Skip to content
2000
image of Cancer Cell-Coated PLGA Nanoparticles Loaded with Sorafenib and Spions for Hepatocellular Carcinoma Theranostics

Abstract

Introduction

Hepatocellular carcinoma (HCC) is the sixth most common malignant cancer worldwide, but the chemotherapy drugs used in the treatment of HCC patients have limited efficacy and cause severe side effects. To improve HCC treatment outcomes, a cancer cell membrane (CCM)-coated biomimetic nanodelivery system was designed to achieve enhanced anti-HCC effects.

Methods

Poly (lactic-co-glycolic acid) (PLGA) was used to carry both sorafenib, which is used to treat advanced HCC, and superparamagnetic iron oxide nanoparticles (SPIONs). The prepared nanoparticles (NPs) were coated with Huh-7 cell membranes to obtain biomimetic nanoparticles (SFINPs@CCM). The physicochemical properties of SFINPS@CCM were then characterized, and the drug loading efficiency, release rate, transverse relaxation rate for MRI, fluorescence targeting ability, and anti-HCC ability were evaluated.

Results

The SFINPS@CCM were successfully prepared. The loading efficiency of sorafenib in the SFINPs was 88.24%. The cumulative amount of sorafenib released from the SFINPs@CCM at 72 h was 72.96%. magnetic resonance imaging (MRI) showed the transverse relaxation rate was 25.448 mM−1 s−1. Meanwhile, the fluorescent tracing verified the homologous targeting ability of SFINPs@CCM to Huh-7 cells. The cytotoxicity of SFINPS@CCM was 29.48±5.74%, which was significantly higher than that of the SFINPs.

Discussion

The study indicates that the SFINPs@CCM system achieves efficient drug delivery and enhances anti-HCC efficacy. While the results are encouraging, further research is needed to confirm broader applicability.

Conclusion

The biomimetic nanodelivery system exhibits good targeting and excellent therapeutic effects, laying a technical foundation for preclinical studies.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018377065250717004240
2025-07-28
2025-09-23
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Rumgay H. Arnold M. Ferlay J. Lesi O. Cabasag C.J. Vignat J. Laversanne M. McGlynn K.A. Soerjomataram I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022 77 6 1598 1606 10.1016/j.jhep.2022.08.021 36208844
    [Google Scholar]
  3. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  4. Donne R. Lujambio A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology 2023 77 5 1773 1796 10.1002/hep.32740 35989535
    [Google Scholar]
  5. Ali S. Naveed A. Hussain I. Qazi J. Diagnosis and monitoring of hepatocellular carcinoma in Hepatitis C virus patients using attenuated total reflection Fourier transform infrared spectroscopy. Photodiagn. Photodyn. Ther. 2023 43 103677 10.1016/j.pdpdt.2023.103677 37390855
    [Google Scholar]
  6. Yang A. Liu J. Li M. Zhang H. Zhang X. Wu L. Integrating bioinformatics and machine learning methods to analyze diagnostic biomarkers for HBV-induced hepatocellular carcinoma. Diagn. Pathol. 2024 19 1 105 10.1186/s13000‑024‑01528‑8 39095799
    [Google Scholar]
  7. Fenton S.E. Burns M.C. Kalyan A. Epidemiology, mutational landscape and staging of hepatocellular carcinoma. Chin Clin. Oncol. 2021 10 1 2 10.21037/cco‑20‑162 33541087
    [Google Scholar]
  8. Yankol Y. Aguirre O. Fernandez L.A. Impact of living donor liver transplantation on the improvement of hepatocellular carcinoma treatment. Sisli Etfal Hastan Tip Bul 2024 58 1 1 9 10.14744/SEMB.2024.87864 38808046
    [Google Scholar]
  9. Lampimukhi M. Qassim T. Venu R. Pakhala N. Mylavarapu S. Perera T. Sathar B.S. Nair A. A review of incidence and related risk factors in the development of hepatocellular carcinoma. Cureus 2023 15 11 e49429 10.7759/cureus.49429 38149129
    [Google Scholar]
  10. Roudi R. D’Angelo A. Sirico M. Sobhani N. Immunotherapeutic treatments in hepatocellular carcinoma; Achievements, challenges and future prospects. Int. Immunopharmacol 2021 101 Pt A 108322 10.1016/j.intimp.2021.108322 34735916
    [Google Scholar]
  11. Li K. Liu J. Qin X. Research progress of gut microbiota in hepatocellular carcinoma. J. Clin. Lab. Anal. 2022 36 7 e24512 10.1002/jcla.24512 35719048
    [Google Scholar]
  12. Rai V. Mukherjee S. Targets of immunotherapy for hepatocellular carcinoma: An update. World J. Hepatol. 2022 14 1 140 157 10.4254/wjh.v14.i1.140 35126844
    [Google Scholar]
  13. Li Y. Qiu Y. Li M. Shen M. Zhang F. Shao J. Xu X. Zhang Z. Zheng S. New horizons for the role of RNA N6-methyladenosine modification in hepatocellular carcinoma. Acta Pharmacol. Sin. 2024 45 6 1130 1141 10.1038/s41401‑023‑01214‑3 38195693
    [Google Scholar]
  14. Wang Y. Deng B. Hepatocellular carcinoma: Molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev. 2023 42 3 629 652 10.1007/s10555‑023‑10084‑4 36729264
    [Google Scholar]
  15. Chen K. Shuen T.W.H. Chow P.K.H. The association between tumour heterogeneity and immune evasion mechanisms in hepatocellular carcinoma and its clinical implications. Br. J. Cancer 2024 131 3 420 429 10.1038/s41416‑024‑02684‑w 38760445
    [Google Scholar]
  16. Cabral L.K.D. Tiribelli C. Sukowati C.H.C. Sorafenib resistance in hepatocellular carcinoma: The relevance of genetic heterogeneity. Cancers 2020 12 6 1576 10.3390/cancers12061576 32549224
    [Google Scholar]
  17. Dahiya M. Dureja H. Sorafenib for hepatocellular carcinoma: Potential molecular targets and resistance mechanisms. J. Chemother. 2022 34 5 286 301 10.1080/1120009X.2021.1955202 34291704
    [Google Scholar]
  18. Elkamhawy A. Ammar U.M. Kim M. Gul A.R. Park T.J. Lee K. Discovery of novel naphthalene-based diarylamides as pan-Raf kinase inhibitors with promising anti-melanoma activity: Rational design, synthesis, in vitro and in silico screening. Arch. Pharm. Res. 2025 48 2 150 165 10.1007/s12272‑025‑01533‑5 39920399
    [Google Scholar]
  19. Wang Z. Wu C. Liu J. Hu S. Yu J. Yin Q. Tian H. Ding Z. Qi G. Wang L. Hao L. Aptamer-mediated hollow MnO 2 for targeting the delivery of sorafenib. Drug Deliv. 2023 30 1 28 39 10.1080/10717544.2022.2149897 36457288
    [Google Scholar]
  20. Huang X. Wang M. Zhang D. Zhang C. Liu P. Advances in targeted drug resistance associated with dysregulation of lipid metabolism in hepatocellular carcinoma. J. Hepatocell. Carcinoma 2024 11 113 129 10.2147/JHC.S447578 38250308
    [Google Scholar]
  21. Lu Q. Xin M. Guo Q. Rothberg B.S. Gamero A.M. Yang L. Knockdown of lncRNA TP53TG1 enhances the efficacy of sorafenib in human hepatocellular carcinoma cells. Noncoding RNA 2022 8 4 61 10.3390/ncrna8040061 36005829
    [Google Scholar]
  22. Luo T. Chen X. Pan W. Zhang S. Huang J. The sorafenib resistance-related gene signature predicts prognosis and indicates immune activity in hepatocellular carcinoma. Cell Cycle 2024 23 2 150 168 10.1080/15384101.2024.2309020 38444181
    [Google Scholar]
  23. Shi J. Kantoff P.W. Wooster R. Farokhzad O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017 17 1 20 37 10.1038/nrc.2016.108 27834398
    [Google Scholar]
  24. Vogel A. Meyer T. Sapisochin G. Salem R. Saborowski A. Hepatocellular carcinoma. Lancet 2022 400 10360 1345 1362 10.1016/S0140‑6736(22)01200‑4 36084663
    [Google Scholar]
  25. Gawali P. Saraswat A. Bhide S. Gupta S. Patel K. Human solid tumors and clinical relevance of the enhanced permeation and retention effect: A ‘golden gate’ for nanomedicine in preclinical studies? Nanomedicine 2023 18 2 169 190 10.2217/nnm‑2022‑0257 37042320
    [Google Scholar]
  26. Tian H. Zhang T. Qin S. Huang Z. Zhou L. Shi J. Nice E.C. Xie N. Huang C. Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J. Hematol. Oncol. 2022 15 1 132 10.1186/s13045‑022‑01320‑5 36096856
    [Google Scholar]
  27. Liu G. McEnnis K. Glass transition temperature of PLGA particles and the influence on drug delivery applications. Polymers 2022 14 5 993 10.3390/polym14050993 35267816
    [Google Scholar]
  28. Nath V. Singh M. Jana B.K. Sarkar T. Gogoi N.R. Mazumder B. PLGA and cancer: A comprehensive patent-based review on the present state of art. Pharm. Pat. Anal. 2025 28 1 15 10.1080/20468954.2025.2470103 40022546
    [Google Scholar]
  29. Feng Y. Chen H. Chen S. Zhang K. Yun D. Liu D. Zeng J. Yang C. Xie Q. Disulfiram-Loaded PLGA nanoparticles modified with a Phenyl borate chitosan Conjugate enhance hepatic carcinoma treatment. Int. J. Pharm. 2025 671 125293 10.1016/j.ijpharm.2025.125293 39880140
    [Google Scholar]
  30. Tang M. Huang Y. Liang X. Tao Y. He N. Li Z. Guo J. Gui S. Sorafenib-loaded PLGA-TPGS nanosystems enhance hepatocellular carcinoma therapy through reversing p-glycoprotein-mediated multidrug resistance. AAPS PharmSciTech 2022 23 5 130 10.1208/s12249‑022‑02214‑y 35487999
    [Google Scholar]
  31. Vlachopoulos A. Karlioti G. Balla E. Daniilidis V. Kalamas T. Stefanidou M. Bikiaris N.D. Christodoulou E. Koumentakou I. Karavas E. Bikiaris D.N. Poly(lactic acid)-based microparticles for drug delivery applications: An overview of recent advances. Pharmaceutics 2022 14 2 359 10.3390/pharmaceutics14020359 35214091
    [Google Scholar]
  32. Mir M. Ahmed N. Rehman A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf. B Biointerfaces 2017 159 217 231 10.1016/j.colsurfb.2017.07.038 28797972
    [Google Scholar]
  33. Wang Y.Q. Huang C. Ye P.J. Long J.R. Xu C.H. Liu Y. Ling X.L. Lv S.Y. He D.X. Wei H. Yu C.Y. Prolonged blood circulation outperforms active targeting for nanocarriers-mediated enhanced hepatocellular carcinoma therapy in vivo. J. Control. Release 2022 347 400 413 10.1016/j.jconrel.2022.05.024 35577150
    [Google Scholar]
  34. Kong F.H. Ye Q.F. Miao X.Y. Liu X. Huang S.Q. Xiong L. Wen Y. Zhang Z.J. Current status of sorafenib nanoparticle delivery systems in the treatment of hepatocellular carcinoma. Theranostics 2021 11 11 5464 5490 10.7150/thno.54822 33859758
    [Google Scholar]
  35. Mateen A. Khan A. Khan I. Ahmad L. Khan A. Salam A. Formulation development, characterization, and evaluation of sorafenib-loaded PLGA–chitosan nanoparticles. Front. Pharmacol. 2024 15 1465363 10.3389/fphar.2024.1465363 39444599
    [Google Scholar]
  36. Zumaya A.L.V. Rimpelová S. Štějdířová M. Ulbrich P. Vilčáková J. Hassouna F. Antibody conjugated PLGA nanocarriers and superparmagnetic nanoparticles for targeted delivery of oxaliplatin to cells from colorectal carcinoma. Int. J. Mol. Sci. 2022 23 3 1200 10.3390/ijms23031200 35163122
    [Google Scholar]
  37. Shariati A. Ebrahimi T. Babadinia P. Shariati F.S. Ahangari Cohan R. Synthesis and characterization of Gd3+-loaded hyaluronic acid-polydopamine nanoparticles as a dual contrast agent for CT and MRI scans. Sci. Rep. 2023 13 1 4520 10.1038/s41598‑023‑31252‑0 36934115
    [Google Scholar]
  38. Kotelnikova P.A. Shipunova V.O. Deyev S.M. Targeted PLGA–chitosan nanoparticles for NIR-triggered phototherapy and imaging of HER2-positive tumors. Pharmaceutics 2023 16 1 9 10.3390/pharmaceutics16010009 38276487
    [Google Scholar]
  39. Stanicki D. Vangijzegem T. Ternad I. Laurent S. An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opin. Drug Deliv. 2022 19 3 321 335 10.1080/17425247.2022.2047020 35202551
    [Google Scholar]
  40. Wu L. Wang C. Li Y. Iron oxide nanoparticle targeting mechanism and its application in tumor magnetic resonance imaging and therapy. Nanomedicine 2022 17 21 1567 1583 10.2217/nnm‑2022‑0246 36458585
    [Google Scholar]
  41. Yen S.K. Padmanabhan P. Selvan S.T. Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 2013 3 12 986 1003 10.7150/thno.4827 24396508
    [Google Scholar]
  42. Zhao X. Liu C. Wang Z. Zhao Y. Chen X. Tao H. Chen H. Wang X. Duan S. Synergistic pro-apoptotic effect of a cyclic RGD peptide-conjugated magnetic mesoporous therapeutic nanosystem on hepatocellular carcinoma HepG2 cells. Pharmaceutics 2023 15 1 276 10.3390/pharmaceutics15010276 36678904
    [Google Scholar]
  43. Huang J. Wu C. Tang S. Zhou P. Deng J. Zhang Z. Wang Y. Wang Z. Chiral active β-glucan nanoparticles for synergistic delivery of doxorubicin and immune potentiation. Int. J. Nanomedicine 2020 15 5083 5095 10.2147/IJN.S258145 32764938
    [Google Scholar]
  44. Wang H. Liu Y. He R. Xu D. Zang J. Weeranoppanant N. Dong H. Li Y. Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery. Biomater. Sci. 2020 8 2 552 568 10.1039/C9BM01392J 31769765
    [Google Scholar]
  45. He P. Zou M. Zhang C. Shi Y. Qin L. Celastrol-loaded hyaluronic acid/cancer cell membrane lipid nanoparticles for targeted hepatocellular carcinoma prevention. Cells 2024 13 21 1819 10.3390/cells13211819 39513925
    [Google Scholar]
  46. Ni W. Zhang M. Mo Y. Du W. Liu H. Wang Z. Cui Y. Zhang H. Wang Z. Liu L. Guo H. Niu R. Zhang F. Tian R. Macrophage membrane-based biomimetic nanocarrier system for enhanced immune activation and combination therapy in liver cancer. Drug Deliv. Transl. Res. 2024 15 5 1540 1553 10.1007/s13346‑024‑01690‑y 39172178
    [Google Scholar]
  47. Dhas N. García M.C. Kudarha R. Pandey A. Nikam A.N. Gopalan D. Fernandes G. Soman S. Kulkarni S. Seetharam R.N. Tiwari R. Wairkar S. Pardeshi C. Mutalik S. Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. J. Control. Release 2022 346 71 97 10.1016/j.jconrel.2022.04.019 35439581
    [Google Scholar]
  48. Wu Y. Fan Q. Zhou J. Hu H. Liao Z. Tang X. Xu M. Yang S. Lai J. Wan S. Wu J. Biomimetic platelet-like nanoparticles enhance targeted hepatocellular carcinoma therapy. Colloids Surf. B Biointerfaces 2024 240 113973 10.1016/j.colsurfb.2024.113973 38795584
    [Google Scholar]
  49. Lin Q. Peng Y. Wen Y. Li X. Du D. Dai W. Tian W. Meng Y. Recent progress in cancer cell membrane-based nanoparticles for biomedical applications. Beilstein J. Nanotechnol. 2023 14 262 279 10.3762/bjnano.14.24 36895440
    [Google Scholar]
  50. Zheng Y. Guo W. Hu L. Xiao Z. Yang X. Cao Z. Cao J. Long circulating cancer cell-targeted bionic nanocarriers enable synergistic combinatorial therapy in colon cancer. ACS Appl. Mater. Interfaces 2023 15 19 22843 22853 10.1021/acsami.3c00469 37133278
    [Google Scholar]
  51. Jiang Z. Dai C. Potential treatment strategies for hepatocellular carcinoma cell sensitization to sorafenib. J. Hepatocell. Carcinoma 2023 10 257 266 10.2147/JHC.S396231 36815094
    [Google Scholar]
  52. Chunlian Z. Qi W. Rui Z. The role of pyruvate kinase M2 posttranslational modification in the occurrence and development of hepatocellular carcinoma. Cell Biochem. Funct. 2024 42 7 e4125 10.1002/cbf.4125 39327771
    [Google Scholar]
  53. Lu K. Li Z. Hu Q. Sun J. Chen M. CRPC membrane-camouflaged, biomimetic nanosystem for overcoming castration-resistant prostate cancer by cellular vehicle-aided tumor targeting. Int. J. Mol. Sci. 2022 23 7 3623 10.3390/ijms23073623 35408983
    [Google Scholar]
  54. Ye J.J. Yu W. Xie B.R. Li K. Liu M.D. Dong X. Chen Z.X. Feng J. Zhang X.Z. Self-reinforced cancer targeting (SRCT) depending on reciprocally enhancing feedback between targeting and therapy. ACS Nano 2022 16 4 5851 5866 10.1021/acsnano.1c10999 35412799
    [Google Scholar]
  55. Xia Z. Mu W. Yuan S. Fu S. Liu Y. Zhang N. Cell membrane biomimetic nano-delivery systems for cancer therapy. Pharmaceutics 2023 15 12 2770 10.3390/pharmaceutics15122770 38140108
    [Google Scholar]
  56. Zhou J. Guo D. Zhang Y. Wu W. Ran H. Wang Z. Construction and evaluation of Fe3O4-based PLGA nanoparticles carrying rtPA used in the detection of thrombosis and in targeted thrombolysis. ACS Appl. Mater. Interfaces 2014 6 8 5566 5576 10.1021/am406008k 24693875
    [Google Scholar]
  57. Ahmad N. Ahmad R. Al Qatifi S. Alessa M. Al Hajji H. Sarafroz M. A bioanalytical UHPLC based method used for the quantification of Thymoquinone-loaded-PLGA-nanoparticles in the treatment of epilepsy. BMC Chem. 2020 14 1 10 10.1186/s13065‑020‑0664‑x 32083254
    [Google Scholar]
  58. Yilmaz S. Ichedef C. Karatay K.B. Teksöz S. Polymer coated iron nanoparticles: Radiolabeling & in vitro studies. Curr. Radiopharm. 2021 14 1 37 45 10.2174/1874471013666200430094113 32351192
    [Google Scholar]
  59. Meng X. Wang J. Zhou J. Tian Q. Qie B. Zhou G. Duan W. Zhu Y. Tumor cell membrane-based peptide delivery system targeting the tumor microenvironment for cancer immunotherapy and diagnosis. Acta Biomater. 2021 127 266 275 10.1016/j.actbio.2021.03.056 33813091
    [Google Scholar]
  60. Jin F. Qi J. Liu D. You Y. Shu G. Du Y. Wang J. Xu X. Ying X. Ji J. Du Y. Cancer-cell-biomimetic Upconversion nanoparticles combining chemo-photodynamic therapy and CD73 blockade for metastatic triple-negative breast cancer. J. Control. Release 2021 337 90 104 10.1016/j.jconrel.2021.07.021 34274385
    [Google Scholar]
  61. Guo Q. Chen C. Wu Z. Zhang W. Wang L. Yu J. Li L. Zhang J. Duan Y. Engineered PD-1/TIGIT dual-activating cell-membrane nanoparticles with dexamethasone act synergistically to shape the effector T cell/Treg balance and alleviate systemic lupus erythematosus. Biomaterials 2022 285 121517 10.1016/j.biomaterials.2022.121517 35504179
    [Google Scholar]
  62. Karim M.A. Ramezani M. Leroux T. Kum H.C. Singal A.G. Healthcare costs for Medicare patients with hepatocellular carcinoma in the United States. Clin. Gastroenterol. Hepatol. 2023 21 9 2327 2337 10.1016/j.cgh.2022.11.015 36435358
    [Google Scholar]
  63. Zou H. Li M. Lei Q. Luo Z. Xue Y. Yao D. Lai Y. Ung C.O.L. Hu H. Economic burden and quality of life of hepatocellular carcinoma in greater China: A systematic review. Front. Public Health 2022 10 801981 10.3389/fpubh.2022.801981 35530735
    [Google Scholar]
  64. Yang X. Yang C. Zhang S. Geng H. Zhu A.X. Bernards R. Qin W. Fan J. Wang C. Gao Q. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell 2024 42 2 180 197 10.1016/j.ccell.2024.01.007 38350421
    [Google Scholar]
  65. Wang C. Wu S. Research update on cell membrane camouflaged nanoparticles for cancer therapy. Front. Bioeng. Biotechnol. 2022 10 944518 10.3389/fbioe.2022.944518 35992357
    [Google Scholar]
  66. Huang F. Zhang Q. Xiao J. Zhang X. Han X. Shi X. Hu J. Li L. Qian X. Cancer cell membrane-coated gambogic acid nanoparticles for effective anticancer vaccination by activating dendritic cells. Int. J. Nanomedicine 2023 18 2261 2273 10.2147/IJN.S408521 37159807
    [Google Scholar]
  67. Jain K.K. Nanomedicine: Application of nanobiotechnology in medical practice. Med. Princ. Pract. 2008 17 2 89 101 10.1159/000112961 18287791
    [Google Scholar]
  68. Tao Y. Lan X. Zhang Y. Fu C. Liu L. Cao F. Guo W. Biomimetic nanomedicines for precise atherosclerosis theranostics. Acta Pharm. Sin. B 2023 13 11 4442 4460 10.1016/j.apsb.2022.11.014 37969739
    [Google Scholar]
  69. Hussain M.S. Gupta G. Goyal A. Thapa R. Almalki W.H. Kazmi I. Alzarea S.I. Fuloria S. Meenakshi D.U. Jakhmola V. Pandey M. Singh S.K. Dua K. From nature to therapy: Luteolin’s potential as an immune system modulator in inflammatory disorders. J. Biochem. Mol. Toxicol. 2023 37 11 e23482 10.1002/jbt.23482 37530602
    [Google Scholar]
  70. Zhang G. Yao M. Ma S. Zhang K. Wang Y. Wang Z. Liang J. Dai S. Jin R. Guan F. Application of cell membrane-functionalized biomimetic nanoparticles in the treatment of glioma. J. Mater. Chem. B Mater. Biol. Med. 2023 11 30 7055 7068 10.1039/D3TB00605K 37395053
    [Google Scholar]
  71. Luo H. Ji X. Zhang M. Ren Y. Tan R. Jiang H. Wu X. Aloe-emodin: Progress in pharmacological activity, safety, and pharmaceutical formulation applications. Mini Rev. Med. Chem. 2024 24 19 1784 1798 10.2174/0113895575298364240409064833 38639277
    [Google Scholar]
  72. Salsabila S. Khairinisa M.A. Wathoni N. Sufiawati I. Mohd Fuad W.E. Khairul Ikram N.K. Muchtaridi M. In vivo toxicity of chitosan-based nanoparticles: A systematic review. Artif. Cells Nanomed. Biotechnol. 2025 53 1 1 15 10.1080/21691401.2025.2462328 39924869
    [Google Scholar]
  73. Wei S. Wei F. Li M. Yang Y. Zhang J. Li C. Wang J. Target immune components to circumvent sorafenib resistance in hepatocellular carcinoma. Biomed. Pharmacother. 2023 163 114798 10.1016/j.biopha.2023.114798 37121146
    [Google Scholar]
  74. Suk F.M. Wu C.Y. Chiu W.C. Chien C.Y. Chen T.L. Liao Y.J. HMGCS2 mediation of ketone levels affects sorafenib treatment efficacy in liver cancer cells. Molecules 2022 27 22 8015 10.3390/molecules27228015 36432116
    [Google Scholar]
  75. Bigaj-Józefowska M.J. Coy E. Załęski K. Zalewski T. Grabowska M. Jaskot K. Perrigue P. Mrówczyński R. Grześkowiak B.F. Biomimetic theranostic nanoparticles for effective anticancer therapy and MRI imaging. J. Photochem. Photobiol. B 2023 249 112813 10.1016/j.jphotobiol.2023.112813 37977004
    [Google Scholar]
  76. Li Z. Lan J. Wu Y. Ding Y. Zhang T. Homotypic cell membrane-camouflaged biomimetic PLGA nanoparticle loading triptolide for the treatment of hepatocellular carcinoma. Drug Deliv. 2024 31 1 2354687 10.1080/10717544.2024.2354687 38823413
    [Google Scholar]
  77. Lu Y. Fan L. Wang J. Hu M. Wei B. Shi P. Li J. Feng J. Zheng Y. Cancer cell membrane-based materials for biomedical applications. Small 2024 20 7 e2306540 10.1002/smll.202306540 37814370
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018377065250717004240
Loading
/content/journals/cdd/10.2174/0115672018377065250717004240
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test