Skip to content
2000
image of Cefadroxil-Mupirocin Integrated Electrospun Nanofiber Films for Burn Wound Therapy

Abstract

Introduction

This study aims to fabricate dual drug-loaded nanofibrous films made from polyvinyl alcohol (PVA) and chitosan, incorporating cefadroxil and mupirocin to meet the critical needs of burn wound care.

Methods

Electrospinning was utilized to fabricate cefadroxil- and mupirocin-loaded polyvinyl alcohol PVA/Chitosan nanofibers. Characterization of structural and morphological properties of these nanofibers was done through Fourier Transform IR Spectroscopy, Scanning Electron Microscopy, Thermal analysis by TGA, and XRD spectroscopy. The kinetic profiles of the drug release mechanisms were considered to determine the release of cefadroxil and mupirocin. Antibacterial activity was determined against the bacteria and , while the wound healing efficacy was tested in a rabbit model using full-thickness wounds.

Results

SEM analysis demonstrated the formation of uniform and smooth nanofibers possessing a well-defined morphology. FTIR spectroscopy confirmed the successful incorporation of cefadroxil and mupirocin into the PVA/Chitosan matrix. TGA analysis indicated the thermal stability of the nanofibers, while XRD results suggested that the drugs were either molecularly dispersed or in an amorphous state within the biopolymeric blend. Drug release studies showed distinct profiles, with an initial burst release followed by sustained drug release. Over 80% of mupirocin was released within the first 2 hours, while cefadroxil exhibited a cumulative release exceeding 60%. Antibacterial assays showed significant inhibition zones, with the largest being . studies utilizing a full-thickness rabbit wound model revealed that the drug-loaded nanofibers accelerated wound contraction, achieving approximately 90% closure by day 17, compared to less than 70% for the control.

Discussion

The dual drug-loaded PVA/Chitosan nanofiber films demonstrated excellent antibacterial efficacy and improved wound healing, indicating their therapeutic potential for burn wound management. The combination of cefadroxil and mupirocin within the nanofiber matrix enabled rapid initial drug release followed by sustained delivery, contributing to effective infection control and tissue regeneration.

Conclusion

The study demonstrates that cefadroxil-mupirocin nanofiber films provide superior antibacterial activity and faster wound healing rates, highlighting their potential in advanced burn wound management.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018374558250607134659
2025-06-18
2025-08-13
The full text of this item is not currently available.

References

  1. Ijaz M. Khan M. Multifunctional electrospun nanofiber films of polyacrylonitrile and polyvinyl alcohol incorporating rhamnose and therapeutic agents for enhanced healing of infected burn wounds. J. Biomater. Sci. Polym. Ed. 2025 1 33 10.1080/09205063.2024.2449297 39799519
    [Google Scholar]
  2. Wang M. Huang C. Chen Y. Ji Y. Yu D.G. Bligh S.W.A. Medicated tri-layer fibers based on cellulose acetate and polyvinylpyrrolidone for enhanced antibacterial and wound healing properties. Carbohy. Poly. 2025 348 Part A 122856 10.1016/j.carbpol.2024.122856
    [Google Scholar]
  3. Qi W. Li T. Zhang Z. Wu T. Preparation and characterization of oleogel-in-water pickering emulsions stabilized by cellulose nanocrystals. Food Hydrocoll. 2021 110 106206 10.1016/j.foodhyd.2020.106206
    [Google Scholar]
  4. Yu D.G. He W. He C. Liu H. Yang H. Versatility of electrospun Janus wound dressings. Nanomedicine (Lond.) 2024 1 8 10.1080/17435889.2024.2446139 39716850
    [Google Scholar]
  5. Li J. Lin H. Li J. Wang Y. Engineered lubricative lecithin-based electrospun nanofibers for the prevention of postoperative abdominal adhesion. Pharmaceutics 2024 16 12 1562 10.3390/pharmaceutics16121562 39771542
    [Google Scholar]
  6. Bakhsheshi-Rad H.R. Ismail A.F. Aziz M. Akbari M. Hadisi Z. Omidi M. Chen X. Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In vitro and in vivo assessment. Int. J. Biol. Macromol. 2020 149 513 521 10.1016/j.ijbiomac.2020.01.139 31954780
    [Google Scholar]
  7. Wang J. You C. Xu Y. Xie T. Wang Y. Research advances in electrospun nanofiber membranes for non-invasive medical applications. Micromachines (Basel) 2024 15 10 1226 10.3390/mi15101226 39459100
    [Google Scholar]
  8. Cai Z. Mo X. Zhang K. Fan L. Yin A. He C. Wang H. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. Int. J. Mol. Sci. 2010 11 9 3529 3539 10.3390/ijms11093529 20957110
    [Google Scholar]
  9. Wang Y. Xu Y. Zhai W. Zhang Z. Liu Y. Cheng S. Zhang H. In-situ growth of robust superlubricated nano-skin on electrospun nanofibers for post-operative adhesion prevention. Nat. Commun. 2022 13 1 5056 10.1038/s41467‑022‑32804‑0 36030284
    [Google Scholar]
  10. Sun J. Perry S.L. Schiffman J.D. Electrospinning nanofibers from chitosan/hyaluronic acid complex coacervates. Biomacromolecules 2019 20 11 4191 4198 10.1021/acs.biomac.9b01072 31613600
    [Google Scholar]
  11. Abdelgawad A.M. Hudson S.M. Rojas O.J. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr. Polym. 2014 100 166 178 10.1016/j.carbpol.2012.12.043 24188851
    [Google Scholar]
  12. Roque-Borda C.A. da Silva P.B. Rodrigues M.C. Azevedo R.B. Di Filippo L. Duarte J.L. Chorilli M. Festozo Vicente E. Pavan F.R. The challenge in the discovery of new drugs: Antimicrobial peptides against WHO-list of critical and high-priority bacteria. Pharmaceutics 2021 13 6 773 10.3390/pharmaceutics13060773 34064302
    [Google Scholar]
  13. Alizadeh S. Farshi P. Farahmandian N. Ahovan Z.A. Hashemi A. Majidi M. Azadbakht A. Darestanifarahani M. Sepehr K.S. Kundu S.C. Gholipourmalekabadi M. Synergetic dual antibiotics-loaded chitosan/poly (vinyl alcohol) nanofibers with sustained antibacterial delivery for treatment of XDR bacteria-infected wounds. Int. J. Biol. Macromol. 2023 229 22 34 10.1016/j.ijbiomac.2022.11.288 36460249
    [Google Scholar]
  14. Refat M.S. Sharshar T. Elsabawy K.M. El-Sayed M.Y. Adam A.M.A. Synthesis of new drug model has an effective antimicrobial and antitumors by combination of cephalosporin antibiotic drug with silver(I) ion in nano scale range: Chemical, physical and biological studies. J. Mol. Liq. 2017 244 169 181 10.1016/j.molliq.2017.09.005
    [Google Scholar]
  15. Li X. Wang C. Yang S. Liu P. Zhang B. Electrospun PCL/mupirocin and chitosan/lidocaine hydrochloride multifunctional double layer nanofibrous scaffolds for wound dressing applications. Int. J. Nanomedicine 2018 13 5287 5299 10.2147/IJN.S177256 30237715
    [Google Scholar]
  16. Pérez M. Robres P. Moreno B. Bolea R. Verde M.T. Pérez-Laguna V. Aspiroz C. Gilaberte Y. Rezusta A. Comparison of antibacterial activity and wound healing in a superficial abrasion mouse model of Staphylococcus aureus skin infection using photodynamic therapy based on methylene blue or mupirocin or both. Front. Med. (Lausanne) 2021 8 673408 10.3389/fmed.2021.673408 34113639
    [Google Scholar]
  17. Ye J. Su K.L. Xu Y.H. Yang Y. Zhou Q. Gao W. Cai X-T. Wei Q-Y. Cao M. Cao P. Effect of salivary antimicrobial factors on microbial composition of tongue coating in patients with coronary heart disease with phlegm-stasis syndrome. World J. Tradit. Chin. Med. 2022 8 1 123 130 10.4103/wjtcm.wjtcm_34_21
    [Google Scholar]
  18. Kamlungmak S. Nakpheng T. Kaewpaiboon S. Mudhar Bintang M.A.K. Prom-in S. Chunhachaichana C. Suwandecha T. Srichana T. Safety and biocompatibility of Mupirocin nanoparticle-loaded hydrogel on burn wound in rat model. Biol. Pharm. Bull. 2021 44 11 1707 1716 10.1248/bpb.b21‑00397 34719647
    [Google Scholar]
  19. Li Y. Jalili R.B. Ghahary A. Accelerating skin wound healing by M-CSF through generating SSEA-1 and -3 stem cells in the injured sites. Sci. Rep. 2016 6 1 28979 10.1038/srep28979 27363517
    [Google Scholar]
  20. Heydari M. Alvandi H. Jaymand M. Dolatyari H. Hosseinzadeh L. Rahmatabadi S.s. Arkan E. A two-layer nanofiber-Tragacanth hydrogel composite containing Lavender extract and Mupirocin as a wound dressing. Polym. Bull. 2023 81 373 389 10.1007/s00289‑022‑04655‑8
    [Google Scholar]
  21. Bian H. Wei L. Lin C. Ma Q. Dai H. Zhu J.Y. Lignin-containing cellulose nanofibril-reinforced polyvinyl alcohol hydrogels. ACS Sustain. Chem. Eng. 2018 6 4 4821 4828 10.1021/acssuschemeng.7b04172
    [Google Scholar]
  22. Park J.C. Ito T. Kim K.O. Kim K.W. Kim B.S. Khil M.S. Kim H.Y. Kim I.S. Electrospun poly(vinyl alcohol) nanofibers: Effects of degree of hydrolysis and enhanced water stability. Polym. J. 2010 42 3 273 276 10.1038/pj.2009.340
    [Google Scholar]
  23. Ahmed R. Tariq M. Ali I. Asghar R. Noorunnisa Khanam P. Augustine R. Hasan A. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int. J. Biol. Macromol. 2018 120 Pt A 385 393 10.1016/j.ijbiomac.2018.08.057 30110603
    [Google Scholar]
  24. Sharma D.K. Sood S. Raj P. Spectrophotometric determination of amoxicillin, ampicillin, cefalexin, and cefadroxil in pharmaceutical formulations, biological fluids, and spiked water samples. Anal. Chem. Lett. 2019 9 3 345 361 10.1080/22297928.2019.1644194
    [Google Scholar]
  25. Ye M. Zhou Y. Zhao H. Wang X. Magnetic microrobots with folate targeting for drug delivery. Cyborg. Bion. Syst. 2023 4 0019 10.34133/cbsystems.0019
    [Google Scholar]
  26. Jain M.M.S. Barhate S.D. Gayakwad M.B.P. Cefadroxil: A review of analytical methods. Spectroscopy (Springf.) 2018 9 2
    [Google Scholar]
  27. Li X. Liang J. Hu J. Ma L. Yang J. Zhang A. Jing Y. Song Y. Yang Y. Feng Z. Du Z. Wang Y. Luo T. He W. Shu X. Yang S. Li Q. Mei M. Luo S. Liao K. Zhang Y. He Y. He Y. Xiao M. Peng B. Screening for primary aldosteronism on and off interfering medications. Endocrine 2023 83 1 178 187 10.1007/s12020‑023‑03520‑6 37796417
    [Google Scholar]
  28. Verma R. Minocha N. Mittal V. Kaushik D. Exploring the potential of nano drug delivery systems in non-small cell lung cancer treatment: Recent developments and perspectives. Curr. Drug Ther. 2024 20 3 280 297 10.2174/0115748855282418240220112042
    [Google Scholar]
  29. Ahadu Shareef T.H.M. Divan Masood M.M. Navabshan I. Musthafa M.S. Phytoconstituents profiling of indigenous herbal drugs and its in vitro microbial, in silico biological examination against Severe acute respiratory syndrome coronavirus 2. World J. Tradit. Chin. Med. 2024 10 1 121 136 10.4103/wjtcm.wjtcm_37_23
    [Google Scholar]
  30. Rubenick J.B. Rubim A.M. Bellé F. Nogueira-Librelotto D.R. Rolim C.M.B. Preparation of mupirocin-loaded polymeric nanocapsules using essential oil of rosemary. Braz. J. Pharm. Sci. 2017 53 1 53 10.1590/s2175‑97902017000116101
    [Google Scholar]
  31. Alfadhel M. Nanofiber-based drug delivery systems: A review on its applications, challenges, and envisioning future perspectives. Curr. Drug Deliv. 2024 22 10.2174/0115672018325012240902122946 39257140
    [Google Scholar]
  32. Chinatangkul N. Pengon S. Krongrawa W. Chansatidkosol S. Limmatvapirat C. Limmatvapirat S. Designing electrospun shellac nanofibers with mupirocin using the Box-Behnken approach for topical wound care. J. Drug Deliv. Sci. Technol. 2022 76 103720 10.1016/j.jddst.2022.103720
    [Google Scholar]
  33. Yin Y. Guo C. Mu Q. Li W. Yang H. He Y. Dual-sensing nano-yarns for real-time pH and temperature monitoring in smart textiles. Chem. Eng. J. 2024 500 157115 10.1016/j.cej.2024.157115
    [Google Scholar]
  34. Swartz M.E. Krull I.S. Analytical method development and validation. 1st Ed. Boca Raton CRC press 2018 96 10.1201/9781315275161
    [Google Scholar]
  35. Basha M. AbouSamra M.M. Awad G.A. Mansy S.S. A potential antibacterial wound dressing of cefadroxil chitosan nanoparticles in situ gel: Fabrication, in vitro optimization and in vivo evaluation. Int. J. Pharm. 2018 544 1 129 140 10.1016/j.ijpharm.2018.04.021 29655798
    [Google Scholar]
  36. Kwiatkowski P. Pruss A. Wojciuk B. Dołęgowska B. Wajs-Bonikowska A. Sienkiewicz M. Mężyńska M. Łopusiewicz Ł. The influence of essential oil compounds on antibacterial activity of mupirocin-susceptible and induced low-level mupirocin-resistant MRSA strains. Molecules 2019 24 17 3105 10.3390/molecules24173105 31461850
    [Google Scholar]
  37. Liu Q. Ouyang W.C. Zhou X.H. Jin T. Wu Z.W. Antibacterial activity and drug loading of moxifloxacin-loaded poly (vinyl alcohol)/chitosan electrospun nanofibers. Front. Mater. 2021 8 643428 10.3389/fmats.2021.643428
    [Google Scholar]
  38. Abdeen Z. Swelling and reswelling characteristics of cross-linked poly (vinyl alcohol)/chitosan hydrogel film. J. Dispers. Sci. Technol. 2011 32 9 1337 1344 10.1080/01932691.2010.505869
    [Google Scholar]
  39. Liang S. Liu L. Huang Q. Yam K.L. Preparation of single or double-network chitosan/poly(vinyl alcohol) gel films through selectively cross-linking method. Carbohydr. Polym. 2009 77 4 718 724 10.1016/j.carbpol.2009.02.007
    [Google Scholar]
  40. Zhong S. Xin Z. Hou Y. Li Y. Huang H.W. Sun T. Shi Q. Wang H. Double-modal locomotion of a hydrogel ultra-soft magnetic miniature robot with switchable forms. Cyborg and Bionic Systems 2024 5 0077 10.34133/cbsystems.0077 38435709
    [Google Scholar]
  41. Li W. Wu J. Zhang J. Wang J. Xiang D. Luo S. Li J. Liu X. Puerarin-loaded PEG-PE micelles with enhanced anti-apoptotic effect and better pharmacokinetic profile. Drug Deliv. 2018 25 1 827 837 10.1080/10717544.2018.1455763 29587545
    [Google Scholar]
  42. Porte S. Joshi V. Shah K. Chauhan N.S. Plants’ steroidal saponins - A review on its pharmacology properties and analytical techniques. World J. Tradit. Chin. Med. 2022 8 3 350 385 10.4103/2311‑8571.353503
    [Google Scholar]
  43. Sairam M. Ramesh Babu V. Krishna Rao K.S.V. Aminabhavi T.M. Poly(methylmethacrylate)‐poly(vinyl pyrrolidone) microspheres as drug delivery systems: Indomethacin/cefadroxil loading and in vitro release study. J. Appl. Polym. Sci. 2007 104 3 1860 1865 10.1002/app.25844
    [Google Scholar]
  44. Fidan O. Zhan J. Ren J. Engineered production of bioactive natural products from medicinal plants. World J. Tradit. Chin. Med. 2022 8 1 59 76 10.4103/2311‑8571.336839
    [Google Scholar]
  45. Chen X. Zhao R. Wang X. Li X. Peng F. Jin Z. Gao X. Yu J. Wang C. Electrospun mupirocin loaded polyurethane fiber mats for anti-infection burn wound dressing application. J. Biomater. Sci. Polym. Ed. 2017 28 2 162 176 10.1080/09205063.2016.1262158 27848275
    [Google Scholar]
  46. Taheri P. Khajeh-Amiri A. Antibacterial cotton fabrics via immobilizing silver phosphate nanoparticles onto the chitosan nanofiber coating. Int. J. Biol. Macromol. 2020 158 282 289 10.1016/j.ijbiomac.2020.04.258 32376255
    [Google Scholar]
  47. Habibi S. Mohammadi T. HMTShirazi R. Atyabi F. Kiani M. Asadi A.A. A bilayer mupirocin/bupivacaine-loaded wound dressing based on chitosan/poly (vinyl alcohol) nanofibrous mat: Preparation, characterization, and controlled drug release. Int. J. Biol. Macromol. 2023 240 124399 10.1016/j.ijbiomac.2023.124399 37059279
    [Google Scholar]
  48. Shi T. Lu H. Zhu J. Zhou X. He C. Li F. Yang G. Naturally derived dual dynamic crosslinked multifunctional hydrogel for diabetic wound healing. Compos., Part B Eng. 2023 257 110687 10.1016/j.compositesb.2023.110687
    [Google Scholar]
  49. Liu S.T. Yu H. Hou A.J. Man W.J. Zhang J.X. Wang S. Wang X-J. Zheng S-W. Su X-L. Yang L. A review of the pharmacology, application, ethnopharmacology, phytochemistry, quality control, processing, toxicology, and pharmacokineticsof Paridis Rhizoma. World J. Tradit. Chin. Med. 2022 8 1 21 49 10.4103/wjtcm.wjtcm_4_21
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018374558250607134659
Loading
/content/journals/cdd/10.2174/0115672018374558250607134659
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Polyvinyl alcohol ; drug release ; chitosan ; antibacterial activity ; burn wound ; nanofiber
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test