Skip to content
2000
image of Nano-Engineered Cetuximab-Copper Complexes for Targeted Drug Delivery in Head and Neck Cancer

Abstract

Background

Head and neck squamous cell carcinomas (HNSCCs) require precise treatments. Cetuximab (Ceb) targets EGFR, and copper (Cu) compounds show promise in cancer therapy. This study investigates Ceb-Cu-p-NC, a nanoengineered drug delivery system, designed for enhanced HNSCC treatment. The objective of this study is to evaluate the potential of Ceb-Cu-p-NC in HNSCC treatment.

Methods

Cu precursor, Ceb, poloxamer-407, and hyaluronic acid were used to synthesize Ceb-Cu-p-NC. Fluorescence microscopy and UV spectrophotometry were utilized to determine Ceb integration efficiency, cellular interactions, and drug concentration. Drug release was assessed in-vitro studies at pH 5.4 and 7.4. Studies using A-253 cell lines were conducted to analyze cytotoxicity, viability, apoptosis, and cell cycle arrest.

Results

In this study, Ceb-Cu-p-NC showed size reduction (85-120 nm) and zeta potential shift. The Ceb integration was 34.92% with 82.5% entrapment efficiency. Cytotoxicity studies revealed enhanced efficacy (IC50: 27.55 mg/mL - 51.47 mg/mL). Flow cytometry showed significant apoptosis and S-phase cell cycle arrest, with statistically significant results ( < 0.05).

Discussion

Ceb conjugation to Cu-p-NC enhanced nanoparticle stability, reduced surface charge, and enabled targeted, controlled drug release. The formulation showed superior cytotoxicity, apoptosis induction, and S-phase arrest in A-253 cells compared to free Ceb, highlighting its potential as an effective targeted therapy for head and neck cancer.

Conclusion

Ceb-Cu-p-NC demonstrates targeted efficacy against HNSCCs, with controlled release, increased cytotoxicity, and apoptosis.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018373037250821092024
2025-08-28
2025-11-16
Loading full text...

Full text loading...

/deliver/fulltext/cdd/10.2174/0115672018373037250821092024/BMS-CDD-2024-HT35-5678-3.html?itemId=/content/journals/cdd/10.2174/0115672018373037250821092024&mimeType=html&fmt=ahah

References

  1. Burden of disease scenarios by state in the usa, 2022–50: A forecasting analysis for the global burden of disease study 2021. Lancet 2024 404 10469 2341 2370 GBD 2021 US Burden of Disease and Forecasting Collaborators. 10.1016/S0140‑6736(24)02246‑3
    [Google Scholar]
  2. Bizuayehu H.M. Ahmed K.Y. Kibret G.D. Dadi A.F. Belachew S.A. Bagade T. Tegegne T.K. Venchiarutti R.L. Kibret K.T. Hailegebireal A.H. Assefa Y. Khan M.N. Abajobir A. Alene K.A. Mengesha Z. Erku D. Enquobahrie D.A. Minas T.Z. Misgan E. Ross A.G. Global disparities of cancer and its projected burden in 2050. JAMA Netw. Open 2024 7 11 e2443198 10.1001/jamanetworkopen.2024.43198 39499513
    [Google Scholar]
  3. James N.D. Tannock I. N’Dow J. Feng F. Gillessen S. Ali S.A. Trujillo B. Al-Lazikani B. Attard G. Bray F. Compérat E. Eeles R. Fatiregun O. Grist E. Halabi S. Haran Á. Herchenhorn D. Hofman M.S. Jalloh M. Loeb S. MacNair A. Mahal B. Mendes L. Moghul M. Moore C. Morgans A. Morris M. Murphy D. Murthy V. Nguyen P.L. Padhani A. Parker C. Rush H. Sculpher M. Soule H. Sydes M.R. Tilki D. Tunariu N. Villanti P. Xie L.P. The lancet commission on prostate cancer: planning for the surge in cases. Lancet 2024 403 10437 1683 1722 10.1016/S0140‑6736(24)00651‑2 38583453
    [Google Scholar]
  4. Li Y. Liu H. Clinical powers of aminoacyl trna synthetase complex interacting multifunctional protein 1 (aimp1) for head-neck squamous cell carcinoma. Cancer Biomark. 2022 34 3 359 374 10.3233/CBM‑210340 35068446
    [Google Scholar]
  5. Kaur R. Bhardwaj A. Gupta S. Cancer treatment therapies: Traditional to modern approaches to combat cancers. Mol. Biol. Rep. 2023 50 11 9663 9676 10.1007/s11033‑023‑08809‑3 37828275
    [Google Scholar]
  6. Nasir A. Khan A. Li J. Naeem M. Khalil A.A.K. Khan K. Qasim M. Nanotechnology, a tool for diagnostics and treatment of cancer. Curr. Top. Med. Chem. 2021 21 15 1360 1376 10.2174/1568026621666210701144124 34218784
    [Google Scholar]
  7. Liu C. Shi Q. Huang X. Koo S. Kong N. Tao W. mRNA-based cancer therapeutics. Nat. Rev. Cancer 2023 23 8 526 543 10.1038/s41568‑023‑00586‑2 37311817
    [Google Scholar]
  8. Abd Kadir E. Uchegbu I.F. Schätzlein A.G. High-capacity glycol chitosan-based nanoemulsion for efficient delivery of disulfiram. Int. J. Pharm. 2023 640 123036 10.1016/j.ijpharm.2023.123036 37169106
    [Google Scholar]
  9. Liu H. Li Y. Potential roles of cornichon family ampa receptor auxiliary protein 4 (CNIH4) in head and neck squamous cell carcinoma. Cancer Biomark. 2022 35 4 439 450 10.3233/CBM‑220143 36404537
    [Google Scholar]
  10. Benelli R. Costa D. Salvini L. Tardito S. Tosetti F. Villa F. Zocchi M.R. Poggi A. Targeting of colorectal cancer organoids with zoledronic acid conjugated to the anti-EGFR antibody cetuximab. J. Immunother. Cancer 2022 10 12 e005660 10.1136/jitc‑2022‑005660 36543375
    [Google Scholar]
  11. Blaurock M. Busch C.J. Chemotherapy and targeted therapy of head and neck squamous cell carcinomas at the 2021 ASCO meeting. HNO 2022 70 4 265 270 10.1007/s00106‑022‑01152‑2 35257190
    [Google Scholar]
  12. Businello G. Fassan M. Degasperi S. Traverso G. Scarpa M. Angriman I. Kotsafti A. Castagliuolo I. Sbaraglia M. Bardini R. Scarpa M. Esophageal squamous cell carcinoma metachronous to head and neck cancers. Pathol. Res. Pract. 2021 219 153346 10.1016/j.prp.2021.153346 33545655
    [Google Scholar]
  13. Chen S.M.Y. Krinsky A.L. Woolaver R.A. Wang X. Chen Z. Wang J.H. Tumor immune microenvironment in head and neck cancers. Mol. Carcinog. 2020 59 7 766 774 10.1002/mc.23162 32017286
    [Google Scholar]
  14. Climova A. Pivovarova E. Szczesio M. Gobis K. Ziembicka D. Korga-Plewko A. Kubik J. Iwan M. Antos-Bielska M. Krzyżowska M. Czylkowska A. Anticancer and antimicrobial activity of new copper (II) complexes. J. Inorg. Biochem. 2023 240 112108 10.1016/j.jinorgbio.2022.112108 36592510
    [Google Scholar]
  15. Concu R. Cordeiro M.N.D.S. Cetuximab and the Head and Neck Squamous Cell Cancer. Curr. Top. Med. Chem. 2018 18 3 192 198 10.2174/1568026618666180112162412 29332581
    [Google Scholar]
  16. Abedi F. Davaran S. Hekmati M. Akbarzadeh A. Baradaran B. Moghaddam S.V. An improved method in fabrication of smart dual-responsive nanogels for controlled release of doxorubicin and curcumin in HT-29 colon cancer cells. J. Nanobiotechnology 2021 19 1 18 10.1186/s12951‑020‑00764‑6 33422062
    [Google Scholar]
  17. Selvan S.R. Brichetti J.A. Thurber D.B. Botting G.M. Bertenshaw G.P. Functional Profiling of Head and Neck/Esophageal Squamous Cell Carcinoma to Predict Cetuximab Response. , Cancer Biother Radiopharm 2021 cbr.2021.0283. Advance online publication 10.1089/cbr.2021.0283 34846938
    [Google Scholar]
  18. Banerjee A. Qi J. Gogoi R. Wong J. Mitragotri S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release 2016 238 176 185 10.1016/j.jconrel.2016.07.051 27480450
    [Google Scholar]
  19. Beaudelot J. Oger S. Peruško S. Phan T.A. Teunens T. Moucheron C. Evano G. Photoactive Copper Complexes: Properties and Applications. Chem. Rev. 2022 122 22 16365 16609 10.1021/acs.chemrev.2c00033 36350324
    [Google Scholar]
  20. Cramer J.D. Burtness B. Le Q.T. Ferris R.L. The changing therapeutic landscape of head and neck cancer. Nat. Rev. Clin. Oncol. 2019 16 11 669 683 10.1038/s41571‑019‑0227‑z 31189965
    [Google Scholar]
  21. Daei S. Ziamajidi N. Abbasalipourkabir R. Khanaki K. Bahreini F. Anticancer Effects of Gold Nanoparticles by Inducing Apoptosis in Bladder Cancer 5637 Cells. Biol. Trace Elem. Res. 2022 200 6 2673 2683 10.1007/s12011‑021‑02895‑9 34455542
    [Google Scholar]
  22. Desilets A. Soulières D. PI3K Inhibition for Squamous Cell Head and Neck Carcinoma. Cancer J. 2022 28 5 369 376 10.1097/PPO.0000000000000618 36165725
    [Google Scholar]
  23. El-Melegy M.G. Eltaher H.M. Gaballah A. El-Kamel A.H. Enhanced oral permeability of trans-resveratrol using nanocochleates for boosting anticancer efficacy; in-vitro and ex-vivo appraisal. Eur. J. Pharm. Biopharm. 2021 168 166 183 10.1016/j.ejpb.2021.08.020 34481049
    [Google Scholar]
  24. Galatage S.T. Manjappa A.S. Bhagwat D.A. Trivedi R. Salawi A. Sabei F.Y. Alsalhi A. Oral self-nanoemulsifying drug delivery systems for enhancing bioavailability and anticancer potential of fosfestrol: In vitro and in vivo characterization. Eur. J. Pharm. Biopharm. 2023 193 28 43 10.1016/j.ejpb.2023.10.013
    [Google Scholar]
  25. Gharat S.A. Momin M. Bhavsar C. Oral squamous cell carcinoma: Current treatment strategies and nanotechnology-based approaches for prevention and therapy. Crit. Rev. Ther. Drug Carrier Syst. 2016 33 4 363 400 10.1615/CritRevTherDrugCarrierSyst.2016016272 27910740
    [Google Scholar]
  26. Gianferrara T. Bratsos I. Alessio E. A categorization of metal anticancer compounds based on their mode of action. Dalton Trans. 2009 37 7588 7598 10.1039/b905798f
    [Google Scholar]
  27. Hegde M. Naliyadhara N. Unnikrishnan J. Alqahtani M.S. Abbas M. Girisa S. Sethi G. Kunnumakkara A.B. Nanoparticles in the diagnosis and treatment of cancer metastases: Current and future perspectives. Cancer Lett. 2023 556 216066 10.1016/j.canlet.2023.216066 36649823
    [Google Scholar]
  28. Hołota M. Magiera J. Michlewska S. Kubczak M. Sanz del Olmo N. García-Gallego S. Ortega P. de la Mata F.J. Ionov M. Bryszewska M. In vitro Anticancer Properties of Copper Metallodendrimers. Biomolecules 2019 9 4 155 10.3390/biom9040155 31003561
    [Google Scholar]
  29. Jänicke P. Lennicke C. Meister A. Seliger B. Wessjohann L.A. Kaluđerović G.N. Fluorescent spherical mesoporous silica nanoparticles loaded with emodin: Synthesis, cellular uptake and anticancer activity. Mater. Sci. Eng. C 2021 119 111619 10.1016/j.msec.2020.111619 33321661
    [Google Scholar]
  30. Jermy B.R. Ravinayagam V. Alamoudi W.A. Almohazey D. Dafalla H. Hussain Allehaibi L. Baykal A. Toprak M.S. Somanathan T. Targeted therapeutic effect against the breast cancer cell line MCF-7 with a CuFe 2 O 4/silica/cisplatin nanocomposite formulation. Beilstein J. Nanotechnol. 2019 10 2217 2228 10.3762/bjnano.10.214 31807407
    [Google Scholar]
  31. Jin H. Zhu T. Huang X. Sun M. Li H. Zhu X. Liu M. Xie Y. Huang W. Yan D. ROS-responsive nanoparticles based on amphiphilic hyperbranched polyphosphoester for drug delivery: Light-triggered size-reducing and enhanced tumor penetration. Biomaterials 2019 211 68 80 10.1016/j.biomaterials.2019.04.029 31096162
    [Google Scholar]
  32. Lu S. Li Y. Yu Y. Glutathione‐Scavenging Celastrol‐Cu Nanoparticles Induce Self‐Amplified Cuproptosis for Augmented Cancer Immunotherapy. Adv. Mater. 2024 36 35 2404971 10.1002/adma.202404971 38935977
    [Google Scholar]
  33. Klausner G. Troussier I. Blais E. Carsuzaa F. Zilli T. Miralbell R. Caparrotti F. Thariat J. Neck management in head and neck squamous cell carcinomas: where do we stand? Med. Oncol. 2019 36 5 40 10.1007/s12032‑019‑1265‑1 30919135
    [Google Scholar]
  34. Li Y. Chen F. Chen J. Chan S. He Y. Liu W. Zhang G. Disulfiram/Copper Induces Antitumor Activity against Both Nasopharyngeal Cancer Cells and Cancer-Associated Fibroblasts through ROS/MAPK and Ferroptosis Pathways. Cancers (Basel) 2020 12 1 138 10.3390/cancers12010138 31935835
    [Google Scholar]
  35. Lok C.N. Zou T. Zhang J.J. Lin I.W.S. Che C.M. Controlled-release systems for metal-based nanomedicine: encapsulated/self-assembled nanoparticles of anticancer gold(III)/platinum(II) complexes and antimicrobial silver nanoparticles. Adv. Mater. 2014 26 31 5550 5557 10.1002/adma.201305617 24664412
    [Google Scholar]
  36. Della Rocca J. Liu D. Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 2011 44 10 957 968 10.1021/ar200028a 21648429
    [Google Scholar]
  37. Lu Y. Zhou J. Wang Q. Cai J. Yu B. Dai Q. Bao Y. Chen R. Zhang Z. Zhang D. Hou T. Glucocorticoid-loaded pH/ROS dual-responsive nanoparticles alleviate joint destruction by downregulating the NF-κB signaling pathway. Acta Biomater. 2023 164 458 473 10.1016/j.actbio.2023.04.012 37072065
    [Google Scholar]
  38. Mazzarella L. Guida A. Curigliano G. Cetuximab for treating non-small cell lung cancer. Expert Opin. Biol. Ther. 2018 18 4 483 493 10.1080/14712598.2018.1452906 29534625
    [Google Scholar]
  39. McDermott J.D. Bowles D.W. Epidemiology of Head and Neck Squamous Cell Carcinomas: Impact on Staging and Prevention Strategies. Curr. Treat. Options Oncol. 2019 20 5 43 10.1007/s11864‑019‑0650‑5 31011837
    [Google Scholar]
  40. Molinaro C. Martoriati A. Pelinski L. Cailliau K. Copper complexes as anticancer agents targeting topoisomerases I and II. Cancers 2020 12 10 1 26 10.3390/cancers12102863
    [Google Scholar]
  41. Samiei Foroushani M. Zahmatkeshan A. Arkaban H. Karimi Shervedani R. Kefayat A. A drug delivery system based on nanocomposites constructed from metal-organic frameworks and Mn3O4 nanoparticles: Preparation and physicochemical characterization for BT-474 and MCF-7 cancer cells. Colloids Surf. B Biointerfaces 2021 202 111712 10.1016/j.colsurfb.2021.111712 33773173
    [Google Scholar]
  42. Mulik R.S. Mönkkönen J. Juvonen R.O. Mahadik K.R. Paradkar A.R. Apoptosis-induced anticancer effect of transferrin-conjugated solid lipid nanoparticles of curcumin. Cancer Nanotechnol. 2012 3 1-6 65 81 10.1007/s12645‑012‑0031‑2 26069496
    [Google Scholar]
  43. Muraro E. Fanetti G. Lupato V. Giacomarra V. Steffan A. Gobitti C. Vaccher E. Franchin G. Cetuximab in locally advanced head and neck squamous cell carcinoma: Biological mechanisms involved in efficacy, toxicity and resistance. Crit. Rev. Oncol. Hematol. 2021 164 103424 10.1016/j.critrevonc.2021.103424 34245856
    [Google Scholar]
  44. Navari M. Zare M. Javanmardi M. Asadi-Ghalehni M. Modjtahedi H. Rasaee M.J. Epitope mapping of epidermal growth factor receptor (EGFR) monoclonal antibody and induction of growth-inhibitory polyclonal antibodies by vaccination with EGFR mimotope. Immunopharmacol. Immunotoxicol. 2014 36 5 309 315 10.3109/08923973.2014.945127 25070131
    [Google Scholar]
  45. Xu J. Song M. Fang Z. Zheng L. Huang X. Liu K. Applications and challenges of ultra-small particle size nanoparticles in tumor therapy. J. Control. Release 2023 353 699 712 10.1016/j.jconrel.2022.12.028
    [Google Scholar]
  46. Desai Neha Momin M Khan T Gharat S Ningthoujam RS Omri A , A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin. Drug Deliv. 2021 18 9 1261 1290 10.1080/17425247.2021.1912008 33793359
    [Google Scholar]
  47. Bhattacharjee S. DLS and zeta potential – What they are and what they are not? J. Control. Release 2016 235 337 351 10.1016/j.jconrel.2016.06.017 27297779
    [Google Scholar]
  48. Park T. Choi C. Choi Y. Suh D.C. Cost-effectiveness of cetuximab for colorectal cancer. Expert Rev. Pharmacoecon. Outcomes Res. 2016 16 6 667 677 10.1080/14737167.2016.1245618 27750444
    [Google Scholar]
  49. Paver E.C. Currie A.M. Gupta R. Dahlstrom J.E. Human papilloma virus related squamous cell carcinomas of the head and neck: diagnosis, clinical implications and detection of HPV. Pathology 2020 52 2 179 191 10.1016/j.pathol.2019.10.008 31889547
    [Google Scholar]
  50. Pöthig A. Casini A. Recent Developments of Supramolecular Metal-based Structures for Applications in Cancer Therapy and Imaging. Theranostics 2019 9 11 3150 3169 10.7150/thno.31828 31244947
    [Google Scholar]
  51. Ramasamy I. Tran E. Charnock A. Farrugia A. Flow-cytometric method for the quantitation of the Fc function of intravenous immunoglobulin preparations. Vox Sang. 2000 78 3 185 193 10.1046/j.1423‑0410.2000.7830185.x 10838520
    [Google Scholar]
  52. Pourmadadi M. Yazdian F. Koulivand A. Rahmani E. Green synthesized polyvinylpyrrolidone/titanium dioxide hydrogel nanocomposite modified with agarose macromolecules for sustained and pH-responsive release of anticancer drug. Int. J. Biol. Macromol. 2023 240 124345 10.1016/j.ijbiomac.2023.124345 37054860
    [Google Scholar]
  53. Ramos-Inza S. Plano D. Sanmartín C. Metal-based compounds containing selenium: An appealing approach towards novel therapeutic drugs with anticancer and antimicrobial effects. Eur. J. Med. Chem. 2022 244 114834 10.1016/j.ejmech.2022.114834 36215861
    [Google Scholar]
  54. Shaniv D. Dror I. Berkowitz B. Effects of particle size and surface chemistry on plastic nanoparticle transport in saturated natural porous media. Chemosphere 2021 262 127854 10.1016/j.chemosphere.2020.127854 32799148
    [Google Scholar]
  55. Srivastava S. Gupta S. Mohammad S. Ahmad I. Development of α-tocopherol surface-modified targeted delivery of 5-fluorouracil-loaded poly-D, L-lactic-co-glycolic acid nanoparticles against oral squamous cell carcinoma. J. Cancer Res. Ther. 2019 15 3 480 490 10.4103/jcrt.JCRT_263_18 31169208
    [Google Scholar]
  56. Cheng Z. Li M. Dey R. Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J. Hematol. Oncol. 2021 14 1 85 10.1186/s13045‑021‑01096‑0 34059100
    [Google Scholar]
  57. Steinborn B. Lächelt U. Metal-organic Nanopharmaceuticals. Pharm. Nanotechnol. 2020 8 3 163 190 10.2174/2211738508666200421113215 32316907
    [Google Scholar]
  58. Tatiparti K. Sau S. Gawde K. Iyer A. Copper-Free ‘Click’ Chemistry-Based Synthesis and Characterization of Carbonic Anhydrase-IX Anchored Albumin-Paclitaxel Nanoparticles for Targeting Tumor Hypoxia. Int. J. Mol. Sci. 2018 19 3 838 10.3390/ijms19030838 29534020
    [Google Scholar]
  59. Valensin D. Dell’Acqua S. Kozlowski H. Casella L. Coordination and redox properties of copper interaction with α-synuclein. J. Inorg. Biochem. 2016 163 292 300 10.1016/j.jinorgbio.2016.04.012 27112900
    [Google Scholar]
  60. Varra V. Smile T.D. Geiger J.L. Koyfman S.A. Recent and Emerging Therapies for Cutaneous Squamous Cell Carcinomas of the Head and Neck. Curr. Treat. Options Oncol. 2020 21 5 37 10.1007/s11864‑020‑00739‑7 32328817
    [Google Scholar]
  61. Wang S. Han F. Xie L. Liu Y. Yang Q. Zhao D. Zhao X. Preparation and evaluation of paclitaxel-loaded reactive oxygen species and glutathione redox-responsive poly(lactic-co-glycolic acid) nanoparticles for controlled release in tumor cells. Nanomedicine (Lond.) 2022 17 22 1627 1648 10.2217/nnm‑2022‑0164 36636982
    [Google Scholar]
  62. Saada-Bouzid E. Peyrade F. Guigay J. Systemic treatment of recurrent and/or metastatic squamous cell carcinomas of the head and neck: what is the best therapeutic sequence? Curr. Opin. Oncol. 2022 34 3 196 203 10.1097/CCO.0000000000000834 35671120
    [Google Scholar]
  63. Winter J. Nicolas J. Ruan G. Hybrid nanoparticle composites. J. Mater. Chem. B Mater. Biol. Med. 2020 8 22 4713 4714 10.1039/D0TB90071K 32484484
    [Google Scholar]
  64. Yang J. Ju Z. Dong S. Cisplatin and paclitaxel co-delivered by folate-decorated lipid carriers for the treatment of head and neck cancer. Drug Deliv. 2017 24 1 792 799 10.1080/10717544.2016.1236849 28494629
    [Google Scholar]
  65. Zaimy M.A. Saffarzadeh N. Mohammadi A. Pourghadamyari H. Izadi P. Sarli A. Moghaddam L.K. Paschepari S.R. Azizi H. Torkamandi S. Tavakkoly-Bazzaz J. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 2017 24 6 233 243 10.1038/cgt.2017.16 28574057
    [Google Scholar]
  66. Zhao Y. Liu K. Li J. Liao J. Ma L. Engineering of hybrid anticancer drug-loaded polymeric nanoparticles delivery system for the treatment and care of lung cancer therapy. Drug Deliv. 2021 28 1 1539 1547 10.1080/10717544.2021.1934187 34282705
    [Google Scholar]
  67. Xu J.J. Zhang W.C. Guo Y.W. Chen X.Y. Zhang Y.N. Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Deliv. 2022 29 1 664 678 10.1080/10717544.2022.2039804 35209786
    [Google Scholar]
  68. Singh M. Alka; Shukla, P.; Wen, Z.H.; Ko, C.Y.; Vinayagam, R. TPGS-modified Chitosan Nanoparticles of EGFR Inhibitor: Physicochemical and In vitro Evaluation against HepG2 Cell Lines. Curr. Drug Deliv. 2025 22 4 465 478 Advance online publication 10.2174/0115672018268315231206045504 38204256
    [Google Scholar]
  69. Liu H. Expression and potential immune involvement of cuproptosis in kidney renal clear cell carcinoma. Cancer Genet. 2023 274-275 21 25 10.1016/j.cancergen.2023.03.002 36963335
    [Google Scholar]
  70. Liu H. Tang T. Pan-cancer genetic analysis of cuproptosis and copper metabolism-related gene set. Front. Oncol. 2022 12 952290 10.3389/fonc.2022.952290 36276096
    [Google Scholar]
  71. Liu H. Pan-cancer profiles of the cuproptosis gene set. Am. J. Cancer Res. 2022 12 8 4074 4081 36119826
    [Google Scholar]
  72. Chen Y. Wang S. Hu Q. Zhou L. Self-emulsifying System Co-loaded with Paclitaxel and Coix Seed Oil Deeply Penetrated to Enhance Efficacy in Cervical Cancer. Curr. Drug Deliv. 2023 20 7 919 926 10.2174/1567201819666220628094239 35762559
    [Google Scholar]
  73. Lu J. Yu C. Du K. Chen S. Huang S. Targeted delivery of cisplatin magnetic nanoparticles for diagnosis and treatment of nasopharyngeal carcinoma. Colloids Surf. B Biointerfaces 2025 245 114252 10.1016/j.colsurfb.2024.114252 39317040
    [Google Scholar]
  74. Hua Y. Guo Z. Wang Y. Li C. Yan B. Application of patient derived xenograft model in personalized drug screening for chondrosarcoma of head and neck: A preclinical study. Oral Oncol. 2025 162 107222 10.1016/j.oraloncology.2025.107222 39999643
    [Google Scholar]
  75. Steel C. James E.R. Matthews J.D. Turner S.D. Establishing patient-derived xenograft (pdx) models of lymphomas. Methods Mol. Biol. 2025 2865 429 448 10.1007/978‑1‑0716‑4188‑0_19 39424736
    [Google Scholar]
  76. S v, S.; Augustine, D.; Mushtaq, S.; Baeshen, H.A.; Ashi, H.; Hassan, R.N.; Alshahrani, M.; Patil, S. Revitalizing oral cancer research: Crispr-Cas9 technology the promise of genetic editing. Front. Oncol. 2024 14 1383062 10.3389/fonc.2024.1383062 38915370
    [Google Scholar]
  77. Noh D. Lee H. Lee S. Sun I.C. Yoon H.Y. Copper-based nanomedicines for cuproptosis-mediated effective cancer treatment. Biomater Res. 2024 28 0094 10.34133/bmr.0094
    [Google Scholar]
  78. Meng W. He C. Hao Y. Wang L. Li L. Zhu G. Prospects and challenges of extracellular vesicle-based drug delivery system: Considering cell source. Drug Deliv. 2020 27 1 585 598 10.1080/10717544.2020.1748758 32264719
    [Google Scholar]
  79. Huang L. Huang X.H. Yang X. Hu J.Q. Zhu Y.Z. Yan P.Y. Xie Y. Novel nano-drug delivery system for natural products and their application. Pharmacol. Res. 2024 201 107100 10.1016/j.phrs.2024.107100 38341055
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018373037250821092024
Loading
/content/journals/cdd/10.2174/0115672018373037250821092024
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: copper ; metal ; drug delivery ; Cetuximab ; head and neck cancer ; nanoparticles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test