1016/j.ijbiomac.2024.138200 39617237
    [Google Scholar]
  45. Mabasa X.E. Mathomu L.M. Madala N.E. Musie E.M. Sigidi M.T. Molecular spectroscopic (FTIR and UV-Vis) and hyphenated chromatographic (UHPLC-qTOF-MS) analysis and in vitro bioactivities of the Momordica balsamina leaf extract. Biochem. Res. Int. 2021 2021 1 12 10.1155/2021/2854217 34621548
    [Google Scholar]
  46. Simões B.M. Cagnin C. Yamashita F. Olivato J.B. Garcia P.S. de Oliveira S.M. Eiras Grossmann M.V. Citric acid as crosslinking agent in starch/xanthan gum hydrogels produced by extrusion and thermopressing. Lebensm. Wiss. Technol. 2020 125 108950 10.1016/j.lwt.2019.108950
    [Google Scholar]
  47. Agarwal S. Major factors affecting the characteristics of starch based biopolymer films. Eur. Polym. J. 2021 160 5 110788 10.1016/j.eurpolymj.2021.110788
    [Google Scholar]
  48. Xia Y. Li C. Qin Y. Zhang W. Wu C. Li M. Zero-order release of metformin in polyacrylamide hydrogel. J. Drug Deliv. Sci. Technol. 2024 91 105161 10.1016/j.jddst.2023.105161
    [Google Scholar]
  49. Mishra R.K. Tiwari S.K. Mohapatra S. Thomas S. Chapter 1-Efficient nanocarriers for drug-delivery systems: Types and fabrication. In: Nanocarriers for Drug Delivery. Amsterdam, Netherlands Elsevier Inc. 2019 1 41 10.1016/B978‑0‑12‑814033‑8.00001‑1
    [Google Scholar]
  50. Pathak C. Vaidya F.U. Pandey S.M. Mechanism for development of nanobased drug delivery system. In: Applications of Targeted Nano Drugs and Delivery Systems. India Elsevier Inc. 2019 35 67 10.1016/B978‑0‑12‑814029‑1.00003‑X
    [Google Scholar]
  51. Viswanadha L.S. Arcot Y. Lin Y.T. Akbulut M.E.S. A comparative investigation of release kinetics of paclitaxel from natural protein and macromolecular nanocarriers in nanoscale drug delivery systems. JCIS Open 2024 15 100120 10.1016/j.jciso.2024.100120
    [Google Scholar]
  52. Raeispour S. Rahmandoust M. Kouchakzadeh H. A nanocarrier system based on CQDs for efficient mitoxantrone drug delivery. Heliyon 2024 10 11 e31674 10.1016/j.heliyon.2024.e31674 38841446
    [Google Scholar]
  53. Ugbogu E.A. Okoro H. Emmanuel O. Ugbogu O.C. Ekweogu C.N. Uche M. Dike E.D. Ijioma S.N. Phytochemical characterization, anti-diarrhoeal, analgesic, anti-inflammatory activities and toxicity profile of Ananas comosus (L.) Merr (pineapple) leaf in albino rats. J. Ethnopharmacol. 2024 319 Pt 2 117224 10.1016/j.jep.2023.117224 37748634
    [Google Scholar]
  54. Olasehinde O.R. Afolabi O.B. Owolabi O.V. Akawa A.B. Omiyale O.B. GC–MS analysis of phytochemical constituents of methanolic fraction of Annona muricata leaf and its inhibition against two key enzymes linked to type II diabetes. Sci. Am. 2022 16 e01178 10.1016/j.sciaf.2022.e01178
    [Google Scholar]
  55. Renganathan S. Manokaran S. Vasanthakumar P. Singaravelu U. Kim P.S. Kutzner A. Heese K. Phytochemical profiling in conjunction with in vitro and in silico studies to identify human α-amylase inhibitors in Leucaena leucocephala (Lam.) de Wit for the treatment of diabetes mellitus. ACS Omega 2021 6 29 19045 19057 10.1021/acsomega.1c02350 34337243
    [Google Scholar]
  56. Unissa Syed R. Moni S.S. Huwaimel B. Alobaida A. Abdulkareem Almarshdi A. Abouzied S. Abu Lila A.S. Abdallah M.H. Banu H. Hadi M.H. El-Horany H.E. Abdelwahab S.I. Elhassan Taha M.M. Bioactive principles, anti-diabetic, and anti-ulcer activities of Ducrosia anethifolia Boiss leaves from the Hail region, Saudi Arabia. Arab. J. Chem. 2022 15 12 104308 10.1016/j.arabjc.2022.104308
    [Google Scholar]
  57. Dawood Shah M. Seelan Sathiya Seelan J. Iqbal M. Phytochemical investigation and antioxidant activities of methanol extract, methanol fractions and essential oil of Dillenia suffruticosa leaves. Arab. J. Chem. 2020 13 9 7170 7182 10.1016/j.arabjc.2020.07.022
    [Google Scholar]
  58. Muzahid A.A. Sharmin S. Hossain M.S. Ahamed K.U. Ahmed N. Yeasmin M.S. Ahmed N.U. Saha B.K. Rana G.M.M. Maitra B. Bhuiyan M.N.H. Analysis of bioactive compounds present in different crude extracts of Benincasa hispida and Cucurbita moschata seeds by gas chromatography-mass spectrometry. Heliyon 2023 9 1 e12702 10.1016/j.heliyon.2022.e12702 36685362
    [Google Scholar]
  59. Runde M. Ogoko E. Aletan U. Mohammed Suleiman H. Imojara A. Hitler L. Gas chromatography/mass spectrometry analysis and uv absorptivity of bio-oils extracted from some locally grown plant seeds in nothern Nigeria. Heliyon 2023 9 11 e20872 10.1016/j.heliyon.2023.e20872 38027663
    [Google Scholar]
  60. Lamloum N.S. Soliman H.A. Rashad Ahmed R. Ahmed O.M. Abdel-Maksoud M.A. Kotob M.H. Zaky M.Y. Improvement effects of green tea and pumpkin oils on myelin oligodendrocyte glycoprotein-induced multiple sclerosis in rats. J. Funct. Foods 2023 111 105876 10.1016/j.jff.2023.105876
    [Google Scholar]
  61. Zhang Y. Xiao M. Niu G. Tan H. Mechanisms of oleic acid deterioration in insulin secretion: Role in the pathogenesis of type 2 diabetes. Life Sci. 2005 77 17 2071 2081 10.1016/j.lfs.2004.12.047 15935394
    [Google Scholar]
  62. Abirami D. Gomathi R. Target and candidate agents for diabetes treatment in the framework of the food nexus. Energy. Nexus 2022 5 16 100041 10.1016/j.nexus.2022.100041
    [Google Scholar]
  63. Naidoo C.M. Naidoo Y. Dewir Y.H. Singh M. Lin J. Phytochemical composition and antibacterial evaluation of Tabernaemontana ventricosa Hochst. ex A. DC. leaf, stem, and latex extracts. S. Afr. J. Bot. 2023 152 147 164 10.1016/j.sajb.2022.11.026
    [Google Scholar]
  64. Gao C. Rao M. Huang W. Wan Q. Yan P. Long Y. Guo M. Xu Y. Xu Y. Resistant starch ameliorated insulin resistant in patients of type 2 diabetes with obesity: A systematic review and meta-analysis. Lipids Health Dis. 2019 18 1 205 10.1186/s12944‑019‑1127‑z 31760943
    [Google Scholar]
  65. Das M. Santra S. Chakraborty M. Rajan N. Sarvanabhupathy S. Anusha; Biswas, P.; Banerjee, R. Resistant starch: Insights into better health and metabolism. Biocatal. Agric. Biotechnol. 2024 59 103275 10.1016/j.bcab.2024.103275
    [Google Scholar]
  66. Maziarz M.P. Role of fructans and resistant starch in diabetes care. Diabetes Spectr. 2013 26 1 35 39 10.2337/diaspect.26.1.35
    [Google Scholar]
  67. Zhu J. Gilbert R.G. Starch molecular structure and diabetes. Carbohydr. Polym. 2024 344 122525 10.1016/j.carbpol.2024.122525 39218548
    [Google Scholar]
  68. Liu X. Ma Q. Feng Y. Wang F. Wang W. Wang J. Sun J. Potato resistant starch improves type 2 diabetes by regulating inflammation, glucose and lipid metabolism and intestinal microbial environment. Int. J. Biol. Macromol. 2024 281 Pt 3 136389 10.1016/j.ijbiomac.2024.136389 39389507
    [Google Scholar]
  69. Li X. Chen R. Wen J. Ji R. Chen X. Cao Y. Yu Y. Zhao C. The mechanisms in the gut microbiota regulation and type 2 diabetes therapeutic activity of resistant starches. Int. J. Biol. Macromol. 2024 274 Pt 1 133279 10.1016/j.ijbiomac.2024.133279 38906356
    [Google Scholar]
  70. Lu Y. Qin R. Wang J. Xiang F. Zhang Y. Zhang B. Fan D. Lü H. Ji X. Wang S. Wang S. The impact of the novel starch-lipid complexes on the glucolipids metabolism, inflammation, and gut dysbiosis of type 2 diabetes mellitus rats. Food Sci. Hum. Wellness 2024 13 6 3210 3223 10.26599/FSHW.2023.9250008
    [Google Scholar]
  71. Holford N.H.G. Atkinson A.J. Time course of drug response. In: Atkinson’s Principles of Clinical Pharmacology. Bethesda, Maryland Elsevier 2006 301 311 10.1016/B978‑012369417‑1/50059‑6
    [Google Scholar]
  72. Lin K.H. Chu W.X. Lee Y.T. Li Y.H. Chang W.T. Yu Y.P. Shih M.C. Lai Y.C. Lu C.P. Chao P.Y. Effects of sweet potato leaf extracts and chlorogenic acid on glucose uptake in C2C12 cells. Agronomy 2024 14 12 2855 10.3390/agronomy14122855
    [Google Scholar]
  73. Arisanti C.I.S. Wirasuta I.M.A.G. Musfiroh I. Ikram E.H.K. Muchtaridi M. Mechanism of anti-diabetic activity from sweet potato (Ipomoea batatas): A systematic review. Foods 2023 12 14 2810 10.3390/foods12142810 37509903
    [Google Scholar]
  74. Kinoshita A. Nagata T. Furuya F. Nishizawa M. Mukai E. White-skinned sweet potato (Ipomoea batatas L.) acutely suppresses postprandial blood glucose elevation by improving insulin sensitivity in normal rats. Heliyon 2023 9 4 e14719 10.1016/j.heliyon.2023.e14719 37025833
    [Google Scholar]
  75. Klimas J. General Pharmacology for Pharmacists: Principles and Applications. Nova Science Publishers, Incorporated 2017
    [Google Scholar]
  76. Klimas J. What is pharmacology? In: Pharmacology for Chemists: Drug Discovery in ContextCheck Access. The Royal Society of Chemistry 2013 1 13 10.1039/BK9781782621423‑00001
    [Google Scholar]
  77. Tsushima Y. Hatipoglu B. Diabetes and lipids: A review and update on lipid biomarkers and cardiovascular risk. Endocr. Pract. 2025 31 5 677 685 10.1016/j.eprac.2025.03.011 40158888
    [Google Scholar]
  78. Patel S.B. Wyne K.L. Afreen S. Belalcazar L.M. Bird M.D. Coles S. Marrs J.C. Peng C.C.H. Pulipati V.P. Sultan S. Zilbermint M. American association of clinical endocrinology clinical practice guideline on pharmacologic management of adults with dyslipidemia. Endocr. Pract. 2025 31 2 236 262 10.1016/j.eprac.2024.09.016 39919851
    [Google Scholar]
  79. Kamrul-Hasan A.B.M. Dutta D. Nagendra L. Mondal S. Bhattacharya S. Kalra S. Safety and efficacy of the novel RNA interference therapies for hypertriglyceridemia and mixed hyperlipidemia management: A systematic review and meta-analysis. Endocr. Pract. 2024 30 11 1103 1112 10.1016/j.eprac.2024.08.013 39243856
    [Google Scholar]
  80. Kalra S. Raizada N. Dyslipidemia in diabetes. Indian Heart J. 2024 76 Suppl. 1 S80 S82 10.1016/j.ihj.2023.11.002 37956957
    [Google Scholar]
  81. Valle-Sánchez S.L. Rodríguez-Ramírez R. Ávila-Villa L.A. Villa-Lerma A.G. Davidov-Pardo G. Wall-Medrano A. González-Córdova A.F. Natural inhibitory compounds of advanced glycation end products (AGEs) from the Maillard reaction. Studies in Natural Products Chemistry 2023 79 341 381 10.1016/B978‑0‑443‑18961‑6.00018‑4
    [Google Scholar]
  82. Akter M. Perveen F.F. Nuren N.Z. Ahmed N. Rahman M.A. Billah M.M. Bari M.A. Ahmed S. Islam M.N. Antioxidant, anti-glycation and hypoglycemic potentials of Acmella uliginosa: A probable candidate for the amelioration of diabetes mellitus. Phytomedicine Plus 2025 5 2 100777 10.1016/j.phyplu.2025.100777
    [Google Scholar]
  83. Yamaguchi H. Matsumura T. Sugawa H. Niimi N. Sango K. Nagai R. Glucoselysine, a unique advanced glycation end-product of the polyol pathway and its association with vascular complications in type 2 diabetes. J. Biol. Chem. 2024 300 7 107479 10.1016/j.jbc.2024.107479 38879006
    [Google Scholar]
  84. Rubin M.R. Dhaliwal R. Role of advanced glycation endproducts in bone fragility in type 1 diabetes. Bone 2024 178 116928 10.1016/j.bone.2023.116928 37802378
    [Google Scholar]
  85. Bronowicka-Szydełko A. Gostomska-Pampuch K. Kuzan A. Pietkiewicz J. Krzystek-Korpacka M. Gamian A. Effect of advanced glycation end-products in a wide range of medical problems including COVID-19. Adv. Med. Sci. 2024 69 1 36 50 10.1016/j.advms.2024.01.003 38335908
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018385495250801091747
Loading
/content/journals/cdd/10.2174/0115672018385495250801091747
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test