Skip to content
2000
image of Smart Nanofibers in Wound Healing: Exploring Novel Combinations and Applications

Abstract

Due to certain limitations of traditional therapies, millions of people all over the world suffering from chronic wounds are exploring new treatments. As single-layer nanofibers cannot meet different wound surface needs, multifunctional nanofibers with drug combinations surpass the limitation of conventional drug-polymer combinations. Traditional wound therapies have several limitations, prompting the search for more effective alternatives, particularly for chronic wounds. Single-layer nanofibers often fail to meet diverse wound-healing needs, whereas multifunctional nanofibers, incorporating drug combinations, overcome these limitations. Polymers, widely used in nanofiber formulations, exhibit immunostimulatory, anti-inflammatory, and antimicrobial properties, enhancing the woundhealing process. However, due to a lack of certain biological properties, researchers have formed hybrid polymers, which are a combination of natural and synthetic polymers to meet wound healing requirements. Despite their advantages in biocompatibility and tunable mechanical properties, the clinical translation of polymer-based nanofibers faces challenges in regulatory approval and large-scale production. Most studies are still limited to evaluations, and standardized models or human trials are necessary to validate their long-term efficacy. Additionally, to meet FDA and DRAP guidelines, these materials must undergo rigorous biodegradation and cytotoxicity assessments before clinical adoption. Owing to several bioactive components (., vitamins, polyphenols) in structures of herbal extract, they have excellent anti-inflammatory, antimicrobial, and antioxidant properties. Nanofibrous scaffolds of herbal extracts are in prominence and can have a multi-target synergistic impact. Among several treatments for repairing wounds, growth factors have also been proven as an effective treatment for active healing. This review will provide the researchers with a holistic view of recently reported novel multifunctional nanofibers composed of different combinations of drugs, polymers, herbal extracts, growth factors, and biomolecules to promote wound healing. Although several multifunctional nanofibers have been prepared and shown excellent properties for wound healing therapy, still development of multifunctional nanofibers still needs to be focused on. In a nutshell, multifunctional nanofibers have become very famous in the wound healing process, and a better scale-up of these nanofibers in the coming era will result in commercialization, and products of these nanofibers will become more popular.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018376778250616113903
2025-07-01
2025-09-25
Loading full text...

Full text loading...

References

  1. Ye J. Su K.L. Xu Y.H. Yang Y. Zhou Q. Gao W. Cai X-T. Wei Q-Y. Cao M. Cao P. Effect of salivary antimicrobial factors on microbial composition of tongue coating in patients with coronary heart disease with phlegm-stasis syndrome. World J. Tradit. Chin. Med. 2022 8 1 123 130 10.4103/wjtcm.wjtcm_34_21
    [Google Scholar]
  2. Wang X. Chen J.D.Z. Therapeutic potential and mechanisms of sacral nerve stimulation for gastrointestinal diseases. J. Transl. Int. Med. 2023 11 2 115 127 10.2478/jtim‑2023‑0086 37408571
    [Google Scholar]
  3. Qi Q. Li R. Wang C. Hou G. Li C. Embryonic perfect repair inspired electrospun nanofibers dressing with temperature-sensitive and antibacterial properties for wound healing. Front. Microbiol. 2023 14 1233559 10.3389/fmicb.2023.1233559 37520366
    [Google Scholar]
  4. Tam Pham T.M. Cuc Le T.T. Tran V.H. Nguyen V.T. Isolation and identification of two flavonoid compounds from acclimatized Angelica acutiloba kitagawa growing in Vietnam. World J. Tradit. Chin. Med. 2022 8 3 413 416 10.4103/2311‑8571.352471
    [Google Scholar]
  5. Ghanem R.M. Kospa D.A. Ahmed A.I. Ibrahim A.A. Gebreil A. Construction of thickness-controllable bimetallic sulfides/reduced graphene oxide as a binder-free positive electrode for hybrid supercapacitors. RSC Advances 2023 13 42 29252 29269 10.1039/D3RA05326A 37809023
    [Google Scholar]
  6. Del Gaudio P. Amante C. Civale R. Bizzarro V. Petrella A. Pepe G. Campiglia P. Russo P. Aquino R.P. In situ gelling alginate-pectin blend particles loaded with Ac2-26: A new weapon to improve wound care armamentarium. Carbohydr. Polym. 2020 227 115305 10.1016/j.carbpol.2019.115305 31590879
    [Google Scholar]
  7. Ghasemian Lemraski E. Jahangirian H. Dashti M. Khajehali E. Sharafinia M.S. Rafiee-Moghaddam R. Webster T.J. Antimicrobial double-layer wound dressing based on chitosan/polyvinyl alcohol/copper: in vitro and in vivo assessment. Int. J. Nanomedicine 2021 16 223 235 10.2147/IJN.S266692 33469282
    [Google Scholar]
  8. Alotaibi B.S. Khan A.K. Kharaba Z. Yasin H. Yasmin R. Ijaz M. Khan M. Murtaza G. Development of poly(vinyl alcohol)–chitosan composite nanofibers for dual drug therapy of wounds. ACS Omega 2024 9 11 acsomega.3c08856 10.1021/acsomega.3c08856 38524467
    [Google Scholar]
  9. Bhattarai N. Edmondson D. Veiseh O. Matsen F.A. Zhang M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 2005 26 31 6176 6184 10.1016/j.biomaterials.2005.03.027 15885770
    [Google Scholar]
  10. Chen K. Wang F. Liu S. Wu X. Xu L. Zhang D. In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. Int. J. Biol. Macromol. 2020 148 501 509 10.1016/j.ijbiomac.2020.01.156 31958554
    [Google Scholar]
  11. Yang M. Xu G.H. Isobaric tag for relative and absolute quantitation-based proteomics for investigating the effect of Guasha on lumbar disc herniation in rats. World J. Tradit. Chin. Med. 2023 9 2 160 166 10.4103/2311‑8571.370107
    [Google Scholar]
  12. Fahimirad S. Ajalloueian F. Naturally-derived electrospun wound dressings for target delivery of bio-active agents. Int. J. Pharm. 2019 566 307 328 10.1016/j.ijpharm.2019.05.053 31125714
    [Google Scholar]
  13. Das A. Uppaluri R. Das C. Feasibility of poly-vinyl alcohol/starch/glycerol/citric acid composite films for wound dressing applications. Int. J. Biol. Macromol. 2019 131 998 1007 10.1016/j.ijbiomac.2019.03.160 30914366
    [Google Scholar]
  14. Jiang X. Zeng Y.E. Li C. Wang K. Yu D.G. Enhancing diabetic wound healing: Advances in electrospun scaffolds from pathogenesis to therapeutic applications. Front. Bioeng. Biotechnol. 2024 12 1354286 10.3389/fbioe.2024.1354286 38375451
    [Google Scholar]
  15. Wade R.J. Burdick J.A. Advances in nanofibrous scaffolds for biomedical applications: From electrospinning to self-assembly. Nano Today 2014 9 6 722 742
    [Google Scholar]
  16. Peng S. Jin G. Li L. Li K. Srinivasan M. Ramakrishna S. Chen J. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem. Soc. Rev. 2016 45 5 1225 1241 10.1039/C5CS00777A 26727278
    [Google Scholar]
  17. Bhattarai R.S. Bachu R.D. Boddu S.H.S. Bhaduri S. Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery. Pharmaceutics 2018 11 1 5 10.3390/pharmaceutics11010005. 30586852
    [Google Scholar]
  18. Liu M. Duan X.P. Li Y.M. Yang D.P. Long Y.Z. Electrospun nanofibers for wound healing. Mater. Sci. Eng. C 2017 76 1413 1423 10.1016/j.msec.2017.03.034 28482508
    [Google Scholar]
  19. Xie X. Li D. Chen Y. Shen Y. Yu F. Wang W. Yuan Z. Morsi Y. Wu J. Mo X. Conjugate electrospun 3D gelatin nanofiber sponge for rapid hemostasis. Adv. Healthc. Mater. 2021 10 20 2100918 10.1002/adhm.202100918 34235873
    [Google Scholar]
  20. Fratzl P. Collagen: Structure and mechanics, an introduction. Collagen: Structure and mechanics. Cham Springer 2008 1 13
    [Google Scholar]
  21. Griffith LG Naughton G Tissue engineering--current challenges and expanding opportunities. Science 2002 295 5557 1009 1014 10.1126/science.1069210
    [Google Scholar]
  22. Liu X. Xu H. Zhang M. Yu D.G. Electrospun medicated nanofibers for wound healing. Membranes 2021 11 10 770 10.3390/membranes11100770 34677536
    [Google Scholar]
  23. Whitney J.D. Overview: Acute and chronic wounds. Nurs. Clin. North Am. 2005 40 2 191 205, v 10.1016/j.cnur.2004.09.002 15924889
    [Google Scholar]
  24. Upton D. Solowiej K. Hender C. Woo K.Y. Stress and pain associated with dressing change in patients with chronic wounds. J. Wound Care 2012 21 2 53 61 10.12968/jowc.2012.21.2.53 22584524
    [Google Scholar]
  25. Upreti S. Prusty J.S. Kumar A. Samant M. Identification of SARS-CoV-2 spike protein inhibitors from Urtica dioica to develop herbal-based therapeutics against COVID-19. World J. Tradit. Chin. Med. 2023 9 1 61 70 10.4103/2311‑8571.358784
    [Google Scholar]
  26. Sorg H. Tilkorn D.J. Hager S. Hauser J. Mirastschijski U. Skin wound healing: An update on the current knowledge and concepts. Eur. Surg. Res. 2017 58 1-2 81 94 27974711
    [Google Scholar]
  27. Guo M. Cao Q. Xia S. Cao X. Chen J. Qian Y. Bao X. Xu Y. A newly-synthesized compound CP-07 alleviates microglia-mediated neuroinflammation and ischemic brain injury via inhibiting STAT3 phosphorylation. J. Transl. Int. Med. 2023 11 2 156 168 10.2478/jtim‑2023‑0090 37408577
    [Google Scholar]
  28. Driver V.R. Gould L.J. Dotson P. Gibbons G.W. Li W.W. Ennis W.J. Kirsner R.S. Eaglstein W.H. Bolton L.L. Carter M.J. Identification and content validation of wound therapy clinical endpoints relevant to clinical practice and patient values for FDA approval. Part 1. Survey of the wound care community. Wound Repair Regen. 2017 25 3 454 465 28370922
    [Google Scholar]
  29. Mouro C. Gomes A.P. Ahonen M. Fangueiro R. Gouveia I.C. Chelidonium majus L. incorporated emulsion electrospun PCL/PVA_PEC nanofibrous meshes for antibacterial wound dressing applications. Nanomaterials 2021 11 7 1785 34361171
    [Google Scholar]
  30. Tamayol A. Hassani Najafabadi A. Mostafalu P. Yetisen A.K. Commotto M. Aldhahri M. Abdel-Wahab M.S. Najafabadi Z.I. Latifi S. Akbari M. Annabi N. Yun S.H. Memic A. Dokmeci M.R. Khademhosseini A. Biodegradable elastic nanofibrous platforms with integrated flexible heaters for on-demand drug delivery. Sci. Rep. 2017 7 1 9220 28835675
    [Google Scholar]
  31. Huang H.Y. Skripka A. Zaroubi L. Findlay B.L. Vetrone F. Skinner C. Oh J.K. Cuccia L.A. Electrospun upconverting nanofibrous hybrids with smart NIR-light-controlled drug release for wound dressing. ACS Appl. Bio Mater. 2020 3 10 7219 7227 35019380
    [Google Scholar]
  32. Schneider R. Mercante L.A. Andre R.S. Brandão H.M. Mattoso L.H.C. Correa D.S. Biocompatible electrospun nanofibers containing cloxacillin: Antibacterial activity and effect of pH on the release profile. React. Funct. Polym. 2018 132 26 35 10.1016/j.reactfunctpolym.2018.09.001
    [Google Scholar]
  33. Xia T.Y. Wang Y. Yang Y.N. Wang W.J. Ding Z.H. Zhong R.X. Chen Y. Li W. Peng M-M. Li C-Q. Shang L-F. Liu B. Wang Z-Y. Shi C-R. Shu Z-P. Extraction, purification, and anti-Inflammatory activity of steroid fraction from Physalis Alkekengi L. Var. Franchetii (Mast.) makino. World J. Tradit. Chin. Med. 2023 9 2 167 177 10.4103/2311‑8571.372143
    [Google Scholar]
  34. Teodoro K.B. Santos D.M. Ballesteros C.A. Multifunctional Wound Dressings Based on Electrospun Nanofibers. Electrospun Nanofibers: Principles, Technology and Novel Applications. Cham Springer 2022 297 329 10.1007/978‑3‑030‑99958‑2_11
    [Google Scholar]
  35. dos Santos D.M. Correa D.S. Medeiros E.S. Oliveira J.E. Mattoso L.H.C. Advances in functional polymer nanofibers: From spinning fabrication techniques to recent biomedical applications. ACS Appl. Mater. Interfaces 2020 12 41 45673 45701 10.1021/acsami.0c12410 32937068
    [Google Scholar]
  36. Wang J. Planz V. Vukosavljevic B. Windbergs M. Multifunctional electrospun nanofibers for wound application – Novel insights into the control of drug release and antimicrobial activity. Eur. J. Pharm. Biopharm. 2018 129 175 183 10.1016/j.ejpb.2018.05.035 29859280
    [Google Scholar]
  37. Goh Y.F. Shakir I. Hussain R. Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J. Mater. Sci. 2013 48 8 3027 3054 10.1007/s10853‑013‑7145‑8
    [Google Scholar]
  38. Malafatti J.O.D. Bernardo M.P. Moreira F.K.V. Ciol H. Inada N.M. Mattoso L.H.C. Paris E.C. Electrospun poly(lactic acid) nanofibers loaded with silver sulfadiazine/[Mg–Al]‐layered double hydroxide as an antimicrobial wound dressing. Polym. Adv. Technol. 2020 31 6 1377 1387 10.1002/pat.4867
    [Google Scholar]
  39. Zheng Q. Xi Y. Weng Y. Functional electrospun nanofibers: Fabrication, properties, and applications in wound-healing process. RSC Advances 2024 14 5 3359 3378 10.1039/D3RA07075A 38259986
    [Google Scholar]
  40. Cao H. Huang J. Chang J. Zhu Y. Liang J. Sun C. Lin J. Predictors of progression in idiopathic inflammatory myopathies with interstitial lung disease. J. Transl. Int. Med. 2023 11 1 46 56 10.2478/jtim‑2022‑0029 37533847
    [Google Scholar]
  41. Zhou F. Jia X. Yang Y. Yang Q. Gao C. Zhao Y. Fan Y. Yuan X. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells. Mater. Sci. Eng. C 2016 68 623 631 10.1016/j.msec.2016.06.036 27524062
    [Google Scholar]
  42. Norouzi Z. Abdouss M. Electrospun nanofibers using β-cyclodextrin grafted chitosan macromolecules loaded with indomethacin as an innovative drug delivery system. Int. J. Biol. Macromol. 2023 233 123518 10.1016/j.ijbiomac.2023.123518 36773879
    [Google Scholar]
  43. Bardoňová L. Kotzianová A. Skuhrovcová K. Židek O. Vágnerová H. Kulhánek J. Hanová T. Knor M. Starigazdová J. Mamulová Kutláková K. Velebný V. Effects of emulsion, dispersion, and blend electrospinning on hyaluronic acid nanofibers with incorporated antiseptics. Int. J. Biol. Macromol. 2022 194 726 735 10.1016/j.ijbiomac.2021.11.118 34822823
    [Google Scholar]
  44. Ibrahim N.A. Bibi S. Khan A.K. Murtaza G. Development and butyrylcholinesterase/monoamine oxidase inhibition potential of PVA- Moringa oleifera developed nanofibers. J. Exp. Nanosci. 2022 17 1 34 46 10.1080/17458080.2021.2016712
    [Google Scholar]
  45. Deineka V. Sulaieva O. Pernakov N. Radwan-Pragłowska J. Janus L. Korniienko V. Husak Y. Yanovska A. Liubchak I. Yusupova A. Piątkowski M. Zlatska A. Pogorielov M. Hemostatic performance and biocompatibility of chitosan-based agents in experimental parenchymal bleeding. Mater. Sci. Eng. C 2021 120 111740 10.1016/j.msec.2020.111740 33545883
    [Google Scholar]
  46. Liang Y. He J. Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021 15 8 12687 12722 10.1021/acsnano.1c04206 34374515
    [Google Scholar]
  47. Xi Y. Ge J. Wang M. Chen M. Niu W. Cheng W. Xue Y. Lin C. Lei B. Bioactive anti-inflammatory, antibacterial, antioxidative silicon-based nanofibrous dressing enables cutaneous tumor photothermo-chemo therapy and infection-induced wound healing. ACS Nano 2020 14 3 2904 2916 10.1021/acsnano.9b07173 32031782
    [Google Scholar]
  48. Lai W.F. Reddy O.S. Zhang D. Wu H. Wong W.T. Cross-linked chitosan/lysozyme hydrogels with inherent antibacterial activity and tuneable drug release properties for cutaneous drug administration. Sci. Technol. Adv. Mater. 2023 24 1 2167466 10.1080/14686996.2023.2167466 36846525
    [Google Scholar]
  49. He C. Liu X. Zhou Z. Liu N. Ning X. Miao Y. Long Y. Wu T. Leng X. Harnessing biocompatible nanofibers and silver nanoparticles for wound healing: Sandwich wound dressing versus commercial silver sulfadiazine dressing. Mater. Sci. Eng. C 2021 128 112342 10.1016/j.msec.2021.112342 34474892
    [Google Scholar]
  50. Raei H. Jahanshahi M. Morad H. Three-layer sandwich-like drug-loaded nanofibers of insulin, titanium oxide Nanotubes and Nitroglycerin as a promising wound healing candidate. Mater. Chem. Phys. 2022 292 126767 10.1016/j.matchemphys.2022.126767
    [Google Scholar]
  51. Nezamoleslami S. Fattahi A. Nemati H. Bagrezaie F. Pourmanouchehri Z. Kiaie S.H. Electrospun sandwich-structured of polycaprolactone/gelatin-based nanofibers with controlled release of ceftazidime for wound dressing. Int. J. Biol. Macromol. 2023 236 123819 10.1016/j.ijbiomac.2023.123819 36870631
    [Google Scholar]
  52. Lee C.H. Singla A. Lee Y. Biomedical applications of collagen. Int. J. Pharm. 2001 221 1-2 1 22 10.1016/S0378‑5173(01)00691‑3 11397563
    [Google Scholar]
  53. Zhang L. Webster T.J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 2009 4 1 66 80 10.1016/j.nantod.2008.10.014
    [Google Scholar]
  54. Rath G. Hussain T. Chauhan G. Garg T. Goyal A.K. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J. Drug Target. 2016 24 6 520 529 10.3109/1061186X.2015.1095922 26487102
    [Google Scholar]
  55. Zhan A. Chen L. Sun W. Tang Y. Chen J. Yu D. Zhang W. Enhancement of diabetic wound healing using a core-shell nanofiber platform with sequential antibacterial, angiogenic, and collagen deposition activities. Mater. Des. 2022 218 110660 10.1016/j.matdes.2022.110660
    [Google Scholar]
  56. Râpă M. Gaidau C. Mititelu-Tartau L. Berechet M.D. Berbecaru A.C. Rosca I. Chiriac A.P. Matei E. Predescu A.M. Predescu C. Bioactive collagen hydrolysate-chitosan/essential oil electrospun nanofibers designed for medical wound dressings. Pharmaceutics 2021 13 11 1939 10.3390/pharmaceutics13111939 34834354
    [Google Scholar]
  57. Zhang Y. Gao X. Tang X. Peng L. Zhang H. Zhang S. Hu Q. Li J. A dual pH- and temperature-responsive hydrogel produced in situ crosslinking of cyclodextrin-cellulose for wound healing. Int. J. Biol. Macromol. 2023 253 Pt 3 126693 10.1016/j.ijbiomac.2023.126693 37703977
    [Google Scholar]
  58. Liu Y. Huang S. Liang S. Lin P. Lai X. Lan X. Wang H. Tang Y. Gao B. Phase change material-embedded multifunctional janus nanofiber dressing with directional moisture transport, controlled release of anti-inflammatory drugs, and synergistic antibacterial properties. ACS Appl. Mater. Interfaces 2023 15 45 52244 52261 10.1021/acsami.3c11903 37909419
    [Google Scholar]
  59. Habibi S. Mohammadi T. HMTShirazi R. Atyabi F. Kiani M. Asadi A.A. A bilayer mupirocin/bupivacaine-loaded wound dressing based on chitosan/poly (vinyl alcohol) nanofibrous mat: Preparation, characterization, and controlled drug release. Int. J. Biol. Macromol. 2023 240 124399 10.1016/j.ijbiomac.2023.124399 37059279
    [Google Scholar]
  60. Jaberifard F. Ramezani S. Ghorbani M. Arsalani N. Mortazavi Moghadam F. Investigation of wound healing efficiency of multifunctional eudragit/soy protein isolate electrospun nanofiber incorporated with ZnO loaded halloysite nanotubes and allantoin. Int. J. Pharm. 2023 630 122434 10.1016/j.ijpharm.2022.122434 36435502
    [Google Scholar]
  61. Monavari M. Sohrabi R. Motasadizadeh H. Monavari M. Fatahi Y. Ejarestaghi N.M. Fuentes-Chandia M. Leal-Egaña A. Akrami M. Homaeigohar S. Levofloxacin loaded poly (ethylene oxide)-chitosan/quercetin loaded poly (D,L-lactide-co-glycolide) core-shell electrospun nanofibers for burn wound healing. Front. Bioeng. Biotechnol. 2024 12 1352717 10.3389/fbioe.2024.1352717 38605986
    [Google Scholar]
  62. Hassiba A. El Zowalaty M. Webster T. Abdullah A. Nasrallah G. Khalil K. Luyt A. Elzatahry A. Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications. Int. J. Nanomedicine 2017 12 2205 2213 10.2147/IJN.S123417 28356737
    [Google Scholar]
  63. Ali I.H. Khalil I.A. El-Sherbiny I.M. Design, development, in-vitro and in-vivo evaluation of polylactic acid-based multifunctional nanofibrous patches for efficient healing of diabetic wounds. Sci. Rep. 2023 13 1 3215 10.1038/s41598‑023‑29032‑x 36828848
    [Google Scholar]
  64. Anand S. Pandey P. Begum M.Y. Chidambaram K. Arya D.K. Gupta R.K. Sankhwar R. Jaiswal S. Thakur S. Rajinikanth P.S. Electrospun biomimetic multifunctional nanofibers loaded with ferulic acid for enhanced antimicrobial and wound-healing activities in STZ-Induced diabetic rats. Pharmaceuticals 2022 15 3 302 10.3390/ph15030302 35337100
    [Google Scholar]
  65. Wang Y. Zhao G. Novel fabrication and development of multifunctional Zn/Fu@Cs nanofibers material for wound care and operate room infection control. Mater. Res. Express 2023 10 1 015002 10.1088/2053‑1591/ac9bd3
    [Google Scholar]
  66. Juncos Bombin A.D. Dunne N.J. McCarthy H.O. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater. Sci. Eng. C 2020 114 110994 10.1016/j.msec.2020.110994 32993991
    [Google Scholar]
  67. Boateng J. Catanzano O. Advanced therapeutic dressings for effective wound healing—a review. J. Pharm. Sci. 2015 104 11 3653 3680 10.1002/jps.24610 26308473
    [Google Scholar]
  68. Talebi N. Lopes D. Lopes J. Macário-Soares A. Dan A.K. Ghanbari R. Kahkesh K.H. Peixoto D. Giram P.S. Raza F. Veiga F. Sharifi E. Hamishehkar H. Paiva-Santos A.C. Natural polymeric nanofibers in transdermal drug delivery. Appl. Mater. Today 2023 30 101726 10.1016/j.apmt.2022.101726
    [Google Scholar]
  69. He J. Liang Y. Shi M. Guo B. Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing. Chem. Eng. J. 2020 385 123464 10.1016/j.cej.2019.123464
    [Google Scholar]
  70. Khalil H.P.S.A. Jummaat F. Yahya E.B. Olaiya N.G. Adnan A.S. Abdat M. N A M N. Halim A.S. Kumar U.S.U. Bairwan R. Suriani A.B. A review on micro-to nanocellulose biopolymer scaffold forming for tissue engineering applications. Polymers 2020 12 9 2043 10.3390/polym12092043 32911705
    [Google Scholar]
  71. Jeevanandam J. Pan S. Rodrigues J. Elkodous M.A. Danquah M.K. Medical applications of biopolymer nanofibers. Biomater. Sci. 2022 10 15 4107 4118 10.1039/D2BM00701K 35788587
    [Google Scholar]
  72. Winkler M.A. Dib C. Ljubimov A.V. Saghizadeh M. Targeting miR-146a to treat delayed wound healing in human diabetic organ-cultured corneas. PLoS One 2014 9 12 114692 10.1371/journal.pone.0114692 25490205
    [Google Scholar]
  73. Hardwicke J.T. Hart J. Bell A. Duncan R. Thomas D.W. Moseley R. The effect of dextrin–rhEGF on the healing of full-thickness, excisional wounds in the (db/db) diabetic mouse. J. Control. Release 2011 152 3 411 417 10.1016/j.jconrel.2011.03.016 21435363
    [Google Scholar]
  74. Liu H. Wang C. Li C. Qin Y. Wang Z. Yang F. Li Z. Wang J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018 8 14 7533 7549 10.1039/C7RA13510F 35539132
    [Google Scholar]
  75. Augustine R. Malik H.N. Singhal D.K. Mukherjee A. Malakar D. Kalarikkal N. Thomas S. Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J. Polym. Res. 2014 21 3 347 10.1007/s10965‑013‑0347‑6
    [Google Scholar]
  76. Itoh H. Li Y. Chan K.H.K. Kotaki M. Morphology and mechanical properties of PVA nanofibers spun by free surface electrospinning. Polym. Bull. 2016 73 10 2761 2777 10.1007/s00289‑016‑1620‑8
    [Google Scholar]
  77. Ahmed R. Tariq M. Ali I. Asghar R. Noorunnisa Khanam P. Augustine R. Hasan A. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int. J. Biol. Macromol. 2018 120 Pt A 385 393 10.1016/j.ijbiomac.2018.08.057 30110603
    [Google Scholar]
  78. Sill T.J. von Recum H.A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008 29 13 1989 2006 10.1016/j.biomaterials.2008.01.011 18281090
    [Google Scholar]
  79. Schulte-Werning L.V. Murugaiah A. Singh B. Johannessen M. Engstad R.E. Škalko-Basnet N. Holsæter A.M. Multifunctional nanofibrous dressing with antimicrobial and anti-inflammatory properties prepared by needle-free electrospinning. Pharmaceutics 2021 13 9 1527 10.3390/pharmaceutics13091527 34575602
    [Google Scholar]
  80. Ahmed S.A. Gibriel A.A.Y. Abdellatif A.K. Ebied H.M. Evaluation of food products fortified with oyster shell for the prevention and treatment of osteoporosis. J. Food Sci. Technol. 2015 52 10 6816 6820 10.1007/s13197‑015‑1725‑3 26396435
    [Google Scholar]
  81. Sharaf S.S. El-Shafei A.M. Refaie R. Gibriel A.A. Abdel-Sattar R. Antibacterial and wound healing properties of cellulose acetate electrospun nanofibers loaded with bioactive glass nanoparticles; in-vivo study. Cellulose 2022 29 8 4565 4577 10.1007/s10570‑022‑04570‑1
    [Google Scholar]
  82. Ashfaq M. Khan S. Verma N. Synthesis of PVA-CAP-based biomaterial in situ dispersed with Cu nanoparticles and carbon micro-nanofibers for antibiotic drug delivery applications. Biochem. Eng. J. 2014 90 79 89 10.1016/j.bej.2014.05.016
    [Google Scholar]
  83. Perelshtein I. Applerot G. Perkas N. Wehrschuetz-Sigl E. Hasmann A. Guebitz G. Gedanken A. CuO–cotton nanocomposite: Formation, morphology, and antibacterial activity. Surf. Coat. Tech. 2009 204 1-2 54 57 10.1016/j.surfcoat.2009.06.028
    [Google Scholar]
  84. Zhang H. Zhang M. Wang X. Zhang M. Wang X. Li Y. Cui Z. Chen X. Han Y. Zhao W. Electrospun multifunctional nanofibrous mats loaded with bioactive anemoside B4 for accelerated wound healing in diabetic mice. Drug Deliv. 2022 29 1 174 185 10.1080/10717544.2021.2021319 34978237
    [Google Scholar]
  85. Yu F. Khan A.R. Li Y. Zhao B. Xie X. EL-Newehy M. EL-Hamshary H. Morsi Y. Li J. Pan J. Mo X. A multifunctional nanofiber reinforced photo-crosslinking hydrogel for skin wound healing. Compos., Part B Eng. 2022 247 110294 10.1016/j.compositesb.2022.110294
    [Google Scholar]
  86. Demir M.M. Yilgor I. Yilgor E. Erman B. Electrospinning of polyurethane fibers. Polymer 2002 43 11 3303 3309 10.1016/S0032‑3861(02)00136‑2
    [Google Scholar]
  87. Tan L. Hu J. Huang H. Han J. Hu H. Study of multi-functional electrospun composite nanofibrous mats for smart wound healing. Int. J. Biol. Macromol. 2015 79 469 476 10.1016/j.ijbiomac.2015.05.014 26003301
    [Google Scholar]
  88. Augustine G. Aarthy M. Thiagarajan H. Selvaraj S. Kamini N.R. Shanmugam G. Ayyadurai N. Self‐assembly and mechanical properties of engineered protein based multifunctional nanofiber for accelerated wound healing. Adv. Healthc. Mater. 2021 10 8 2001832 10.1002/adhm.202001832 33480482
    [Google Scholar]
  89. Ashraf R. Sofi H.S. Akram T. Rather H.A. Abdal-hay A. Shabir N. Vasita R. Alrokayan S.H. Khan H.A. Sheikh F.A. Fabrication of multifunctional cellulose/TiO 2 /Ag composite nanofibers scaffold with antibacterial and bioactivity properties for future tissue engineering applications. J. Biomed. Mater. Res. A 2020 108 4 947 962 10.1002/jbm.a.36872 31894888
    [Google Scholar]
  90. Liu Y. Wang D. Sun Z. Liu F. Du L. Wang D. Preparation and characterization of gelatin/chitosan/3-phenylacetic acid food-packaging nanofiber antibacterial films by electrospinning. Int. J. Biol. Macromol. 2021 169 161 170 10.1016/j.ijbiomac.2020.12.046 33309663
    [Google Scholar]
  91. Fathi M Ahmadi N Forouhar A Hamzeh Atani S. Natural hydrogels, the interesting carriers for herbal extracts. Food Rev. Inter. 2022 38 327 1 25 10.1080/87559129.2021.1885436
    [Google Scholar]
  92. Agarwal T. Tan S.A. Onesto V. Law J.X. Agrawal G. Pal S. Lim W.L. Sharifi E. Moghaddam F.D. Maiti T.K. Engineered herbal scaffolds for tissue repair and regeneration: Recent trends and technologies. Biomed. Eng. Adv. 2021 2 100015 10.1016/j.bea.2021.100015
    [Google Scholar]
  93. Ersanli C. Voidarou C.C. Tzora A. Fotou K. Zeugolis D.I. Skoufos I. Electrospun scaffolds as antimicrobial herbal extract delivery vehicles for wound healing. J. Funct. Biomater. 2023 14 9 481 10.3390/jfb14090481 37754895
    [Google Scholar]
  94. Al-Musawi S. Albukhaty S. Al-Karagoly H. Sulaiman G.M. Alwahibi M.S. Dewir Y.H. Soliman D.A. Rizwana H. Antibacterial activity of honey/chitosan nanofibers loaded with capsaicin and gold nanoparticles for wound dressing. Molecules 2020 25 20 4770 10.3390/molecules25204770 33080798
    [Google Scholar]
  95. Polikandrioti M. Vasilopoulos G. Koutelekos I. Panoutsopoulos G. Gerogianni G. Alikari V. Dousis E. Zartaloudi A. Depression in diabetic foot ulcer: Associated factors and the impact of perceived social support and anxiety on depression. Int. Wound J. 2020 17 4 900 909 10.1111/iwj.13348 32219987
    [Google Scholar]
  96. Anand S. Rajinikanth P.S. Arya D.K. Pandey P. Gupta R.K. Sankhwar R. Chidambaram K. Multifunctional biomimetic nanofibrous scaffold loaded with asiaticoside for rapid diabetic wound healing. Pharmaceutics 2022 14 2 273 10.3390/pharmaceutics14020273 35214006
    [Google Scholar]
  97. Yadav S. Arya D.K. Pandey P. Anand S. Gautam A.K. Ranjan S. Saraf S.A. Mahalingam Rajamanickam V. Singh S. Chidambaram K. Alqahtani T. Rajinikanth P.S. ECM mimicking biodegradable nanofibrous scaffold enriched with curcumin/ZnO to accelerate diabetic wound healing via multifunctional bioactivity. Int. J. Nanomedicine 2022 17 6843 6859 10.2147/IJN.S388264 36605559
    [Google Scholar]
  98. Chen P. Wang S. Huang Z. Multi-functionalized nanofibers with reactive oxygen species scavenging capability and fibrocartilage inductivity for tendon-bone integration. J. Mater. Sci. Technol. 2021 70 91 104 10.1016/j.jmst.2020.09.006
    [Google Scholar]
  99. Farahani H. Barati A. Arjomandzadegan M. Vatankhah E. Nanofibrous cellulose acetate/gelatin wound dressing endowed with antibacterial and healing efficacy using nanoemulsion of Zataria multiflora. Int. J. Biol. Macromol. 2020 162 762 773 32590085
    [Google Scholar]
  100. Ibrahim N.A. Kaleem S. Khan A.K. Murtaza G. Development and butyrylcholinesterase/ monoamine oxidase inhibition potential of PVA- Berberis lycium nanofibers. Green Proce. Synth. 2022 11 1 229 237 10.1515/gps‑2022‑0017
    [Google Scholar]
  101. Rynkowska E. Fatyeyeva K. Marais S. Kujawa J. Kujawski W. Chemically and thermally crosslinked PVA-based membranes: Effect on swelling and transport behavior. Polymers 2019 11 11 1799 10.3390/polym11111799 31684000
    [Google Scholar]
  102. Barikloo H. Ahmadi E. Ahmadi S. Evaluation of PE/POE/PA6 blends containing silica and clay toward nano composite packaging film. J. Food Meas. Charact. 2021 15 3 2297 2308 10.1007/s11694‑020‑00781‑x
    [Google Scholar]
  103. Khan A.K. Kaleem S. Pervaiz F. Sherazi T.A. Khan S.A. Khan F.A. Jamshaid T. Umar M.I. Hassan W. Ijaz M. Murtaza G. Antibacterial and wound healing potential of electrospun PVA/MMT nanofibers containing root extract of Berberis lycium. J. Drug Deliv. Sci. Technol. 2023 79 103987 10.1016/j.jddst.2022.103987
    [Google Scholar]
  104. Teodoro K.B.R. Alvarenga A.D. Marques Chagas P.A. Lopes R.G. Alves F. Stringasci M.D. Buzzá H.H. Inada N.M. Correa D.S. Synergistic tetracycline–curcumin association in biocompatible PCL nanostructured wound dressings. ACS Appl. Polym. Mater. 2024 6 9 5089 5101 10.1021/acsapm.4c00071
    [Google Scholar]
  105. Maan A.A. Nazir A. Khan M.K.I. Ahmad T. Zia R. Murid M. Abrar M. The therapeutic properties and applications of Aloe vera : A review. J. Herb. Med. 2018 12 1 10 10.1016/j.hermed.2018.01.002
    [Google Scholar]
  106. Miguel S. Ribeiro M. Coutinho P. Correia I. Electrospun polycaprolactone/aloe vera_chitosan nanofibrous asymmetric membranes aimed for wound healing applications. Polymers 2017 9 5 183 10.3390/polym9050183 30970863
    [Google Scholar]
  107. Ranjbar-Mohammadi M. Characteristics of aloe vera incorporated poly(ε-caprolactone)/gum tragacanth nanofibers as dressings for wound care. J. Ind. Text. 2018 47 7 1464 1477 10.1177/1528083717692595
    [Google Scholar]
  108. Ghorbani M. Nezhad-Mokhtari P. Ramazani S. Aloe vera-loaded nanofibrous scaffold based on Zein/Polycaprolactone/Collagen for wound healing. Int. J. Biol. Macromol. 2020 153 921 930 10.1016/j.ijbiomac.2020.03.036 32151718
    [Google Scholar]
  109. de Castro K.C. Silva E.K. Campos M.G.N. Mei L.H.I. Hyaluronic acid/polyvinyl alcohol electrospun nanofiber membranes loaded with plantago major extract for smart wound dressings. ACS Appl. Nano Mater. 2022 5 9 12616 12625 10.1021/acsanm.2c02402
    [Google Scholar]
  110. Shakiba M. Jahangiri P. Rahmani E. Hosseini S.M. Bigham A. Foroozandeh A. Tajiki A. Pourmadadi M. Nasiri S. Jouybar S. Abdouss M. Drug-loaded carbon nanotube incorporated in nanofibers: A multifunctional nanocomposite for smart chronic wound healing. ACS Appl. Polym. Mater. 2023 5 7 5662 5675 10.1021/acsapm.3c00965
    [Google Scholar]
  111. Ramalingam R. Dhand C. Mayandi V. Leung C.M. Ezhilarasu H. Karuppannan S.K. Prasannan P. Ong S.T. Sunderasan N. Kaliappan I. Kamruddin M. Barathi V.A. Verma N.K. Ramakrishna S. Lakshminarayanan R. Arunachalam K.D. Core–shell structured antimicrobial nanofiber dressings containing herbal extract and antibiotics combination for the prevention of biofilms and promotion of cutaneous wound healing. ACS Appl. Mater. Interfaces 2021 13 21 24356 24369 10.1021/acsami.0c20642 34024104
    [Google Scholar]
  112. Ranjbar-Mohammadi M. Rabbani S. Bahrami S.H. Joghataei M.T. Moayer F. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Mater. Sci. Eng. C 2016 69 1183 1191 10.1016/j.msec.2016.08.032 27612816
    [Google Scholar]
  113. Dai T. Qin Z. Wang S. Wang L. Yao J. Zhu G. A novel nanofibrous film with antibacterial, antioxidant, and thermoregulatory functions fabricated by coaxial electrospinning. Polym. Adv. Technol. 2022 33 12 4062 4071
    [Google Scholar]
  114. Greiner A. Wendorff J.H. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 2007 46 30 5670 5703 10.1002/anie.200604646 17585397
    [Google Scholar]
  115. Portaccio M. El-Masry M. Rossi Diano N. De Maio A. Grano V. Lepore M. Travascio P. Bencivenga U. Pagliuca N. Mita D.G. An amperometric sensor employing glucose oxidase immobilized on nylon membranes with different pore diameter and grafted with different monomers. J. Mol. Catal. B Enzym. 2002 18 1-3 49 67 10.1016/S1381‑1177(02)00058‑9
    [Google Scholar]
  116. Smith S. Goodge K. Delaney M. Struzyk A. Tansey N. Frey M. A comprehensive review of the covalent immobilization of biomolecules onto electrospun nanofibers. Nanomaterials 2020 10 11 2142 33121181
    [Google Scholar]
  117. Wang Z.G. Wan L.S. Liu Z.M. Huang X.J. Xu Z.K. Enzyme immobilization on electrospun polymer nanofibers: An overview. J. Mol. Catal., B Enzym. 2009 56 4 189 195 10.1016/j.molcatb.2008.05.005
    [Google Scholar]
  118. Vasita R. Katti D.S. Nanofibers and their applications in tissue engineering. Int. J. Nanomed. 2006 1 1 15 30 10.2147/nano.2006.1.1.15 17722259
    [Google Scholar]
  119. Zhang X. Wang Y. Gao Z. Mao X. Cheng J. Huang L. Tang J. Advances in wound dressing based on electrospinning nanofibers. J. Appl. Polym. Sci. 2024 141 1 54746 10.1002/app.54746
    [Google Scholar]
  120. Pierce G.F. Mustoe T.A. Pharmacologic enhancement of wound healing. Annu. Rev. Med. 1995 46 1 467 481 10.1146/annurev.med.46.1.467 7598479
    [Google Scholar]
  121. Obara K. Ishihara M. Ishizuka T. Fujita M. Ozeki Y. Maehara T. Saito Y. Yura H. Matsui T. Hattori H. Kikuchi M. Kurita A. Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials 2003 24 20 3437 3444 10.1016/S0142‑9612(03)00220‑5 12809772
    [Google Scholar]
  122. Yang Y. Xia T. Zhi W. Wei L. Weng J. Zhang C. Li X. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials 2011 32 18 4243 4254 10.1016/j.biomaterials.2011.02.042 21402405
    [Google Scholar]
  123. Yang Y. Xia T. Chen F. Wei W. Liu C. He S. Li X. Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats. Mol. Pharm. 2012 9 1 48 58 10.1021/mp200246b 22091745
    [Google Scholar]
  124. Xie Z. Paras C.B. Weng H. Punnakitikashem P. Su L.C. Vu K. Tang L. Yang J. Nguyen K.T. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater. 2013 9 12 9351 9359 10.1016/j.actbio.2013.07.030 23917148
    [Google Scholar]
  125. Li Z. Mei S. Dong Y. She F. Li P. Li Y. Kong L. Multi-functional core-shell nanofibers for wound healing. Nanomaterials 2021 11 6 1546 10.3390/nano11061546 34208135
    [Google Scholar]
  126. Corden T.J. Jones I.A. Rudd C.D. Christian P. Downes S. McDougall K.E. Physical and biocompatibility properties of poly-ε-caprolactone produced using in situ polymerisation: A novel manufacturing technique for long-fibre composite materials. Biomaterials 2000 21 7 713 724 10.1016/S0142‑9612(99)00236‑7 10711968
    [Google Scholar]
  127. Kweon H. Yoo M.K. Park I.K. Kim T.H. Lee H.C. Lee H.S. Oh J.S. Akaike T. Cho C.S. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 2003 24 5 801 808 10.1016/S0142‑9612(02)00370‑8 12485798
    [Google Scholar]
  128. Yang X. Ogbolu K.R. Wang H. Multifunctional nanofibrous scaffold for tissue engineering. J. Exp. Nanosci. 2008 3 4 329 345 10.1080/17458080701883707
    [Google Scholar]
  129. Wang Y. Li P. Xiang P. Lu J. Yuan J. Shen J. Electrospun polyurethane/keratin/AgNP biocomposite mats for biocompatible and antibacterial wound dressings. J. Mater. Chem. B Mater. Biol. Med. 2016 4 4 635 648 10.1039/C5TB02358K 32262945
    [Google Scholar]
  130. Zhou T. Wang N. Xue Y. Ding T. Liu X. Mo X. Sun J. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf. B Biointerfaces 2016 143 415 422 10.1016/j.colsurfb.2016.03.052 27037778
    [Google Scholar]
  131. Zhou T. Sui B. Mo X. Sun J. Multifunctional and biomimetic fish collagen/bioactive glass nanofibers: Fabrication, antibacterial activity and inducing skin regeneration in vitro and in vivo. Int. J. Nanomed. 2017 12 3495 3507 28496325
    [Google Scholar]
  132. Rodrigues J.P. da Costa Silva J.R. Ferreira B.A. Veloso L.I. Quirino L.S. Rosa R.R. Barbosa M.C. Rodrigues C.M. Gaspari P.B.F. Beletti M.E. Goulart L.R. Corrêa N.C.R. Development of collagenous scaffolds for wound healing: Characterization and in vivo analysis. J. Mater. Sci. Mater. Med. 2024 35 1 12 38315254
    [Google Scholar]
  133. Borges L.S. Dermargos A. Junior E.P.S. Weimann E. Lambertucci R.H. Hatanaka E. Melatonin decreases muscular oxidative stress and inflammation induced by strenuous exercise and stimulates growth factor synthesis. J. Pineal Res. 2015 58 2 166 172 10.1111/jpi.12202 25546615
    [Google Scholar]
  134. Wang X. The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci. Ther. 2009 15 4 345 357 10.1111/j.1755‑5949.2009.00105.x 19818070
    [Google Scholar]
  135. García J.J. López-Pingarrón L. Almeida-Souza P. Tres A. Escudero P. García-Gil F.A. Tan D.X. Reiter R.J. Ramírez J.M. Bernal-Pérez M. Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: A review. J. Pineal Res. 2014 56 3 225 237 10.1111/jpi.12128 24571249
    [Google Scholar]
  136. Manchester L.C. Coto-Montes A. Boga J.A. Andersen L.P.H. Zhou Z. Galano A. Vriend J. Tan D.X. Reiter R.J. Melatonin: An ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 2015 59 4 403 419 10.1111/jpi.12267 26272235
    [Google Scholar]
  137. Mirmajidi T. Chogan F. Rezayan A.H. Sharifi A.M. In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin. Int. J. Pharm. 2021 596 120213 10.1016/j.ijpharm.2021.120213 33493599
    [Google Scholar]
  138. Whitty A. Kohane D.S. Smart nanofiber wound dressing with pH-responsive drug release. US Patent 10,874,632 2021
  139. Li J. Segura T. Electrospun nanofiber scaffolds for wound healing. US Patent 11,298,456 2022
  140. van den Akker J.J. de Groot K. Smart electrospun nanofibers for chronic wound care. EP Patent 3578391A1 2019
  141. Zhao Y. Wang L. Multilayer smart nanofiber dressing for diabetic wounds. CN Patent 111256897A 2020
  142. Langer R. Karp J.M. Antimicrobial nanofibrous scaffolds for tissue engineering. WO Patent 2020145678A1 2020
/content/journals/cdd/10.2174/0115672018376778250616113903
Loading
/content/journals/cdd/10.2174/0115672018376778250616113903
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: multifunctional nanofibers ; Wound healing ; antimicrobial ; synergism ; growth factors
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test