Skip to content
2000
image of Advancements in Nanocarrier Production Techniques and Methods for Enhanced Targeted Delivery of Drug: A Comprehensive Review

Abstract

Nanotechnology has transformed drug delivery systems, leading to the creation of various nanocarriers that offer significant advantages over traditional methods. This review explores key techniques and methods for producing nanocarriers like liposomes, niosomes, dendrimers, nano-capsules, carbon nanotubes, polymeric micelles, and solid lipid nanoparticles. Operating within the nanoscale range (1-100 nm), these nanocarriers enhance drug efficacy, reduce side effects, and improve bioavailability. Liposomes are generated using methods, such as the Bangham procedure, solvent injection, and microfluidic channels. Nanocarriers have become fundamental to sophisticated drug delivery systems, providing improved precision, regulated release, and targeted therapeutic administration. Innovative methods, such as microfluidics and nanoprecipitation, have enhanced the scalability and consistency of nanocarriers, while progress in surface engineering, including ligand conjugation and stimuli-responsive coatings, facilitates improved targeting and controlled drug release. The advancement of biocompatible and biodegradable nanomaterials, including polymeric nanoparticles, liposomes, and dendrimers, has broadened the clinical utility of nanocarriers, especially in oncology, neurology, and gene therapy. This review underscores the versatility and potential of these nanocarriers in advancing drug delivery, emphasizing their capacity for targeted, efficient, and controlled therapeutic interventions.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018379860250722161458
2025-07-30
2025-11-16
Loading full text...

Full text loading...

/deliver/fulltext/cdd/10.2174/0115672018379860250722161458/BMS-CDD-2024-HT50-6681-4.html?itemId=/content/journals/cdd/10.2174/0115672018379860250722161458&mimeType=html&fmt=ahah

References

  1. Chenthamara D. Subramaniam S. Ramakrishnan S.G. Krishnaswamy S. Essa M.M. Lin F.H. Qoronfleh M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 2019 23 1 20 10.1186/s40824‑019‑0166‑x 31832232
    [Google Scholar]
  2. Kumar A. Jayeoye T.J. Mohite P. Singh S. Rajput T. Munde S. Eze F.N. Chidrawar V.R. Puri A. Prajapati B.G. Parihar A. Sustainable and consumer-centric nanotechnology-based materials: An update on the multifaceted applications, risks and tremendous opportunities. Nano-Struct. Nano-Objects 2024 38 101148 10.1016/j.nanoso.2024.101148
    [Google Scholar]
  3. Granata G. Accardo P. Letizia Consoli G.M. Paradisi R. Geraci C. High vitamin E-loaded nanocapsules to fortify a fruit-based product. Food Biosci. 2025 64 105884 10.1016/j.fbio.2025.105884
    [Google Scholar]
  4. Flynn T. Wei C. The pathway to commercialization for nanomedicine. Biol. Med. 2005 1 47 51 10.1016/j.nano.2004.11.010 17292057
    [Google Scholar]
  5. Malhan A. Guleria M. Das U. Majee S.B. Singh S. Nagime P.V. Syukri D.M. Chidrawar V.R. Arania R. Shafi S. Navigating the future of infectious diseases management through carbon nanotubes: A review. Nano Life 2025 2530001 10.1142/S1793984425300018
    [Google Scholar]
  6. Dave J. Jani H. Patel Y. Mohite P. Puri A. Chidrawar V.R. Datta D. Bandi S.P. Ranch K. Singh S. Polyol-modified deformable liposomes fortified contact lenses for improved ocular permeability. Nanomedicine 2025 20 7 649 662 10.1080/17435889.2025.2463867 39963803
    [Google Scholar]
  7. Shah A. Aftab S. Nisar J. Ashiq M.N. Iftikhar F.J. Nanocarriers for targeted drug delivery. J. Drug Deliv. Sci. Technol. 2021 62 102426 10.1016/j.jddst.2021.102426
    [Google Scholar]
  8. Rout G.K. Shin H.S. Gouda S. Sahoo S. Das G. Fraceto L.F. Patra J.K. Patra J.K. Current advances in nanocarriers for biomedical research and their applications. Artif. Cells Nanomed Biotechnol. 2018 46 (sup2) 1053 1062 10.1080/21691401.2018.1478843 29879850
    [Google Scholar]
  9. Datta D. Sulthana S. Strauss J. Puri A. Priyanka Bandi S. Singh S. Reconnoitring signaling pathways and exploiting innovative approaches tailoring multifaceted therapies for skin cancer. Int. J. Pharm. 2024 665 124719 10.1016/j.ijpharm.2024.124719 39293575
    [Google Scholar]
  10. Matsumura Y. Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986 46 12 Pt 1 6387 6392 [PMID: 2946403
    [Google Scholar]
  11. Mishra A.P. Kumar R. Harilal S. Nigam M. Datta D. Singh S. Waranuch N. Chittasupho C. Demystifying the management of cancer through smart nano-biomedicine via regulation of reactive oxygen species. Naunyn Schmiedebergs Arch. Pharmacol. 2024 398 1 497 532 10.1007/s00210‑024‑03469‑x 39480523
    [Google Scholar]
  12. Bhattacharya S. Prajapati B.G. Singh S. A critical review on the dissemination of PH and stimuli-responsive polymeric nanoparticular systems to improve drug delivery in cancer therapy. Crit. Rev. Oncol. Hematol. 2023 185 103961 10.1016/j.critrevonc.2023.103961 36921781
    [Google Scholar]
  13. Hu X. Gao Z. Tan H. Zhang L. A pH-responsive multifunctional nanocarrier in the application of chemo-photodynamic therapy. J. Nanomater. 2019 2019 1 12 10.1155/2019/3898564
    [Google Scholar]
  14. Karimi M. Sahandi Zangabad P. Ghasemi A. Amiri M. Bahrami M. Malekzad H. Ghahramanzadeh Asl H. Mahdieh Z. Bozorgomid M. Ghasemi A. Rahmani Taji Boyuk M.R. Hamblin M.R. Temperature-responsive smart nanocarriers for delivery of therapeutic agents : Applications and recent advances. ACS Appl. Mater. Interfaces 2016 8 33 21107 21133 10.1021/acsami.6b00371 27349465
    [Google Scholar]
  15. Patel P. Garala K. Singh S. Prajapati B.G. Chittasupho C. Lipid-based nanoparticles in delivering bioactive compounds for improving therapeutic efficacy. Pharmaceuticals 2024 17 3 329 10.3390/ph17030329 38543115
    [Google Scholar]
  16. Majumder J. Taratula O. Minko T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev. 2019 144 57 77 10.1016/j.addr.2019.07.010 31400350
    [Google Scholar]
  17. Kolluru L. Atre P. Rizvi S. Characterization and applications of colloidal systems as versatile drug delivery carriers for parenteral formulations. Pharmaceuticals 2021 14 2 108 10.3390/ph14020108 33573103
    [Google Scholar]
  18. Vachhani S. Kleinstreuer C. Comparison of micron- and nano-particle transport in the human nasal cavity with a focus on the olfactory region. Comput. Biol. Med. 2021 128 104103 10.1016/j.compbiomed.2020.104103 33220592
    [Google Scholar]
  19. Tolentino S. Pereira M.N. Cunha-Filho M. Gratieri T. Gelfuso G.M. Targeted clindamycin delivery to pilosebaceous units by chitosan or hyaluronic acid nanoparticles for improved topical treatment of acne vulgaris. Carbohydr. Polym. 2021 253 117295 10.1016/j.carbpol.2020.117295 33278954
    [Google Scholar]
  20. Paiva-Santos A.C. Herdade A.M. Guerra C. Peixoto D. Pereira-Silva M. Zeinali M. Mascarenhas-Melo F. Paranhos A. Veiga F. Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int. J. Pharm. 2021 597 120311 10.1016/j.ijpharm.2021.120311 33539998
    [Google Scholar]
  21. Reboredo C. González-Navarro C.J. Martínez-Oharriz C. Martínez-López A.L. Irache J.M. Preparation and evaluation of PEG-coated zein nanoparticles for oral drug delivery purposes. Int. J. Pharm. 2021 597 120287 10.1016/j.ijpharm.2021.120287 33524523
    [Google Scholar]
  22. Yao W. Xu Z. Sun J. Luo J. Wei Y. Zou J. Deoxycholic acid-functionalised nanoparticles for oral delivery of rhein. Eur. J. Pharm. Sci. 2021 159 105713 10.1016/j.ejps.2021.105713 33453389
    [Google Scholar]
  23. Pontes J.F. Grenha A. Multifunctional nanocarriers for lung drug delivery. Nanomaterials 2020 10 2 183 10.3390/nano10020183 31973051
    [Google Scholar]
  24. Zeb A. Rana I. Choi H.I. Lee C.H. Baek S.W. Lim C.W. Khan N. Arif S.T. Sahar N. Alvi A.M. Shah F.A. Din F. Bae O.N. Park J.S. Kim J.K. Potential and applications of nanocarriers for efficient delivery of biopharmaceuticals. Pharmaceutics 2020 12 12 1184 10.3390/pharmaceutics12121184 33291312
    [Google Scholar]
  25. Nawaz M. Sliman Y. Ercan I. Lima-Tenório M.K. Tenório-Neto E.T. Kaewsaneha C. Elaissari A. Magnetic and ph-responsive magnetic nanocarriers. In:Stimuli responsive polymeric nanocarriers for drug delivery applications. Amsterdam, The Netherlands Elsevier 2019 37 85
    [Google Scholar]
  26. Bangham A.D. Glover J.C. Hollingshead S. Pethica B.A. The surface properties of some neoplastic cells. Biochem. J. 1962 84 3 513 517 10.1042/bj0840513 13864658
    [Google Scholar]
  27. Bangham A.D. Hill M.W. Miller N.G.A. Preparation and use of liposomes as models of biological membranes. In: Methods in membrane biology; Korn, E.D., Ed.; Springer: Boston, MA, USA 1974 1 68 10.1007/978‑1‑4615‑7422‑4_1
    [Google Scholar]
  28. Sackmann E. Physical basis of self-organization and function of membranes: Physics of vesicles. In:Handbook of biological physics. Lipowsky R. Sackmann E. Amsterdam, The Netherlands Elsevier 1995 Vol. 1 213 303
    [Google Scholar]
  29. Gutberlet T. Katsaras J. Lipid Bilayers: Structure and Interactions. Berlin, Heidelberg, NewYork Springer 2000
    [Google Scholar]
  30. Lombardo D. Kiselev M.A. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics 2022 14 3 543 10.3390/pharmaceutics14030543 35335920
    [Google Scholar]
  31. Trucillo P. Campardelli R. Reverchon E. Liposomes : From Bangham to supercritical fluids. Processes 2020 8 9 1022 10.3390/pr8091022
    [Google Scholar]
  32. Jiskoot W. Teerlink T. Beuvery E.C. Crommelin D.J.A. Preparation of liposomes via detergent removal from mixed micelles by dilution. Pharm. Weekbl. Sci. 1986 8 5 259 265 10.1007/BF01960070 3786108
    [Google Scholar]
  33. Singh S. Supaweera N. Nwabor O.F. Chaichompoo W. Suksamrarn A. Chittasupho C. Chunglok W. Poly (vinyl alcohol)-gelatin-sericin copolymerized film fortified with vesicle-entrapped demethoxycurcumin/bisdemethoxycurcumin for improved stability, antibacterial, anti-inflammatory, and skin tissue regeneration. Int. J. Biol. Macromol. 2024 258 Pt 2 129071 10.1016/j.ijbiomac.2023.129071 38159707
    [Google Scholar]
  34. Batzri S. Korn E.D. Single bilayer liposomes prepared without sonication. Biochim. Biophys. Acta 1973 298 4 1015 1019 10.1016/0005‑2736(73)90408‑2 4738145
    [Google Scholar]
  35. Mohite P. Puri A. Bharati D. Munde S. Malhan A. Guleria M. Datta D. Pawar A. Ranch K. Singh S. Kausar N. Demystifying the potential of polymeric lipids as substitute in regenerative applications: A review. Polym. Adv. Technol. 2025 36 2 e70096 10.1002/pat.70096
    [Google Scholar]
  36. Szoka F. Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA 1978 75 9 4194 4198 10.1073/pnas.75.9.4194 279908
    [Google Scholar]
  37. Jahn A. Vreeland W.N. DeVoe D.L. Locascio L.E. Gaitan M. Microfluidic directed formation of liposomes of controlled size. Langmuir 2007 23 11 6289 6293 10.1021/la070051a 17451256
    [Google Scholar]
  38. Carugo D. Bottaro E. Owen J. Stride E. Nastruzzi C. Liposome production by microfluidics: Potential and limiting factors. Sci. Rep. 2016 6 1 25876 10.1038/srep25876 27194474
    [Google Scholar]
  39. Mozafari M.R. Method for the preparation of micro-and nano-sized carrier systems for the encapsulation of bioactive substances. Patent US20100239521A1 2010
    [Google Scholar]
  40. Maheshwari S. Singh A. Singh S. Prajapati B. Kumar P. Lipid-based nanocarriers in management of cystic fibrosis: A pulmonary complication. Lipids in Pulmonary Drug Delivery. Academic Press 2025 435 448 10.1016/B978‑0‑443‑22374‑7.00020‑7
    [Google Scholar]
  41. Frederiksen L. Anton K. Barratt B.J. Van Hoogevest P. Leuenberger H. Use of supercritical carbon dioxide for preparation of pharmaceutical formulations. 3rd International Symposium on Supercritical Fluids, Tome Strasbourg, France 1994 vol. 3 235 240
    [Google Scholar]
  42. Frederiksen L. Anton K. van Hoogevest P. Keller H.R. Leuenberger H. Preparation of liposomes encapsulating water-soluble compounds using supercritical carbon dioxide. J. Pharm. Sci. 1997 86 8 921 928 10.1021/js960403q 9269870
    [Google Scholar]
  43. Lesoin L. Crampon C. Boutin O. Badens E. Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method. J. Supercrit. Fluids 2011 57 2 162 174 10.1016/j.supflu.2011.01.006
    [Google Scholar]
  44. Otake K. Imura T. Sakai H. Abe M. Development of a new preparation method of liposomes using supercritical carbon dioxide. Langmuir 2001 17 13 3898 3901 10.1021/la010122k
    [Google Scholar]
  45. Brandl M. Bachmann D. Drechsler M. Bauer K.H. Liposome preparation by a new high pressure homogenizer. Drug Dev. Ind. Pharm. 1990 16 14 2167 2191 10.3109/03639049009023648
    [Google Scholar]
  46. Barnadas-Rodríguez R. Sabés M. Factors involved in the production of liposomes with a high-pressure homogenizer. Int. J. Pharm. 2001 213 1-2 175 186 10.1016/S0378‑5173(00)00661‑X 11165105
    [Google Scholar]
  47. Massing U. Cicko S. Ziroli V. Dual asymmetric centrifugation (DAC)—A new technique for liposome preparation. J. Control. Release 2008 125 1 16 24 10.1016/j.jconrel.2007.09.010 18023907
    [Google Scholar]
  48. Li C. Deng Y. A novel method for the preparation of liposomes: Freeze drying of monophase solutions. J. Pharm. Sci. 2004 93 6 1403 1414 10.1002/jps.20055 15124200
    [Google Scholar]
  49. Jaafar-Maalej C. Charcosset C. Fessi H. A new method for liposome preparation using a membrane contactor. J. Liposome Res. 2011 21 3 213 220 10.3109/08982104.2010.517537 20860451
    [Google Scholar]
  50. Laouini A. Jaafar-Maalej C. Sfar S. Charcosset C. Fessi H. Liposome preparation using a hollow fiber membrane contactor—Application to spironolactone encapsulation. Int. J. Pharm. 2011 415 1-2 53 61 10.1016/j.ijpharm.2011.05.034 21641982
    [Google Scholar]
  51. Khan R. Irchhaiya R. Niosomes: A potential tool for novel drug delivery. J. Pharm. Investig. 2016 46 3 195 204 10.1007/s40005‑016‑0249‑9
    [Google Scholar]
  52. Das Ushasi Kapoor DeveshU. Singh Sudarshan Prajapati BhupendraG. Unveiling the potential of chitosan-coated lipid nanoparticles in drug delivery for management of critical illness: A review. Z. Naturforsch. C J. Biosci. 2024 79 5-6 107 124 10.1515/znc‑2023‑0181 38721838
    [Google Scholar]
  53. Mayer L.D. Bally M.B. Hope M.J. Cultis P.R. Transmembrane pH gradient drug uptake process. Biochim. Biophys. Acta 1985 816 294 302 10.1016/0005‑2736(85)90497‑3 3839135
    [Google Scholar]
  54. Ontong J.C. Singh S. Siriyong T. Voravuthikunchai S.P. Transferosomes stabilized hydrogel incorporated rhodomyrtone-rich extract from Rhodomyrtus tomentosa leaf fortified with phosphatidylcholine for the management of skin and soft-tissue infections. Biotechnol. Lett. 2024 46 1 127 142 10.1007/s10529‑023‑03452‑1 38150096
    [Google Scholar]
  55. Baillie A.J. Florence A.T. Hume L.R. Muirhead G.T. Rogerson A. The preparation and properties of niosomes—non-ionic surfactant vesicles. J. Pharm. Pharmacol. 1985 37 12 863 868 10.1111/j.2042‑7158.1985.tb04990.x 2868092
    [Google Scholar]
  56. Marianecci C. Di Marzio L. Rinaldi F. Celia C. Paolino D. Alhaique F. Esposito S. Carafa M. Niosomes from 80s to present: The state of the art. Adv. Colloid Interface Sci. 2014 205 187 206 10.1016/j.cis.2013.11.018 24369107
    [Google Scholar]
  57. Sathali A.A.H. Rajalakshmi G. Evaluation of transdermal targeted niosomal drug delivery of terbinafine hydrochloride. Int. J. Pharm. Tech. Res. 2010 2 2081 2089
    [Google Scholar]
  58. Bendas E.R. Abdullah H. El-Komy M.H.M. Kassem M.A.A. Hydroxychloroquine niosomes: A new trend in topical management of oral lichen planus. Int. J. Pharm. 2013 458 2 287 295 10.1016/j.ijpharm.2013.10.042 24184035
    [Google Scholar]
  59. Gyanendra S. Harinath D. Shailendra K.S. Shubhini A.S. Niosomal delivery of isoniazid-development and characterization. Trop. J. Pharm. Res. 2011 10 203 210
    [Google Scholar]
  60. Guinedi A.S. Mortada N.D. Mansour S. Hathout R.M. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int. J. Pharm. 2005 306 1-2 71 82 10.1016/j.ijpharm.2005.09.023 16263229
    [Google Scholar]
  61. Deamer D. Bangham A.D. Large volume liposomes by an ether vaporization method. Biochim. Biophys. Acta Biomembr. 1976 443 3 629 634 10.1016/0005‑2736(76)90483‑1
    [Google Scholar]
  62. Uchegbu I.F. Vyas S.P. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int. J. Pharm. 1998 172 1-2 33 70 10.1016/S0378‑5173(98)00169‑0
    [Google Scholar]
  63. Chauhan S. Luorence M.J. The preparation of polyoxyethylene containing non-ionic surfactant vesicles. J. Pharm. Pharmacol. 1989 41 6
    [Google Scholar]
  64. Khan D.H. Bashir S. Figueiredo P. Santos H.A. Khan M.I. Peltonen L. Process optimization of ecological probe sonication technique for production of rifampicin loaded niosomes. J. Drug Deliv. Sci. Technol. 2019 50 27 33 10.1016/j.jddst.2019.01.012
    [Google Scholar]
  65. Michael W. Gerhard W. Heinrich H. Klaush D. Liposome preparation by single-pass process. Patent 20100316696 A1 2010
    [Google Scholar]
  66. Obeid M.A. Elburi A. Young L.C. Mullen A.B. Tate R.J. Ferro V.A. Formulation of non-ionic surfactant vesicles (NISV) prepared by microfluidics for therapeutic delivery of siRNA into cancer cells. Mol. Pharm. 2017 14 7 2450 2458 10.1021/acs.molpharmaceut.7b00352 28570823
    [Google Scholar]
  67. Ag Seleci D. Seleci M. Walter J.G. Stahl F. Scheper T. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications. J. Nanomater. 2016 2016 1 13 10.1155/2016/7372306
    [Google Scholar]
  68. Santos A. Veiga F. Figueiras A. Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications. Materials 2019 13 1 65 10.3390/ma13010065 31877717
    [Google Scholar]
  69. Modi C. Prajapati B.G. Singh S. Singh A. Maheshwari S. Dendrimers in the management of Alzheimer’s disease. In:Alzheimer’s Disease and Advanced Drug Delivery Strategies. Academic Press 2024 235 251 10.1016/B978‑0‑443‑13205‑6.00028‑5
    [Google Scholar]
  70. Boas U. Christensen J.B. Heegaard P.M.H. Dendrimers: Design, Synthesis and chemical properties. In:Dendrimers in medicine and biotechnology New molecular tools. Cambridge, UK The Royal Society of Chemistry 2006 1 27
    [Google Scholar]
  71. Hawker C.J. Frechet J.M.J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 1990 112 21 7638 7647 10.1021/ja00177a027
    [Google Scholar]
  72. Grayson S.M. Fréchet J.M.J. Convergent dendrons and dendrimers: From synthesis to applications. Chem. Rev. 2001 101 12 3819 3868 10.1021/cr990116h 11740922
    [Google Scholar]
  73. Wooley K.L. Hawker C.J. Frechet J.M.J. Hyperbranched macromolecules via a novel double-stage convergent growth approach. J. Am. Chem. Soc. 1991 113 11 4252 4261 10.1021/ja00011a031
    [Google Scholar]
  74. Kawaguchi T. Walker K.L. Wilkins C.L. Moore J.S. Double exponential dendrimer growth. J. Am. Chem. Soc. 1995 117 8 2159 2165 10.1021/ja00113a005
    [Google Scholar]
  75. Parata A. Felder-Flescha D. General introduction on dendrimers, classical versus accelerated syntheses and characterizations. In:Dendrimers in nanomedicine. New York, NY, USA Jenny Stanford Publishing 2016 1 22 10.1201/9781315364513‑2
    [Google Scholar]
  76. Maraval V. Caminade A.M. Majoral J.P. Blais J.C. Dendrimer design: How to circumvent the dilemma of a reduction of steps or an increase of function multiplicity? Angew. Chem. Int. Ed. 2003 42 16 1822 1826 10.1002/anie.200250827 12722071
    [Google Scholar]
  77. Maraval V. Pyzowski J. Caminade A.M. Majoral J.P. “Lego” chemistry for the straightforward synthesis of dendrimers. J. Org. Chem. 2003 68 15 6043 6046 10.1021/jo0344438 12868946
    [Google Scholar]
  78. Kolb H.C. Finn M.G. Sharpless K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001 40 11 2004 2021 10.1002/1521‑3773(20010601)40:11<2004:AID‑ANIE2004>3.0.CO;2‑5 11433435
    [Google Scholar]
  79. Lee J.W. Kim J.H. Kim B.K. Kim J.H. Shin W.S. Jin S.H. Convergent synthesis of PAMAM dendrimers using click chemistry of azide-functionalized PAMAM dendrons. Tetrahedron 2006 62 39 9193 9200 10.1016/j.tet.2006.07.030
    [Google Scholar]
  80. Benita S. Microparticulate drug delivery systems: Release kinetic models Microspheres, Microcapsules and Liposomes (the MML Series). Arshady R. London Citrus Books 1998 255 278
    [Google Scholar]
  81. Meier W. Polymer nanocapsules. Chem. Soc. Rev. 2000 29 5 295 303 10.1039/a809106d
    [Google Scholar]
  82. Mora-Huertas C.E. Fessi H. Elaissari A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 2010 385 1-2 113 142 10.1016/j.ijpharm.2009.10.018 19825408
    [Google Scholar]
  83. Fessi H. Puisieux F. Devissaguet J.P. Ammoury N. Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 1989 55 1 R1 R4 10.1016/0378‑5173(89)90281‑0
    [Google Scholar]
  84. Kreuter Nanoparticles J. Colloidal drug delivery systems. Kreuter J. New York Marcel Dekker Inc. 1994 219 342
    [Google Scholar]
  85. Rață D.M. Cadinoiu A.N. Atanase L.I. Bacaita S.E. Mihalache C. Daraba O.M. Gherghel D. Popa M. “In vitro” behaviour of aptamer-functionalized polymeric nanocapsules loaded with 5-fluorouracil for targeted therapy. Mater. Sci. Eng. C 2019 103 109828 10.1016/j.msec.2019.109828 31349496
    [Google Scholar]
  86. Mohite P. Singh S. Pawar A. Sangale A. Prajapati B.G. Lipid-based oral formulation in capsules to improve the delivery of poorly water-soluble drugs. Front Drug Deliv 2023 3 1232012 10.3389/fddev.2023.1232012
    [Google Scholar]
  87. Mohite P. Rajput T. Pandhare R. Sangale A. Singh S. Prajapati B.G. Nanoemulsion in management of colorectal cancer: Challenges and future prospects. Nanomanufacturing 2023 3 2 139 166 10.3390/nanomanufacturing3020010
    [Google Scholar]
  88. Basu B. Garala K. Dutta A. Joshi R. Prajapati B.G. Mukherjee S. Karati D. Singh S. Paliwal H. Micro and nanoemulsions in colorectal cancer. In:Colorectal Cancer. Academic Press 2024 259 286 10.1016/B978‑0‑443‑13870‑6.00005‑2
    [Google Scholar]
  89. Basu B. Garala K. Dutta A. Joshi R. Prajapati B.G. Mukherjee S. Karati D. Singh S. Paliwal H. Colorectal Cancer Disease and Advanced Drug Delivery Strategies: Micro and nanoemulsions in colorectal cancer. Elsevier 2024
    [Google Scholar]
  90. Quintanar-Guerrero D. Allémann E. Doelker E. Fessi H. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm. Res. 1998 15 7 1056 1062 10.1023/A:1011934328471 9688060
    [Google Scholar]
  91. Galindo-Rodriguez S. Allémann E. Fessi H. Doelker E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm. Res. 2004 21 8 1428 1439 10.1023/B:PHAM.0000036917.75634.be 15359578
    [Google Scholar]
  92. Ma J. Feng P. Ye C. Wang Y. Fan Y. An improved interfacial coacervation technique to fabricate biodegradable nanocapsules of an aqueous peptide solution from polylactide and its block copolymers with poly(ethylene glycol). Colloid Polym. Sci. 2001 279 4 387 392 10.1007/s003960000467
    [Google Scholar]
  93. Steinmacher F. Baier G. Musyanovych A. Landfester K. Araújo P. Sayer C. Design of cross-linked starch nanocapsules for enzyme-triggered release of hydrophilic compounds. Processes 2017 5 2 25 10.3390/pr5020025
    [Google Scholar]
  94. Ashjari M. Khoee S. Mahdavian A.R. Controlling the morphology and surface property of magnetic/cisplatin-loaded nanocapsules via W/O/W double emulsion method. Colloids Surf. A Physicochem. Eng. Asp. 2012 408 87 96 10.1016/j.colsurfa.2012.05.035
    [Google Scholar]
  95. Campos E.V.R. Oliveira J.L. Zavala-Betancourt S.A. Ledezma A.S. Arias E. Moggio I. Romero J. Fraceto L.F. Development of stained polymeric nanocapsules loaded with model drugs: Use of a fluorescent poly(phenyleneethynylene). Colloids Surf. B Biointerfaces 2016 147 442 449 10.1016/j.colsurfb.2016.08.031 27573038
    [Google Scholar]
  96. Erdmann C. Mayer C. Permeability profile of poly(alkyl cyanoacrylate) nanocapsules. J. Colloid Interface Sci. 2016 478 394 401 10.1016/j.jcis.2016.06.034 27343463
    [Google Scholar]
  97. Hu S.H. Chen S.Y. Gao X. Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release. ACS Nano 2012 6 3 2558 2565 10.1021/nn205023w 22339040
    [Google Scholar]
  98. Chiang C.S. Hu S.H. Liao B.J. Chang Y.C. Chen S.Y. Enhancement of cancer therapy efficacy by trastuzumab-conjugated and pH-sensitive nanocapsules with the simultaneous encapsulation of hydrophilic and hydrophobic compounds. Nanomedicine 2014 10 1 99 107 10.1016/j.nano.2013.07.009 23891983
    [Google Scholar]
  99. Balan V. Dodi G. Tudorachi N. Ponta O. Simon V. Butnaru M. Verestiuc L. Doxorubicin-loaded magnetic nanocapsules based on N-palmitoyl chitosan and magnetite: Synthesis and characterization. Chem. Eng. J. 2015 279 188 197 10.1016/j.cej.2015.04.152
    [Google Scholar]
  100. Ji F. Li J. Qin Z. Yang B. Zhang E. Dong D. Wang J. Wen Y. Tian L. Yao F. Engineering pectin-based hollow nanocapsules for delivery of anticancer drug. Carbohydr. Polym. 2017 177 86 96 10.1016/j.carbpol.2017.08.107 28962799
    [Google Scholar]
  101. Cuomo F. Lopez F. Piludu M. Miguel M.G. Lindman B. Ceglie A. Release of small hydrophilic molecules from polyelectrolyte capsules: Effect of the wall thickness. J. Colloid Interface Sci. 2015 447 211 216 10.1016/j.jcis.2014.10.060 25465199
    [Google Scholar]
  102. Crecente-Campo J. Lorenzo-Abalde S. Mora A. Marzoa J. Csaba N. Blanco J. González-Fernández Á. Alonso M.J. Bilayer polymeric nanocapsules: A formulation approach for a thermostable and adjuvanted E. coli antigen vaccine. J. Control. Release 2018 286 20 32 10.1016/j.jconrel.2018.07.018 30017722
    [Google Scholar]
  103. Łukasiewicz S. Szczepanowicz K. Podgórna K. Błasiak E. Majeed N. Ogren S.O.Ö. Nowak W. Warszyński P. Dziedzicka-Wasylewska M. Encapsulation of clozapine in polymeric nanocapsules and its biological effects. Colloids Surf. B Biointerfaces 2016 140 342 352 10.1016/j.colsurfb.2015.12.044 26774571
    [Google Scholar]
  104. Mirgorodskaya A.B. Kushnazarova R.A. Nikitina A.V. Semina I.I. Nizameev I.R. Kadirov M.K. Khutoryanskiy V.V. Zakharova L.Y. Sinyashin O.G. Polyelectrolyte nanocontainers: Controlled binding and release of indomethacin. J. Mol. Liq. 2018 272 982 989 10.1016/j.molliq.2018.10.115
    [Google Scholar]
  105. Ledo A.M. Sasso M.S. Bronte V. Marigo I. Boyd B.J. Garcia-Fuentes M. Alonso M.J. Co-delivery of RNAi and chemokine by polyarginine nanocapsules enables the modulation of myeloid-derived suppressor cells. J. Control. Release 2019 295 60 73 10.1016/j.jconrel.2018.12.041 30593832
    [Google Scholar]
  106. Zhang Y. Chi C. Huang X. Zou Q. Li X. Chen L. Starch-based nanocapsules fabricated through layer-by-layer assembly for oral delivery of protein to lower gastrointestinal tract. Carbohydr. Polym. 2017 171 242 251 10.1016/j.carbpol.2017.04.090 28578960
    [Google Scholar]
  107. Cook M.T. Tzortzis G. Khutoryanskiy V.V. Charalampopoulos D. Layer-by-layer coating of alginate matrices with chitosan–alginate for the improved survival and targeted delivery of probiotic bacteria after oral administration. J. Mater. Chem. B Mater. Biol. Med. 2013 1 1 52 60 10.1039/C2TB00126H 32260612
    [Google Scholar]
  108. Rivera M.C. Pinheiro A.C. Bourbon A.I. Cerqueira M.A. Vicente A.A. Hollow chitosan/alginate nanocapsules for bioactive compound delivery. Int. J. Biol. Macromol. 2015 79 95 102 10.1016/j.ijbiomac.2015.03.003 25907011
    [Google Scholar]
  109. Elbaz N.M. Owen A. Rannard S. McDonald T.O. Controlled synthesis of calcium carbonate nanoparticles and stimuli-responsive multi-layered nanocapsules for oral drug delivery. Int. J. Pharm. 2020 574 118866 10.1016/j.ijpharm.2019.118866 31765776
    [Google Scholar]
  110. Radushkevich L.V. Formed by thermal decomposition of carbon monoxide on an iron contact. Zurn Fisic Chim 1952 26 88 95
    [Google Scholar]
  111. Oberlin A. Endo M. Koyama T. Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 1976 32 3 335 349 10.1016/0022‑0248(76)90115‑9
    [Google Scholar]
  112. Krätschmer W. Lamb L.D. Fostiropoulos K. Huffman D.R. Solid C60: A new form of carbon. Nature 1990 347 6291 354 358 10.1038/347354a0
    [Google Scholar]
  113. Brenner D.W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B Condens. Matter 1990 42 15 9458 9471 10.1103/PhysRevB.42.9458 9995183
    [Google Scholar]
  114. Calvert P. Strength in disunity. Nature 1992 357 6377 365 366 10.1038/357365a0
    [Google Scholar]
  115. Kong J. Chapline M.G. Dai H. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater. 2001 13 18 1384 1386 10.1002/1521‑4095(200109)13:18<1384:AID‑ADMA1384>3.0.CO;2‑8
    [Google Scholar]
  116. Ye X.R. Lin Y. Wang C. Engelhard M.H. Wang Y. Wai C.M. Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes. J. Mater. Chem. 2004 14 5 908 913 10.1039/b308124a
    [Google Scholar]
  117. Parveen S. Sarvar M. Zulfequar M. Ali J. Carbon nanotubes as emerging field emitters: Influencing factors and remedies. J. Electron. Mater. 2025 54 3 1553 1571 10.1007/s11664‑024‑11682‑w
    [Google Scholar]
  118. Fonseca A. Nagy B. Carbon nanotubes formation in the arc discharge process. In: CarbonFilaments and Nanotubes: Common Origins, Differing Applications; Ernardo, G.G.B.; Ph, L., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands 2001 372 75 84 10.1007/978‑94‑010‑0777‑1_5
    [Google Scholar]
  119. Guo T. Nikolaev P. Thess A. Colbert D.T. Smalley R.E. Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 1995 243 1-2 49 54 10.1016/0009‑2614(95)00825‑O
    [Google Scholar]
  120. Guo T. Nikolaev P. Rinzler A.G. Tomanek D. Colbert D.T. Smalley R.E. Self-assembly of tubular fullerenes. J. Phys. Chem. 1995 99 27 10694 10697 10.1021/j100027a002
    [Google Scholar]
  121. Hafner J.H. Bronikowski M.J. Azamian B.R. Nikolaev P. Rinzler A.G. Colbert D.T. Smith K.A. Smalley R.E. Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 1998 296 1-2 195 202 10.1016/S0009‑2614(98)01024‑0
    [Google Scholar]
  122. Kröckel C. Ludacka U. Singh R. Kotakoski J. Hauke F. Hirsch A. Reich S. Chacón-Torres J.C. Structural stability in potassium doped single-walled carbon nanotubes, and surface functionalization. Carbon 2025 234 119992 10.1016/j.carbon.2025.119992
    [Google Scholar]
  123. Rao A.M. Richter E. Bandow S. Chase B. Eklund P.C. Williams K.A. Fang S. Subbaswamy K.R. Menon M. Thess A. Smalley R.E. Dresselhaus G. Dresselhaus M.S. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 1997 275 5297 187 191 10.1126/science.275.5297.187 8985007
    [Google Scholar]
  124. José-Yacamán M. Miki-Yoshida M. Rendón L. Santiesteban J.G. Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett. 1993 62 2 202 204 10.1063/1.109315
    [Google Scholar]
  125. Wang R. Ma C. Li C. Zhang W. Zhang C. Wang J. Xiao L. Lv B. Guo S. Yao S. Keggin-type potassium phosphotungstate modified functionalization of carbon nanotubes hybrid materials for capture and boost conversion of polysulfides in lithium sulfur batteries. J. Energy Storage 2025 109 115168 10.1016/j.est.2024.115168
    [Google Scholar]
  126. Journet C. Bernier P. Production of carbon nanotubes. Appl. Phys., A Mater. Sci. Process. 1998 67 1 1 9 10.1007/s003390050731
    [Google Scholar]
  127. Cao S. Jiang T. Shi S. Gui X. Wang Y. Tang B. Xiang L. Dai X. Lin D. Zhong N. Li W. Yu J. Wu X. Fabrication of three-dimensional thermally conductive carbon fibers/carbon nanotubes network reinforce epoxy composites. Composites Communications 2025 53 102205 10.1016/j.coco.2024.102205
    [Google Scholar]
  128. Couteau E. Hernadi K. Seo J.W. Thiên-Nga L. Mikó C. Gaál R. Forró L. CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chem. Phys. Lett. 2003 378 1-2 9 17 10.1016/S0009‑2614(03)01218‑1
    [Google Scholar]
  129. Ren Z.F. Huang Z.P. Xu J.W. Wang J.H. Bush P. Siegal M.P. Provencio P.N. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998 282 5391 1105 1107 10.1126/science.282.5391.1105 9804545
    [Google Scholar]
  130. Fan S. Chapline M.G. Franklin N.R. Tombler T.W. Cassell A.M. Dai H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999 283 5401 512 514 10.1126/science.283.5401.512 9915692
    [Google Scholar]
  131. Bader H. Ringsdorf H. Schmidt B. Watersoluble polymers in medicine. Angew. Makromol. Chem. 1984 123 1 457 485 10.1002/apmc.1984.051230121
    [Google Scholar]
  132. Zueva O.S. Kazantseva M.A. Zuev Y.F. Nanosized being of ionic surfactant micelles: An advanced view on micellization process. Colloids and Interfaces 2025 9 2 15 10.3390/colloids9020015
    [Google Scholar]
  133. Yousefpour Marzbali M. Yari Khosroushahi A. Polymeric micelles as mighty nanocarriers for cancer gene therapy: A review. Cancer Chemother. Pharmacol. 2017 79 4 637 649 10.1007/s00280‑017‑3273‑1 28314988
    [Google Scholar]
  134. Lu Y. Zhang E. Yang J. Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res. 2018 11 10 4985 4998 10.1007/s12274‑018‑2152‑3 30370014
    [Google Scholar]
  135. Paliwal R. Babu R.J. Palakurthi S. Nanomedicine scale-up technologies: Feasibilities and challenges. AAPS PharmSciTech 2014 15 6 1527 1534 10.1208/s12249‑014‑0177‑9 25047256
    [Google Scholar]
  136. Ahmad I. Kushwaha P. Usmani S. Tiwari A. Polymeric micelles: Revolutionizing cancer therapeutics for enhanced efficacy. Bionanoscience 2025 15 1 186 10.1007/s12668‑025‑01803‑y
    [Google Scholar]
  137. Pepić I. Lovrić J. Filipović-Grčić J. How do polymeric micelles cross epithelial barriers? Eur. J. Pharm. Sci. 2013 50 1 42 55 10.1016/j.ejps.2013.04.012 23619286
    [Google Scholar]
  138. Chavoshy F. Makhmalzade B.S. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J. Adv. Pharm. Technol. Res. 2018 9 1 2 8 10.4103/japtr.JAPTR_314_17 29441317
    [Google Scholar]
  139. Almeida M. Magalhães M. Veiga F. Figueiras A. Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer. J. Polym. Res. 2018 25 1 31 10.1007/s10965‑017‑1426‑x
    [Google Scholar]
  140. Akala E.O. Adesina S.K. Fabrication of polymeric core-shell nanostructures. In:Nanoscale Fabrication, Optimization, Scale-Up and Biological Aspects of Pharmaceutical Nanotechnology. Amsterdam, the Netherlands Elsevier BV 2018 1 49 10.1016/B978‑0‑12‑813629‑4.00001‑2
    [Google Scholar]
  141. Gohy J.F. Block copolymer micelles. Adv. Polym. Sci. 2005 190 65 136 10.1007/12_048
    [Google Scholar]
  142. Jette K.K. Law D. Schmitt E.A. Kwon G.S. Preparation and drug loading of poly(ethylene glycol)-block-poly(epsilon-caprolactone) micelles through the evaporation of a cosolvent azeotrope. Pharm. Res. 2004 21 7 1184 1191 10.1023/B:PHAM.0000033005.25698.9c 15290858
    [Google Scholar]
  143. Fournier E. Dufresne M.H. Smith D.C. Ranger M. Leroux J.C. A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers. Pharm. Res. 2004 21 6 962 968 10.1023/B:PHAM.0000029284.40637.69 15212160
    [Google Scholar]
  144. La S.B. Okano T. Kataoka K. Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(beta-benzyl L-aspartate) block copolymer micelles. J. Pharm. Sci. 1996 85 1 85 90 10.1021/js950204r 8926590
    [Google Scholar]
  145. Yang Z.L. Li X.R. Yang K.W. Liu Y. Amphotericin B‐loaded poly(ethylene glycol)–poly(lactide) micelles: Preparation, freeze‐drying, and in vitro release. J. Biomed. Mater. Res. A 2008 85A 2 539 546 10.1002/jbm.a.31504 17729259
    [Google Scholar]
  146. Lapteva M. Kalia Y. Encapsulation Technologies-Polymeric Micelles. In:Dermal and Transdermal Delivery, In Skin permeation and deposition of therapeutic and cosmeceutical compounds. Sugibayashi K. Tokyo, Japan Springer 2017 143 152
    [Google Scholar]
  147. An J.Y. Yang H.S. Park N.R. Koo T. Shin B. Lee E.H. Cho S.H. Development of polymeric micelles of oleanolic acid and evaluation of their clinical efficacy. Nanoscale Res. Lett. 2020 15 1 133 10.1186/s11671‑020‑03348‑3 32572634
    [Google Scholar]
  148. Aliabadi H. Elhasi S. Mahmud A. Gulamhusein R. Mahdipoor P. Lavasanifar A. Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: The effect of solvent composition on micellar properties and drug loading. Int. J. Pharm. 2007 329 1-2 158 165 10.1016/j.ijpharm.2006.08.018 17008034
    [Google Scholar]
  149. Talele P. Jadhav A. Sahu S. Shimpi N. Experimental approaches to evaluate solid lipid nanoparticle-based drug delivery systems. Anal. Methods 2025 17 7 1451 1466 10.1039/D4AY01659A 39851141
    [Google Scholar]
  150. Zhou Y. Ge Q. Wang X. Wang Y. Sun Q. Wang J. Yang T. Wang C. Advances in lipid nanoparticle‐based disease treatment. ChemMedChem 2025 e202400938 10.1002/cmdc.202400938 39962990
    [Google Scholar]
  151. Ekambaram P. Sathali A. Priyanka K. Solid lipid nanoparticles: A review. Sci. Rev. Chem. Commun 2012 2 80 102
    [Google Scholar]
  152. Lucks S. Lucks drug carriers made of solid lipid particles – Solid Lipid Nanospheres (SLN). Patent EP0605497 1996
    [Google Scholar]
  153. Müller R.H. Mäder K. Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art. Eur. J. Pharm. Biopharm. 2000 50 1 161 177 10.1016/S0939‑6411(00)00087‑4 10840199
    [Google Scholar]
  154. Calva-Estrada S.J. García O. Mendoza M.R. Jiménez M. Characterization of O/W emulsions of carotenes in blackberry juice performed by ultrasound and high-pressure homogenization. J. Dispers. Sci. Technol. 2018 39 2 181 189 10.1080/01932691.2017.1306783
    [Google Scholar]
  155. Galvão K.C.S. Vicente A.A. Sobral P.J.A. Development, Characterization, and Stability of O/W pepper nanoemulsions produced by high-pressure homogenization. Food Bioprocess Technol. 2018 11 2 355 367 10.1007/s11947‑017‑2016‑y
    [Google Scholar]
  156. Amasya G. Aksu B. Badilli U. Onay-Besikci A. Tarimci N. QbD guided early pharmaceutical development study: Production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. Int. J. Pharm. 2019 563 110 121 10.1016/j.ijpharm.2019.03.056 30935913
    [Google Scholar]
  157. K k, S.P.; Narayansamy, D. Advancements in nanotechnology for targeted drug delivery in idiopathic pulmonary fibrosis: A focus on solid lipid nanoparticles and nanostructured lipid carriers. Drug Dev. Ind. Pharm. 2025 51 4 285 294 10.1080/03639045.2025.2468811 39963904
    [Google Scholar]
  158. Hu C. Qian A. Wang Q. Xu F. He Y. Xu J. Xia Y. Xia Q. Industrialization of lipid nanoparticles: From laboratory-scale to large-scale production line. Eur. J. Pharm. Biopharm. 2016 109 206 213 10.1016/j.ejpb.2016.10.018 27793754
    [Google Scholar]
  159. Ganesan P. Narayanasamy D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm. 2017 6 37 56 10.1016/j.scp.2017.07.002
    [Google Scholar]
  160. Duan Y. Dhar A. Patel C. Khimani M. Neogi S. Sharma P. Siva Kumar N. Vekariya R.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Advances 2020 10 45 26777 26791 10.1039/D0RA03491F 35515778
    [Google Scholar]
  161. Jenning V. Thünemann A.F. Gohla S.H. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm. 2000 199 2 167 177 10.1016/S0378‑5173(00)00378‑1 10802410
    [Google Scholar]
  162. Singh S. Ushir Y.V. Prajapati B. Phytosomes and herbosomes: A vesicular drug delivery system for improving the bioavailability of natural products. In:Lipid-Based Drug Delivery Systems. Jenny Stanford Publishing 2023 423 460 10.1201/9781003459811‑11
    [Google Scholar]
  163. Severino P. Santana M.H.A. Souto E.B. Optimizing S.L.N. Optimizing SLN and NLC by 2(2) full factorial design: Effect of homogenization technique. Mater. Sci. Eng. C Biol. Appl. 2012 32 1375 1379 10.1016/j.msec.2012.04.017 24364934
    [Google Scholar]
  164. Duong V.A. Nguyen T.T.L. Maeng H.J. Chi S.C. Preparation of ondansetron hydrochloride-loaded nanostructured lipid carriers using solvent injection method for enhancement of pharmacokinetic properties. Pharm. Res. 2019 36 10 138 10.1007/s11095‑019‑2672‑x 31350675
    [Google Scholar]
  165. Shah R. Eldridge D. Palombo E. Harding I. Lipid Nanoparticles: Production, characterization and stability Springer international publishing: New York, NY 2015
    [Google Scholar]
  166. Cortesi R. Esposjto E. Luca G. Nastruzzi C. Production of lipospheres as carriers for bioactive compounds. Biomaterials 2002 23 11 2283 2294 10.1016/S0142‑9612(01)00362‑3 12013175
    [Google Scholar]
  167. Westesen K. Bunjes H. Koch M.H.J. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release 1997 48 2-3 223 236 10.1016/S0168‑3659(97)00046‑1
    [Google Scholar]
  168. Kapoor D. Chilkapalli S.C. Prajapati B.G. Rodriques P. Patel R. Singh S. Bhattacharya S. The astonishing accomplishment of biological drug delivery using lipid nanoparticles: An ubiquitous review. Curr. Pharm. Biotechnol. 2024 25 15 1952 1968 10.2174/0113892010268824231122041237 38265380
    [Google Scholar]
  169. Andrade L.N. Oliveira D.M.L. Chaud M.V. Alves T.F.R. Nery M. da Silva C.F. Gonsalves J.K.C. Nunes R.S. Corrêa C.B. Amaral R.G. Sanchez-Lopez E. Souto E.B. Severino P. Praziquantel-solid lipid nanoparticles produced by supercritical carbon dioxide extraction: Physicochemical characterization, release profile, and cytotoxicity. Molecules 2019 24 21 3881 10.3390/molecules24213881 31661906
    [Google Scholar]
  170. Gasco M.R. Method for producing solid lipid microspheres having a narrow size distribution. . Patent US5250236A 1993
    [Google Scholar]
  171. Shah R.M. Eldridge D.S. Palombo E.A. Harding I.H. Microwave-assisted microemulsion technique for production of miconazole nitrate- and econazole nitrate-loaded solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 2017 117 141 150 10.1016/j.ejpb.2017.04.007 28411057
    [Google Scholar]
  172. Yasir M. Gaur P.K. Puri D. Preeti S. Kumar S.S. Solid lipid nanoparticles approach for lymphatic targeting through intraduodenal delivery of Quetiapine fumarate. Curr. Drug Deliv. 2018 15 6 818 828 10.2174/1567201814666170525121049 28545354
    [Google Scholar]
  173. Souza L.G. Silva E.J. Martins A.L.L. Mota M.F. Braga R.C. Lima E.M. Valadares M.C. Taveira S.F. Marreto R.N. Development of topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release. Eur. J. Pharm. Biopharm. 2011 79 1 189 196 10.1016/j.ejpb.2011.02.012 21352915
    [Google Scholar]
  174. Shah S. Chauhan H. Madhu H. Mori D. Soniwala M. Singh S. Prajapati B. Lipids fortified nano phytopharmaceuticals: A breakthrough approach in delivering bio-actives for improved therapeutic efficacy. Pharm. Nanotechnol. 2025 13 1 70 89 10.2174/0122117385277686231127050723 38279712
    [Google Scholar]
  175. Jose J. Netto G. Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J. Cosmet. Dermatol. 2018 1 18 10.1111/jocd.12504 29441672
    [Google Scholar]
  176. Shah D. Dave B. Chorawala M.R. Prajapati B.G. Singh S.M. Elossaily G. Ansari M.N. Ali N. An insight on microfluidic organ-on-a-chip models for PM2. 5-induced pulmonary complications. ACS Omega 2024 9 12 13534 13555 10.1021/acsomega.3c10271 38559954
    [Google Scholar]
  177. Pooja D. Tunki L. Kulhari H. Reddy B.B. Sistla R. Optimization of solid lipid nanoparticles prepared by a single emulsification-solvent evaporation method. Data Brief 2016 6 15 19 10.1016/j.dib.2015.11.038 26759823
    [Google Scholar]
  178. Khan R. Tulain U. Shah H. Usman F. Chohan T. Iqbal J. Kazi M. Ijaz M. Erum A. Malik N. Mahmood A. Beyond chemistry: Investigating the physical, pharmacological, and computational aspects of polyoxometalate integrated solid lipid nanoparticles for cancer treatment. Int. J. Nanomedicine 2025 20 445 464 10.2147/IJN.S468871 39830156
    [Google Scholar]
  179. Mazur K.L. Feuser P.E. Valério A. Poester Cordeiro A. de Oliveira C.I. Assolini J.P. Pavanelli W.R. Sayer C. Araújo P.H.H. Diethyldithiocarbamate loaded in beeswax-copaiba oil nanoparticles obtained by solventless double emulsion technique promote promastigote death in vitro. Colloids Surf. B Biointerfaces 2019 176 507 512 10.1016/j.colsurfb.2018.12.048 30711703
    [Google Scholar]
  180. Becker Peres L. Becker Peres L. de Araújo P.H.H. Sayer C. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids Surf. B Biointerfaces 2016 140 317 323 10.1016/j.colsurfb.2015.12.033 26764112
    [Google Scholar]
  181. Heurtault B. Saulnier P. Benoit J.P. Proust J.E. Pech B. Richard J. Lipid nanocapsules, preparation process and use as medicine. Patent US8057823B2 2011
    [Google Scholar]
  182. Gallarate M. Trotta M. Battaglia L. Chirio D. Preparation of solid lipid nanoparticles from W/O/W emulsions: Preliminary studies on insulin encapsulation. J. Microencapsul. 2009 26 5 394 402 10.1080/02652040802390156 18785076
    [Google Scholar]
  183. Charcosset C. El-Harati A. Fessi H. Preparation of solid lipid nanoparticles using a membrane contactor. J. Control. Release 2005 108 1 112 120 10.1016/j.jconrel.2005.07.023 16169111
    [Google Scholar]
  184. D’oria C. Charcosset C. Barresi A.A. Fessi H. Preparation of solid lipid particles by membrane emulsification—Influence of process parameters. Colloids Surf. A Physicochem. Eng. Asp. 2009 338 1-3 114 118 10.1016/j.colsurfa.2009.01.003
    [Google Scholar]
  185. Khayata N. Abdelwahed W. Chehna M.F. Charcosset C. Fessi H. Preparation of vitamin E loaded nanocapsules by the nanoprecipitation method: From laboratory scale to large scale using a membrane contactor. Int. J. Pharm. 2012 423 2 419 427 10.1016/j.ijpharm.2011.12.016 22197757
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018379860250722161458
Loading
/content/journals/cdd/10.2174/0115672018379860250722161458
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test