Skip to content
2000
image of Metformin-Embedded Hydrogels: A Promising Approach for Accelerating Healing in Diabetic Ulcers

Abstract

Introduction

Difficulty in wound healing is a significant worldwide clinical challenge with serious health consequences and even life-threatening consequences. We designed an acrylic hydrogel loaded with metformin and investigated its mechanism of action in promoting wound repair.

Methods

In this study, we obtained self-assembled metformin hydrogels (SAMHs) delivery system using acrylic acid (AA) as matrix and ammonium persulfate (APS) as initiator, and evaluated the appearance, water vapor transmission rate, swelling properties, mechanical properties, and bioactivities of the SAMHs, and finally assessed the potential of the SAMHs for the treatment of chronic wounds in a diabetic rat wound model.

Results

SAMHs were colorless and transparent in appearance, with a water vapor transmission rate of 3530 g·m-2·day-1, a dissolution rate of 504%, a Young's modulus of 34 Kpa, and an elongation at break of 595.7%.The drug loading capacity of SAMHs was 0.8±0.04 mg·g-1 and the cumulative release amounted to 71.67±2.03%. experiments showed that on day 14, the SAMHs group achieved a wound healing rate of 96.74%, with complete epithelialization, a collagen fiber content of 75.10%, elevated VEGF expression, and a TNF-α level of 162.62 pg·mL−1, all of which exhibited significant differences compared to the control group.

Discussion

SAMHs exhibit excellent performance in several aspects, achieving slow drug release and promoting wound repair. In addition, SAMHs are simple and low-cost to prepare, which is expected to bring more cost-effective treatment options for diabetic patients. However, antimicrobial properties and clinical trial data are lacking in this study, and their applicability in complex wounds requires further validation.

Conclusion

The hydrogel we prepared has excellent properties, is suitable for use in chronic wounds and promotes wound healing in diabetic rats and is an effective therapeutic strategy for chronic wounds.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018384803250713182036
2025-07-24
2025-09-25
Loading full text...

Full text loading...

References

  1. Tan W. Long T. Wan Y. Li B. Xu Z. Zhao L. Mu C. Ge L. Li D. Dual-drug loaded polysaccharide-based self-healing hydrogels with multifunctionality for promoting diabetic wound healing. Carbohydr. Polym. 2023 312 120824 10.1016/j.carbpol.2023.120824 37059551
    [Google Scholar]
  2. Gao D. Zhang Y. Bowers D.T. Liu W. Ma M. Functional hydrogels for diabetic wound management. APL Bioeng. 2021 5 3 031503 10.1063/5.0046682 34286170
    [Google Scholar]
  3. Da Silva J. Leal E.C. Carvalho E. Silva E.A. Innovative functional biomaterials as therapeutic wound dressings for chronic diabetic foot ulcers. Int. J. Mol. Sci. 2023 24 12 9900 10.3390/ijms24129900 37373045
    [Google Scholar]
  4. Burgess J.L. Wyant W.A. Abdo Abujamra B. Kirsner R.S. Jozic I. Diabetic wound-healing science. Medicina 2021 57 10 1072 10.3390/medicina57101072 34684109
    [Google Scholar]
  5. Bai Q. Han K. Dong K. Zheng C. Zhang Y. Long Q. Lu T. Potential applications of nanomaterials and technology for diabetic wound healing. Int. J. Nanomedicine 2020 15 9717 9743 10.2147/IJN.S276001 33299313
    [Google Scholar]
  6. Boulton A.J.M. Vileikyte L. Ragnarson-Tennvall G. Apelqvist J. The global burden of diabetic foot disease. Lancet 2005 366 9498 1719 1724 10.1016/S0140‑6736(05)67698‑2 16291066
    [Google Scholar]
  7. Zhang Y. Li M. Wang Y. Han F. Shen K. Luo L. Li Y. Jia Y. Zhang J. Cai W. Wang K. Zhao M. Wang J. Gao X. Tian C. Guo B. Hu D. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission. Bioact. Mater. 2023 26 323 336 10.1016/j.bioactmat.2023.01.020 36950152
    [Google Scholar]
  8. Wei Q. Ma L. Zhang W. Ma G. Hu Z. EGCG-crosslinked carboxymethyl chitosan-based hydrogels with inherent desired functions for full-thickness skin wound healing. J. Mater. Chem. B Mater. Biol. Med. 2022 10 20 3927 3935 10.1039/D2TB00074A 35485772
    [Google Scholar]
  9. Shang S. Zhuang K. Chen J. Zhang M. Jiang S. Li W. A bioactive composite hydrogel dressing that promotes healing of both acute and chronic diabetic skin wounds. Bioact. Mater. 2024 34 298 310 10.1016/j.bioactmat.2023.12.026 38261910
    [Google Scholar]
  10. Chang M. Nguyen T.T. Strategy for treatment of infected diabetic foot ulcers. Acc. Chem. Res. 2021 54 5 1080 1093 10.1021/acs.accounts.0c00864 33596041
    [Google Scholar]
  11. Deng L. Du C. Song P. Chen T. Rui S. Armstrong D.G. Deng W. The role of oxidative stress and antioxidants in diabetic wound healing. Oxid. Med. Cell. Longev. 2021 2021 1 8852759 10.1155/2021/8852759 33628388
    [Google Scholar]
  12. Dworzański J. Strycharz-Dudziak M. Kliszczewska E. Kiełczykowska M. Dworzańska A. Drop B. Polz-Dacewicz M. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity in patients with diabetes mellitus type 2 infected with Epstein-Barr virus. PLoS One 2020 15 3 0230374 10.1371/journal.pone.0230374 32210468
    [Google Scholar]
  13. Sawada N. Jiang A. Takizawa F. Safdar A. Manika A. Tesmenitsky Y. Kang K.T. Bischoff J. Kalwa H. Sartoretto J.L. Kamei Y. Benjamin L.E. Watada H. Ogawa Y. Higashikuni Y. Kessinger C.W. Jaffer F.A. Michel T. Sata M. Croce K. Tanaka R. Arany Z. Endothelial PGC-1α mediates vascular dysfunction in diabetes. Cell Metab. 2014 19 2 246 258 10.1016/j.cmet.2013.12.014 24506866
    [Google Scholar]
  14. Mirza R.E. Fang M.M. Ennis W.J. Koh T.J. Blocking interleukin-1β induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes 2013 62 7 2579 2587 10.2337/db12‑1450 23493576
    [Google Scholar]
  15. Yu F.X. Lee P.S.Y. Yang L. Gao N. Zhang Y. Ljubimov A.V. Yang E. Zhou Q. Xie L. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog. Retin. Eye Res. 2022 89 101039 10.1016/j.preteyeres.2021.101039 34991965
    [Google Scholar]
  16. Lima A.L. Illing T. Schliemann S. Elsner P. Cutaneous manifestations of diabetes mellitus: A review. Am. J. Clin. Dermatol. 2017 18 4 541 553 10.1007/s40257‑017‑0275‑z 28374407
    [Google Scholar]
  17. Broderick C. Pagnamenta F. Forster R. Dressings and topical agents for arterial leg ulcers. Cochrane Libr. 2020 2020 1 CD001836 10.1002/14651858.CD001836.pub4 31978262
    [Google Scholar]
  18. Xiao L. Ni W. Zhao X. Guo Y. Li X. Wang F. Luo G. Zhan R. Xu X. A moisture balanced antibacterial dressing loaded with lysozyme possesses antibacterial activity and promotes wound healing. Soft Matter 2021 17 11 3162 3173 10.1039/D0SM02245D 33620055
    [Google Scholar]
  19. Kim H.S. Sun X. Lee J.H. Kim H.W. Fu X. Leong K.W. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv. Drug Deliv. Rev. 2019 146 209 239 10.1016/j.addr.2018.12.014 30605737
    [Google Scholar]
  20. Shi C. Wang C. Liu H. Li Q. Li R. Zhang Y. Liu Y. Shao Y. Wang J. Selection of appropriate wound dressing for various wounds. Front. Bioeng. Biotechnol. 2020 8 182 10.3389/fbioe.2020.00182 32266224
    [Google Scholar]
  21. Nuutila K. Eriksson E. Moist wound healing with commonly available dressings. Adv. Wound Care 2021 10 12 685 698 10.1089/wound.2020.1232 32870777
    [Google Scholar]
  22. Yang P. Li Z. Fang B. Liu L. Self-healing hydrogels based on biological macromolecules in wound healing: A review. Int. J. Biol. Macromol. 2023 253 Pt 8 127612 10.1016/j.ijbiomac.2023.127612 37871725
    [Google Scholar]
  23. Yang L. Fan L. Lin X. Yu Y. Zhao Y. Pearl powder hybrid bioactive scaffolds from microfluidic 3D printing for bone regeneration. Adv. Sci. 2023 10 34 2304190 10.1002/advs.202304190 37870197
    [Google Scholar]
  24. Talebian S. Mehrali M. Taebnia N. Pennisi C.P. Kadumudi F.B. Foroughi J. Hasany M. Nikkhah M. Akbari M. Orive G. Dolatshahi-Pirouz A. Self‐healing hydrogels: The next paradigm shift in tissue engineering? Adv. Sci. 2019 6 16 1801664 10.1002/advs.201801664 31453048
    [Google Scholar]
  25. Nifontova G. Safaryan S. Khristidis Y. Smirnova O. Vosough M. Shpichka A. Timashev P. Advancing wound healing by hydrogel-based dressings loaded with cell-conditioned medium: A systematic review. Stem Cell Res. Ther. 2024 15 1 371 10.1186/s13287‑024‑03976‑x 39420416
    [Google Scholar]
  26. Güiza-Argüello V.R. Solarte-David V.A. Pinzón-Mora A.V. Ávila-Quiroga J.E. Becerra-Bayona S.M. Current advances in the development of hydrogel-based wound dressings for diabetic foot ulcer treatment. Polymers 2022 14 14 2764 10.3390/polym14142764 35890541
    [Google Scholar]
  27. Alven S. Peter S. Mbese Z. Aderibigbe B.A. Polymer-based wound dressing materials loaded with bioactive agents: Potential materials for the treatment of diabetic wounds. Polymers 2022 14 4 724 10.3390/polym14040724 35215637
    [Google Scholar]
  28. Zhou Z. Deng T. Tao M. Lin L. Sun L. Song X. Gao D. Li J. Wang Z. Wang X. Li J. Jiang Z. Luo L. Yang L. Wu M. Snail-inspired AFG/GelMA hydrogel accelerates diabetic wound healing via inflammatory cytokines suppression and macrophage polarization. Biomaterials 2023 299 122141 10.1016/j.biomaterials.2023.122141 37167893
    [Google Scholar]
  29. Kuan C.H. Chang L. Ho C.Y. Tsai C.H. Liu Y.C. Huang W.Y. Wang Y.N. Wang W.H. Wang T.W. Immunomodulatory hydrogel orchestrates pro-regenerative response of macrophages and angiogenesis for chronic wound healing. Biomaterials 2025 314 122848 10.1016/j.biomaterials.2024.122848 39342917
    [Google Scholar]
  30. Wu F. Meng G. He J. Wu Y. Wu F. Gu Z. Antibiotic-loaded chitosan hydrogel with superior dual functions: Antibacterial efficacy and osteoblastic cell responses. ACS Appl. Mater. Interfaces 2014 6 13 10005 10013 10.1021/am502537k 24938653
    [Google Scholar]
  31. Bai Q. Gao Q. Hu F. Zheng C. Chen W. Sun N. Liu J. Zhang Y. Wu X. Lu T. Chitosan and hyaluronic-based hydrogels could promote the infected wound healing. Int. J. Biol. Macromol. 2023 232 123271 10.1016/j.ijbiomac.2023.123271 36646352
    [Google Scholar]
  32. Xie X. Mao C. Liu X. Tan L. Cui Z. Yang X. Zhu S. Li Z. Yuan X. Zheng Y. Yeung K.W.K. Chu P.K. Wu S. Tuning the bandgap of photo-sensitive polydopamine/Ag 3 PO 4 /graphene oxide coating for rapid, noninvasive disinfection of implants. ACS Cent. Sci. 2018 4 6 724 738 10.1021/acscentsci.8b00177 29974068
    [Google Scholar]
  33. Li J. Tan L. Liu X. Cui Z. Yang X. Yeung K.W.K. Chu P.K. Wu S. Balancing bacteria–osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/] arginine-glycine-aspartic acid-cysteine nanorods. ACS Nano 2017 11 11 11250 11263 10.1021/acsnano.7b05620 29049874
    [Google Scholar]
  34. Shi L. Jiang Z. Li J. Lin H. Xu B. Liao X. Fu Z. Ao H. Guo G. Liu M. Metformin improves burn wound healing by modulating microenvironmental fibroblasts and macrophages. Cells 2022 11 24 4094 10.3390/cells11244094 36552856
    [Google Scholar]
  35. Han X. Tao Y. Deng Y. Yu J. Sun Y. Jiang G. Metformin accelerates wound healing in type 2 diabetic db/db mice. Mol. Med. Rep. 2017 16 6 8691 8698 10.3892/mmr.2017.7707 28990070
    [Google Scholar]
  36. Li M. Dong Y. Shang Y. Liu J. Wang Y. Zhang D. Zhang L. Han C. Zhang Y. Shen K. Yang Y. Wang H. Guan H. Hu D. Metformin syncs CeO 2 to recover intra‐ and extra‐cellular ROS homeostasis in diabetic wound healing. Small 2024 20 52 2407802 10.1002/smll.202407802 39439140
    [Google Scholar]
  37. Wang G. Wang Y. Yang Q. Xu C. Zheng Y. Wang L. Wu J. Zeng M. Luo M. Metformin prevents methylglyoxal-induced apoptosis by suppressing oxidative stress in vitro and in vivo. Cell Death Dis. 2022 13 1 29 10.1038/s41419‑021‑04478‑x 35013107
    [Google Scholar]
  38. Leng T. Wang Y. Cheng W. Wang W. Qu X. Lei B. Bioactive anti-inflammatory antibacterial metformin-contained hydrogel dressing accelerating wound healing. Biomater Adv. 2022 135 212737 10.1016/j.bioadv.2022.212737 35929210
    [Google Scholar]
  39. Qing L. Fu J. Wu P. Zhou Z. Yu F. Tang J. Metformin induces the M2 macrophage polarization to accelerate the wound healing via regulating AMPK/mTOR/NLRP3 inflammasome singling pathway. Am. J. Transl. Res. 2019 11 2 655 668 [PMID: 30899369
    [Google Scholar]
  40. Lin H. Ao H. Guo G. Liu M. The role and mechanism of metformin in inflammatory diseases. J. Inflamm. Res. 2023 16 5545 5564 10.2147/JIR.S436147 38026260
    [Google Scholar]
  41. Graham G.G. Punt J. Arora M. Day R.O. Doogue M.P. Duong J.K. Furlong T.J. Greenfield J.R. Greenup L.C. Kirkpatrick C.M. Ray J.E. Timmins P. Williams K.M. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 2011 50 2 81 98 10.2165/11534750‑000000000‑00000 21241070
    [Google Scholar]
  42. Tombulturk F.K. Todurga-Seven Z.G. Huseyinbas O. Ozyazgan S. Ulutin T. Kanigur-Sultuybek G. Topical application of metformin accelerates cutaneous wound healing in streptozotocin-induced diabetic rats. Mol. Biol. Rep. 2022 49 1 73 83 10.1007/s11033‑021‑06843‑7 34718940
    [Google Scholar]
  43. Li J. Z.; Bing Luo, C.; Liang Wang, H.; Sun, J.; Qian Yang, Q.; Lang Zhou, Y. Metformin suppressed tendon injury-induced adhesion via hydrogel-nanoparticle sustained-release system. Int. J. Pharm. 2023 642 123190 10.1016/j.ijpharm.2023.123190 37391109
    [Google Scholar]
  44. Liao M. Jian X. Zhao Y. Fu X. Wan M. Zheng W. Dong X. Zhou W. Zhao H. “Sandwich-like” structure electrostatic spun micro/nanofiber polylactic acid-polyvinyl alcohol-polylactic acid film dressing with metformin hydrochloride and puerarin for enhanced diabetic wound healing. Int. J. Biol. Macromol. 2023 253 Pt 6 127223 10.1016/j.ijbiomac.2023.127223 37797847
    [Google Scholar]
  45. Chen S.H. Kuo H.J. Chou P.Y. Tsai C.H. Chen S.H. Yao Y.C. Liu S.J. Engineered, radially aligned, gradient-metformin-eluting nanofiber dressings accelerate burn-wound healing. Int. J. Nanomedicine 2024 19 11463 11477 10.2147/IJN.S492244 39530106
    [Google Scholar]
  46. Chogan F. Mirmajidi T. Rezayan A.H. Sharifi A.M. Ghahary A. Nourmohammadi J. Kamali A. Rahaie M. Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing. Acta Biomater. 2020 113 144 163 10.1016/j.actbio.2020.06.031 32590170
    [Google Scholar]
  47. Asadi N. Pazoki-Toroudi H. Del Bakhshayesh A.R. Akbarzadeh A. Davaran S. Annabi N. Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels. Int. J. Biol. Macromol. 2021 170 728 750 10.1016/j.ijbiomac.2020.12.202 33387543
    [Google Scholar]
  48. Zhao X. Pei D. Yang Y. Xu K. Yu J. Zhang Y. Zhang Q. He G. Zhang Y. Li A. Cheng Y. Chen X. Green tea derivative driven smart hydrogels with desired functions for chronic diabetic wound treatment. Adv. Funct. Mater. 2021 31 18 2009442 10.1002/adfm.202009442
    [Google Scholar]
  49. Lin Y. Zhang Y. Cai X. He H. Yang C. Ban J. Guo B. Design and self-assembly of peptide-copolymer conjugates into nanoparticle hydrogel for wound healing in diabetes. Int. J. Nanomedicine 2024 19 2487 2506 10.2147/IJN.S452915 38486937
    [Google Scholar]
  50. Xia H. Dong Z. Tang Q. Ding R. Bai Y. Zhou K. Wu L. Hao L. He Y. Yang J. Mao H. Gu Z. Glycopeptide‐based multifunctional hydrogels promote diabetic wound healing through ph regulation of microenvironment. Adv. Funct. Mater. 2023 33 29 2215116 [-, n/a. 10.1002/adfm.202215116
    [Google Scholar]
  51. Mohaghegh H. Assadi Z. Derakhshan A. Masaeli E. Accelerating full-thickness wound healing with bacterial cellulose-based multilayer composites. J. Pharm. Sci. 2024 113 3 754 763 10.1016/j.xphs.2023.09.018 37748707
    [Google Scholar]
  52. Ghobril C. Grinstaff M.W. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: A tutorial. Chem. Soc. Rev. 2015 44 7 1820 1835 10.1039/C4CS00332B 25649260
    [Google Scholar]
  53. Yuan Y. Shen S. Fan D. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: Shape adaptability, injectable self-healing property and enhanced adhesion. Biomaterials 2021 276 120838 10.1016/j.biomaterials.2021.120838 34274780
    [Google Scholar]
  54. Basak S. Singhal R.S. Inclusion of konjac glucomannan in pea protein hydrogels improved the rheological and in vitro release properties of the composite hydrogels. Int. J. Biol. Macromol. 2024 257 Pt 2 128689 10.1016/j.ijbiomac.2023.128689 38092100
    [Google Scholar]
  55. Wang J. Liu C. Shuai Y. Cui X. Nie L. Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids Surf. B Biointerfaces 2014 113 223 229 10.1016/j.colsurfb.2013.09.009 24096158
    [Google Scholar]
  56. Ullah I. Farooq A.S. Naz I. Ahmad W. Ullah H. Sehar S. Nawaz A. Fabrication of polymeric hydrogels containing esomeprazole for oral delivery: In vitro and in vivo pharmacokinetic characterization. Polymers 2023 15 7 1798 10.3390/polym15071798 37050412
    [Google Scholar]
  57. Kusjuriansah K. Rodhiyah M. Syifa N.A. Luthfianti H.R. Waresindo W.X. Hapidin D.A. Suciati T. Edikresnha D. Khairurrijal K. Composite hydrogel of poly(vinyl alcohol) loaded by Citrus hystrix leaf extract, chitosan, and sodium alginate with in vitro antibacterial and release test ACS Omega 2024 9 (11) acsomega.3c10143 10.1021/acsomega.3c10143 38524413
    [Google Scholar]
  58. Wang F. Ma R. Zhu J. Zhan J. Li J. Tian Y. Physicochemical properties, in vitro digestibility, and pH-dependent release behavior of starch–steviol glycoside composite hydrogels. Food Chem. 2024 434 137420 10.1016/j.foodchem.2023.137420 37696154
    [Google Scholar]
  59. Shao Z. Yin T. Jiang J. He Y. Xiang T. Zhou S. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioact. Mater. 2023 20 561 573 10.1016/j.bioactmat.2022.06.018 35846841
    [Google Scholar]
  60. Xu R. Xia H. He W. Li Z. Zhao J. Liu B. Wang Y. Lei Q. Kong Y. Bai Y. Yao Z. Yan R. Li H. Zhan R. Yang S. Luo G. Wu J. Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci. Rep. 2016 6 1 24596 10.1038/srep24596 27086569
    [Google Scholar]
  61. Chopra H. Bibi S. Kumar S. Khan M.S. Kumar P. Singh I. Preparation and evaluation of chitosan/PVA based hydrogel films loaded with honey for wound healing application. Gels 2022 8 2 111 10.3390/gels8020111 35200493
    [Google Scholar]
  62. Zhang H. Gao X. Dai W.Q. Cui N. Liu J.Q. Wang M.G. Zhou Y.F. Fang L.X. Sun J. Jiang G.B. Liao X.P. Lutein-loaded multifunctional hydrogel dressing based on carboxymethyl chitosan for chronic wound healing. Int. J. Biol. Macromol. 2025 300 140219 10.1016/j.ijbiomac.2025.140219 39855504
    [Google Scholar]
  63. Wang Y. Xiao D. Yu H. Ke R. Shi S. Tang Y. Zhong Y. Zhang L. Sui X. Wang B. Feng X. Xu H. Mao Z. Asymmetric composite wound dressing with hydrophobic flexible bandage and tissue-adhesive hydrogel for joints skin wound healing. Compos., Part B Eng. 2022 235 109762 10.1016/j.compositesb.2022.109762
    [Google Scholar]
  64. Zhang L. Luo B. An Z. Zheng P. Liu Y. Zhao H. Zhang Z. Gao T. Cao Y. Zhang Y. Pei R. MMP-responsive nanoparticle-loaded, injectable, adhesive, self-healing hydrogel wound dressing based on dynamic covalent bonds. Biomacromolecules 2023 24 12 5769 5779 10.1021/acs.biomac.3c00773 37950669
    [Google Scholar]
  65. Chester S.A. Gel mechanics: A thermo-mechanically coupled theory for fluid permeation in elastomeric materials. Procedia IUTAM 2015 12 10 19 10.1016/j.piutam.2014.12.003
    [Google Scholar]
  66. Zhou W. Duan Z. Zhao J. Fu R. Zhu C. Fan D. Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing. Bioact. Mater. 2022 17 1 17 10.1016/j.bioactmat.2022.01.004 35386439
    [Google Scholar]
  67. Yang H. Lv D. Qu S. Xu H. Li S. Wang Z. Cao X. Rong Y. Li X. Wu H. Chen Y. Zhu J. Tang B. Hu Z. A ROS‐responsive lipid nanoparticles release multifunctional hydrogel based on microenvironment regulation promotes infected diabetic wound healing. Adv. Sci. 2024 11 43 2403219 10.1002/advs.202403219 39308241
    [Google Scholar]
  68. Maharjan R.S. Singh A.V. Hanif J. Rosenkranz D. Haidar R. Shelar A. Singh S.P. Dey A. Patil R. Zamboni P. Laux P. Luch A. Investigation of the associations between a nanomaterial’s microrheology and toxicology. ACS Omega 2022 7 16 13985 13997 10.1021/acsomega.2c00472 35559161
    [Google Scholar]
  69. Liu N. Zhu S. Deng Y. Xie M. Zhao M. Sun T. Yu C. Zhong Y. Guo R. Cheng K. Chang D. Zhu P. Construction of multifunctional hydrogel with metal-polyphenol capsules for infected full-thickness skin wound healing. Bioact. Mater. 2023 24 69 80 10.1016/j.bioactmat.2022.12.009 36582352
    [Google Scholar]
  70. Vigata M. Meinert C. Pahoff S. Bock N. Hutmacher D.W. Gelatin methacryloyl hydrogels control the localized delivery of albumin-bound paclitaxel. Polymers 2020 12 2 501 10.3390/polym12020501 32102478
    [Google Scholar]
  71. Zhu S. Zhao B. Li M. Wang H. Zhu J. Li Q. Gao H. Feng Q. Cao X. Microenvironment responsive nanocomposite hydrogel with NIR photothermal therapy, vascularization and anti-inflammation for diabetic infected wound healing. Bioact. Mater. 2023 26 306 320 10.1016/j.bioactmat.2023.03.005 36950149
    [Google Scholar]
  72. Li J. Zhang T. Pan M. Xue F. Lv F. Ke Q. Xu H. Nanofiber/hydrogel core–shell scaffolds with three-dimensional multilayer patterned structure for accelerating diabetic wound healing. J. Nanobiotechnology 2022 20 1 28 10.1186/s12951‑021‑01208‑5 34998407
    [Google Scholar]
  73. Johnson K.E. Wilgus T.A. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv. Wound Care 2014 3 10 647 661 10.1089/wound.2013.0517 25302139
    [Google Scholar]
  74. Sun Z. Xiong H. Lou T. Liu W. Xu Y. Yu S. Wang H. Liu W. Yang L. Zhou C. Fan C. Multifunctional extracellular matrix hydrogel with self-healing properties and promoting angiogenesis as an immunoregulation platform for diabetic wound healing. Gels 2023 9 5 381 10.3390/gels9050381 37232972
    [Google Scholar]
  75. Apte R.S. Chen D.S. Ferrara N. VEGF in signaling and disease: Beyond discovery and development. Cell 2019 176 6 1248 1264 10.1016/j.cell.2019.01.021 30849371
    [Google Scholar]
  76. Wang Y. Wu Y. Long L. Yang L. Fu D. Hu C. Kong Q. Wang Y. Inflammation-responsive drug-loaded hydrogels with sequential hemostasis, antibacterial, and anti-inflammatory behavior for chronically infected diabetic wound treatment. ACS Appl. Mater. Interfaces 2021 13 28 33584 33599 10.1021/acsami.1c09889 34240605
    [Google Scholar]
  77. Nigrovic P.A. Lee P.Y. Hoffman H.M. Monogenic autoinflammatory disorders: Conceptual overview, phenotype, and clinical approach. J. Allergy Clin. Immunol. 2020 146 5 925 937 10.1016/j.jaci.2020.08.017 33160483
    [Google Scholar]
  78. Zhao Y.Z. Du C.C. Xuan Y. Huang D. Qi B. Shi Y. Shen X. Zhang Y. Fu Y. Chen Y. Kou L. Yao Q. Bilirubin/morin self-assembled nanoparticle-engulfed collagen/polyvinyl alcohol hydrogel accelerates chronic diabetic wound healing by modulating inflammation and ameliorating oxidative stress. Int. J. Biol. Macromol. 2024 261 Pt 1 129704 10.1016/j.ijbiomac.2024.129704 38272431
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018384803250713182036
Loading
/content/journals/cdd/10.2174/0115672018384803250713182036
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test