Skip to content
2000
image of Silver Nanoparticle-Infused Aloe Polysaccharides/Polyvinyl Alcohol/Sodium Alginate Nanofiber Sheet for Enhanced Burn Wound Healing

Abstract

Introduction

Burn wounds are painful injuries that demand immediate and effective management. Conventional wound care solutions often have limitations, such as discomfort during application or removal and potential damage to healing tissue. Therefore, developing novel wound dressings that support biological processes and promote wound healing is highly beneficial. Electrospun nanofibers have emerged as a promising platform for the development of biomedical wound dressings due to their unique structural and functional properties. This study evaluates the burn wound healing potential of electrospun nanofibers composed of aloe polysaccharides, sodium alginate, and Polyvinyl Alcohol (PVA), impregnated with Silver Nanoparticles (AgNPs).

Method

AgNPs were synthesized using a green approach, employing as a reducing agent. Characterization of AgNPs was performed using UV-vis spectroscopy, FTIR, zeta potential analysis, and TEM. Aloe polysaccharides were extracted using ultrasonication and characterized FTIR, XRD, and DSC. The extracted polysaccharides were then blended with PVA and sodium alginate to fabricate electrospun nanofiber sheets, into which the synthesized AgNPs were incorporated and analyzed for antibacterial, angiogenesis, and studies.

Results

AgNPs exhibited spherical morphology with sizes ranging from 20 to 27 nm under TEM. Electrospun nanofiber sheet displayed a uniform structure with an average fiber diameter of 129 nm, as confirmed by SEM analysis. A sustained release of silver ions (78.98 ± 0.61% over 48 hours) was observed. The nanofibers exhibited strong antibacterial activity against and , promoted angiogenesis, and significantly enhanced wound healing in a burn wound model.

Discussion

AgNPs impregnated nanofiber sheet exhibited superior wound healing, angiogenesis, and antibacterial properties ideal for wound healing applications. The nanofiber sheets mimicked the extracellular matrix and supported angiogenesis. Enhanced wound closure studies confirmed the therapeutic potential of the nanofibers.

Conclusion

AgNPs-impregnated nanofiber sheets offer antibacterial activity and support angiogenesis, suggesting their potential as a multifunctional wound dressing for effective burn treatment.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018381155250805060608
2025-08-19
2025-10-25
Loading full text...

Full text loading...

References

  1. Wang Y. Beekman J. Hew J. Jackson S. Issler-Fisher A.C. Parungao R. Lajevardi S.S. Li Z. Maitz P.K.M. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Adv. Drug Deliv. Rev. 2018 123 3 17 10.1016/j.addr.2017.09.018 28941987
    [Google Scholar]
  2. Evers L.H. Bhavsar D. Mailänder P. The biology of burn injury. Exp. Dermatol. 2010 19 9 777 783 10.1111/j.1600‑0625.2010.01105.x 20629737
    [Google Scholar]
  3. Warby R. Maani C.V. Burn classification. StatPearls. Treasure Island (FL) StatPearls Publishing 2023
    [Google Scholar]
  4. Brusselaers N. Monstrey S. Vogelaers D. Hoste E. Blot S. Severe burn injury in europe: A systematic review of the incidence, etiology, morbidity, and mortality. Crit. Care 2010 14 5 R188 10.1186/cc9300 20958968
    [Google Scholar]
  5. Boateng J. Catanzano O. Advanced therapeutic dressings for effective wound healing—a review. J. Pharm. Sci. 2015 104 11 3653 3680 10.1002/jps.24610 26308473
    [Google Scholar]
  6. Chen K. Wang F. Liu S. Wu X. Xu L. Zhang D. In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. Int. J. Biol. Macromol. 2020 148 501 509 10.1016/j.ijbiomac.2020.01.156 31958554
    [Google Scholar]
  7. Dong R. Guo B. Smart wound dressings for wound healing. Nano Today 2021 41 101290 10.1016/j.nantod.2021.101290
    [Google Scholar]
  8. Shi C. Wang C. Liu H. Li Q. Li R. Zhang Y. Liu Y. Shao Y. Wang J. Selection of appropriate wound dressing for various wounds. Front. Bioeng. Biotechnol. 2020 8 182 10.3389/fbioe.2020.00182 32266224
    [Google Scholar]
  9. Zhang X. Wang Y. Gao Z. Mao X. Cheng J. Huang L. Tang J. Advances in wound dressing based on electrospinning nanofibers. J. Appl. Polym. Sci. 2024 141 1 54746 10.1002/app.54746
    [Google Scholar]
  10. Kulkarni D. Giram P. Mahore J. Kapare H. Panzade P. Electrospun nanofibers: A promising paradigm for biomedical applications. Int. J. Polym. Mater. 2024 1 21
    [Google Scholar]
  11. Tan G. Wang L. Pan W. Chen K. Polysaccharide electrospun nanofibers for wound healing applications. Int. J. Nanomedicine 2022 17 3913 3931 10.2147/IJN.S371900 36097445
    [Google Scholar]
  12. Giram P.S. Shitole A. Nande S.S. Sharma N. Garnaik B. Fast dissolving moxifloxacin hydrochloride antibiotic drug from electrospun Eudragit L-100 nonwoven nanofibrous Mats. Mater. Sci. Eng. C 2018 92 526 539 10.1016/j.msec.2018.06.031 30184779
    [Google Scholar]
  13. Adamu B.F. Gao J. Jhatial A.K. Kumelachew D.M. A review of medicinal plant-based bioactive electrospun nano fibrous wound dressings. Mater. Des. 2021 209 109942 10.1016/j.matdes.2021.109942
    [Google Scholar]
  14. Patole V. Bhosale P. Ingavle G. Behere I. Vyawahare N. Ottoor D. Sanap A. Bhonde R. Kheur S. In vitro and in vivo assessment of gallic acid-chitosan/polycaprolactone conjugate electrospun nanofibers for wound healing. J. Drug Deliv. Sci. Technol. 2024 95 105569 10.1016/j.jddst.2024.105569
    [Google Scholar]
  15. Massoud D. Alrashdi B.M. Fouda M.M.A. El-kott A. Soliman S.A. Abd-Elhafeez H.H. Aloe vera and wound healing: A brief review. Braz. J. Pharm. Sci. 2022 58 20837 10.1590/s2175‑97902022e20837
    [Google Scholar]
  16. Boudreau M.D. Beland F.A. An evaluation of the biological and toxicological properties of Aloe barbadensis (miller), Aloe vera. J. Environ. Sci. Health. Part C Environ. Carcinog. Ecotoxicol. Rev. 2006 24 1 103 154 10.1080/10590500600614303 16690538
    [Google Scholar]
  17. Xing W. Guo W. Zou C.H. Fu T.T. Li X.Y. Zhu M. Qi J.H. Song J. Dong C.H. Li Z. Xiao Y. Yuan P.S. Huang H. Xu X. Acemannan accelerates cell proliferation and skin wound healing through AKT/mTOR signaling pathway. J. Dermatol. Sci. 2015 79 2 101 109 10.1016/j.jdermsci.2015.03.016 26049685
    [Google Scholar]
  18. Jannesari M. Varshosaz J. Morshed M. Zamani M. Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int. J. Nanomedicine 2011 6 993 1003 21720511
    [Google Scholar]
  19. Jin S.G. Production and application of biomaterials based on polyvinyl alcohol (PVA) as wound dressing. Chem. Asian J. 2022 17 21 202200595 10.1002/asia.202200595 36066570
    [Google Scholar]
  20. Permatasari A.A.A.P. Rosiana W. Wiradana P.A. Lestari D. Widiastuti N.K. Kurniawan S.B. Widhiantara G. Extraction and characterization of sodium alginate from three brown algae collected from Sanur Coastal Waters, Bali as biopolymer agent. Biodiversitas 2022 23 3 1655 1663 10.13057/biodiv/d230357
    [Google Scholar]
  21. Atiyeh B.S. Costagliola M. Hayek S.N. Dibo S.A. Effect of silver on burn wound infection control and healing: Review of the literature. Burns 2007 33 2 139 148
    [Google Scholar]
  22. Ge L. Li Q. Wang M. Ouyang J. Li X. Xing M.M. Nanosilver particles in medical applications: Synthesis, performance, and toxicity. Int. J. Nanomedicine 2014 9 2399 2407 24876773
    [Google Scholar]
  23. More P.R. Pandit S. Filippis A.D. Franci G. Mijakovic I. Galdiero M. Silver nanoparticles: Bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms 2023 11 2 369 10.3390/microorganisms11020369 36838334
    [Google Scholar]
  24. Seil J.T. Webster T.J. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomedicine 2012 7 2767 2781 22745541
    [Google Scholar]
  25. Chand D.T. Anu K. Majumdar R.S. Vinod, Yadav Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016 7 1831 10.3389/fmicb.2016.01831
    [Google Scholar]
  26. Bozkaya O. Arat E. Gün Gök Z. Yiğitoğlu M. Vargel İ. Production and characterization of hybrid nanofiber wound dressing containing Centella asiatica coated silver nanoparticles by mutual electrospinning method. Eur. Polym. J. 2022 166 111023 10.1016/j.eurpolymj.2022.111023
    [Google Scholar]
  27. Aghamohamadi N. Sanjani N.S. Majidi R.F. Nasrollahi S.A. Preparation and characterization of Aloe vera acetate and electrospinning fibers as promising antibacterial properties materials. Mater. Sci. Eng. C 2019 94 445 452 10.1016/j.msec.2018.09.058 30423728
    [Google Scholar]
  28. Ali A. Mohebbullah M. Shahid M.A. Alam S. Uddin M.N. Miah M.S. Jamal M.S.I. Khan M.S. PVA- Nigella sativa nanofibrous mat: Antibacterial efficacy and wound healing potentiality. J. Text. Inst. 2021 112 10 1611 1621 10.1080/00405000.2020.1831168
    [Google Scholar]
  29. Qin M. In situ electrospinning wound healing films composed of zein and clove essential oil. Macromol. Mater. Eng. 2020 305 3 1900790 10.1002/mame.201900790
    [Google Scholar]
  30. Arshad H. Saleem M. Pasha U. Sadaf S. Synthesis of Aloe vera-conjugated silver nanoparticles for use against multidrug-resistant microorganisms. Electron. J. Biotechnol. 2022 55 55 64 10.1016/j.ejbt.2021.11.003
    [Google Scholar]
  31. Liu C. Du P. Guo Y. Xie Y. Yu H. Yao W. Cheng Y. Qian H. Extraction, characterization of aloe polysaccharides and the in-depth analysis of its prebiotic effects on mice gut microbiota. Carbohydr. Polym. 2021 261 117874 10.1016/j.carbpol.2021.117874 33766361
    [Google Scholar]
  32. Yin J. Xu L. Batch preparation of electrospun polycaprolactone/chitosan/aloe vera blended nanofiber membranes for novel wound dressing. Int. J. Biol. Macromol. 2020 160 352 363 10.1016/j.ijbiomac.2020.05.211 32470578
    [Google Scholar]
  33. Zhang Y.Z. Venugopal J. Huang Z.M. Lim C.T. Ramakrishna S. Crosslinking of the electrospun gelatin nanofibers. Polymer 2006 47 8 2911 2917 10.1016/j.polymer.2006.02.046
    [Google Scholar]
  34. Wei X. Cai J. Lin S. Li F. Tian F. Controlled release of monodisperse silver nanoparticles via in situ cross-linked polyvinyl alcohol as benign and antibacterial electrospun nanofibers. Colloids Surf. B Biointerfaces 2021 197 111370 10.1016/j.colsurfb.2020.111370 33049661
    [Google Scholar]
  35. Amini E. Azadfallah M. Layeghi M. Talaei-Hassanloui R. Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose 2016 23 1 557 570 10.1007/s10570‑015‑0846‑1
    [Google Scholar]
  36. Phuc L.D. Thien, Vo Hoang Analysis of silver nanoparticles by flame atomic absorption spectrometry. Viet J. Chem. 2023 61 32 109 117
    [Google Scholar]
  37. Khunová V. Kováčová M. Olejniková P. Ondreáš F. Špitalský Z. Ghosal K. Berkeš D. Antibacterial electrospun polycaprolactone nanofibers reinforced by halloysite nanotubes for tissue engineering. Polymers 2022 14 4 746 10.3390/polym14040746 35215658
    [Google Scholar]
  38. Gholap A. Pardeshi S. Giram P. Preparation, antibacterial and antiviral activity measurements and detection methods. Antibacterial and Antiviral Functional Materials American Chemical Society 2023 1 33 64 10.1021/bk‑2023‑1458.ch002
    [Google Scholar]
  39. Shekatkar M.R. Kheur S.M. Kharat A.H. Deshpande S.S. Sanap A.P. Kheur M.G. Bhonde R.R. Assessment of angiogenic potential of mesenchymal stem cells derived conditioned medium from various oral sources. J. Clin. Transl. Res. 2022 8 4 323 338 36090765
    [Google Scholar]
  40. Bayat S. Amiri N. Pishavar E. Kalalinia F. Movaffagh J. Hashemi M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life. Sci. 2019 229 57 66 10.1016/j.lfs.2019.05.028 31085247
    [Google Scholar]
  41. Ashraf J.M. Ansari M.A. Khan H.M. Alzohairy M.A. Choi I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci. Rep. 2016 6 1 20414 10.1038/srep20414 26829907
    [Google Scholar]
  42. Łukowiec D. Radoń A. Self-organization of silver nanoparticles during synthesis of Ag–Au nanoalloy by UV irradiation method. J. Mater. Sci. 2020 55 7 2796 2801 10.1007/s10853‑019‑04136‑w
    [Google Scholar]
  43. Nayak S. Ghugare P. Vaidhun B. Green-synthesis of silver nanoparticles by hygrophila auriculata extract: Innovative technique and comprehensive evaluation. Indian J. Pharm. Educ. Res. 2021 55 2s s510 s517 10.5530/ijper.55.2s.122
    [Google Scholar]
  44. Pereira R. Tojeira A. Vaz D.C. Mendes A. Bártolo P. Preparation and characterization of films based on alginate and aloe vera. IJPAC Int. J. Polym. Anal. Charact. 2011 16 7 449 464 10.1080/1023666X.2011.599923
    [Google Scholar]
  45. Tang C.M. Tian Y.H. Hsu S.H. Poly (vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: Mineralization behavior and characterization. Materials 2015 8 8 4895 4911 10.3390/ma8084895 28793480
    [Google Scholar]
  46. Kharazmi A. Faraji N. Mat Hussin R. Saion E. Yunus W.M.M. Behzad K. Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach. Beilstein J. Nanotechnol. 2015 6 1 529 536 10.3762/bjnano.6.55 25821695
    [Google Scholar]
  47. Zhang W. Zhao L. Ma J. Wang X. Wang Y. Ran F. Wang Y. Ma H. Yu S. Electrospinning of fucoidan/chitosan/poly(vinyl alcohol) scaffolds for vascular tissue engineering. Fibers Polym. 2017 18 5 922 932 10.1007/s12221‑017‑1197‑3
    [Google Scholar]
  48. Garcia-Orue I. Gainza G. Gutierrez F.B. Aguirre J.J. Evora C. Pedraz J.L. Hernandez R.M. Delgado A. Igartua M. Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. Int. J. Pharm. 2017 523 2 556 566 10.1016/j.ijpharm.2016.11.006 27825864
    [Google Scholar]
  49. Martínez-Hernández A. Velasco-Santos C. Castano V. Carbon nanotubes composites: Processing, grafting and mechanical and thermal properties. Curr. Nanosci. 2010 6 1 12 39 10.2174/157341310790226270
    [Google Scholar]
  50. Xue J. Wu T. Dai Y. Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019 119 8 5298 5415 10.1021/acs.chemrev.8b00593 30916938
    [Google Scholar]
  51. Baykara D. Pilavci E. Cesur S. Ilhan E. Ulag S. Sengor M. Kijeńska-Gawrońska E. Gunduz O. Controlled release of gentamicin from electrospun poly(vinyl alcohol)/gelatin nanofibers: The effect of crosslinking time using glutaraldehyde vapor. ChemistrySelect 2023 8 5 202203681 10.1002/slct.202203681
    [Google Scholar]
  52. Mokhena T.C. Luyt A.S. Electrospun alginate nanofibres impregnated with silver nanoparticles: Preparation, morphology and antibacterial properties. Carbohydr. Polym. 2017 165 304 312 10.1016/j.carbpol.2017.02.068 28363554
    [Google Scholar]
  53. Okur M.E. Karantas I.D. Şenyiğit Z. Üstündağ Okur N. Siafaka P.I. Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J. Pharm. Sci. 2020 15 6 661 684 10.1016/j.ajps.2019.11.008 33363624
    [Google Scholar]
  54. Jeschke M.G. van Baar M.E. Choudhry M.A. Chung K.K. Gibran N.S. Logsetty S. Burn injury. Nat. Rev. Dis. Primers 2020 6 1 11 10.1038/s41572‑020‑0145‑5 32054846
    [Google Scholar]
  55. Junker J.P.E. Kamel R.A. Caterson E.J. Eriksson E. Clinical impact upon wound healing and inflammation in moist, wet, and dry environments. Adv. Wound. Care 2013 2 7 348 356 10.1089/wound.2012.0412 24587972
    [Google Scholar]
  56. Asy-Syifa N. Waresindo W.X. Edikresnha D. Suciati T. Khairurrijal K. The study of the swelling degree of the PVA hydrogel with varying concentrations of PVA. J. Phys. Conf. Ser. 2022 2243 1 012053 10.1088/1742‑6596/2243/1/012053
    [Google Scholar]
  57. Cadinoiu A.N. Rata D.M. Daraba O.M. Ichim D.L. Popescu I. Solcan C. Solcan G. Silver nanoparticles biocomposite films with antimicrobial activity: In vitro and in vivo tests. Int. J. Mol. Sci. 2022 23 18 10671 10.3390/ijms231810671 36142584
    [Google Scholar]
  58. Rath G. Hussain T. Chauhan G. Garg T. Goyal A.K. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J. Drug Target. 2016 24 6 520 529 10.3109/1061186X.2015.1095922 26487102
    [Google Scholar]
  59. Nalwade A.R. Jadhav A.A. Biosynthesis of silver nanoparticles using leaf extract of Daturaalba Nees. and evaluation of their antibacterial activity. Arch. Appl. Sci. Res. 2013 5 45 49
    [Google Scholar]
  60. Cheng X. Yan Y. Chen J. Ma Z. Yang R. Wang G. Chuai M. Ka Ho Lee K. Yang X. Dexamethasone exposure accelerates endochondral ossification of chick embryos via angiogenesis. Toxicol. Sci. 2016 149 1 167 177 10.1093/toxsci/kfv227 26468166
    [Google Scholar]
  61. Hormozi M. Assaei R. Boroujeni M.B. The effect of aloe vera on the expression of wound healing factors (TGFβ1 and bFGF) in mouse embryonic fibroblast cell: In vitro study. Biomed. Pharmacother. 2017 88 610 616 10.1016/j.biopha.2017.01.095 28142117
    [Google Scholar]
  62. Oyedepo T.A. Palai S. Herbal remedies, toxicity, and regulations. Preparation of Phytopharmaceuticals for the Management of Disorders. Academic Press 2021 89 127 10.1016/B978‑0‑12‑820284‑5.00014‑9
    [Google Scholar]
  63. Hao M. Ding C. Sun S. Peng X. Liu W. Chitosan/sodium alginate/velvet antler blood peptides hydrogel promotes diabetic wound healing via regulating angiogenesis, inflammatory response and skin flora. J. Inflamm. Res. 2022 15 4921 4938 10.2147/JIR.S376692 36051089
    [Google Scholar]
  64. Abasalizadeh F. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J. Biol. Eng. 2020 14 1 22
    [Google Scholar]
  65. Xu X. Wang S. Wu H. Liu Y. Xu F. Zhao J. A multimodal antimicrobial platform based on MXene for treatment of wound infection. Colloids Surf. B Biointerfaces 2021 207 111979 10.1016/j.colsurfb.2021.111979 34303995
    [Google Scholar]
  66. Paladini F. Pollini M. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends. Materials 2019 12 16 2540 10.3390/ma12162540 31404974
    [Google Scholar]
  67. Nandhini J. Karthikeyan E. Elizabeth Rani E. Karthikha V.S. Sakthi Sanjana D. Jeevitha H. Rajeshkumar S. Venugopal V. Priyadharshan A. Advancing engineered approaches for sustainable wound regeneration and repair: Harnessing the potential of green synthesized silver nanoparticles. Engineered Regeneration 2024 5 3 306 325 10.1016/j.engreg.2024.06.004
    [Google Scholar]
  68. K Karunakar K. Cheriyan B.V. R K. M G. B A. Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles. Biotechnology Notes 2024 5 64 79 10.1016/j.biotno.2024.05.002 39416696
    [Google Scholar]
  69. Jiang Z. Zheng Z. Yu S. Gao Y. Ma J. Huang L. Yang L. Nanofiber scaffolds as drug delivery systems promoting wound healing. Pharmaceutics 2023 15 7 1829 10.3390/pharmaceutics15071829 37514015
    [Google Scholar]
  70. Teplicki E. Ma Q. Castillo D.E. Zarei M. Hustad A.P. Chen J. Li J. The effects of aloe vera on wound healing in cell proliferation, migration, and viability. Wounds 2018 30 9 263 268 30256753
    [Google Scholar]
  71. Abourehab M.A.S. Rajendran R.R. Singh A. Pramanik S. Shrivastav P. Ansari M.J. Manne R. Amaral L.S. Deepak A. Alginate as a promising biopolymer in drug delivery and wound healing: A review of the state-of-the-art. Int. J. Mol. Sci. 2022 23 16 9035 10.3390/ijms23169035 36012297
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018381155250805060608
Loading
/content/journals/cdd/10.2174/0115672018381155250805060608
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test