
Full text loading...
Hepatocellular carcinoma (HCC) is the sixth most common malignant cancer worldwide, but the chemotherapy drugs used in the treatment of HCC patients have limited efficacy and cause severe side effects. To improve HCC treatment outcomes, a cancer cell membrane (CCM)-coated biomimetic nanodelivery system was designed to achieve enhanced anti-HCC effects.
Poly (lactic-co-glycolic acid) (PLGA) was used to carry both sorafenib, which is used to treat advanced HCC, and superparamagnetic iron oxide nanoparticles (SPIONs). The prepared nanoparticles (NPs) were coated with Huh-7 cell membranes to obtain biomimetic nanoparticles (SFINPs@CCM). The physicochemical properties of SFINPS@CCM were then characterized, and the drug loading efficiency, release rate, transverse relaxation rate for MRI, fluorescence targeting ability, and anti-HCC ability were evaluated.
The SFINPS@CCM were successfully prepared. The loading efficiency of sorafenib in the SFINPs was 88.24%. The cumulative amount of sorafenib released from the SFINPs@CCM at 72 h was 72.96%. In vitro magnetic resonance imaging (MRI) showed the transverse relaxation rate was 25.448 mM−1 s−1. Meanwhile, the fluorescent tracing verified the homologous targeting ability of SFINPs@CCM to Huh-7 cells. The cytotoxicity of SFINPS@CCM was 29.48±5.74%, which was significantly higher than that of the SFINPs.
The study indicates that the SFINPs@CCM system achieves efficient drug delivery and enhances anti-HCC efficacy. While the results are encouraging, further research is needed to confirm broader applicability.
The biomimetic nanodelivery system exhibits good targeting and excellent therapeutic effects, laying a technical foundation for preclinical studies.
Article metrics loading...
Full text loading...
References
Data & Media loading...
Supplements