Skip to content
2000
image of Nanostructured Systems for Effective Transdermal Drug Delivery

Abstract

Introduction

One of the least invasive, recognized potential routes for both local and systemic drug delivery and the most patient-friendly methods of administering therapeutic agents is transdermal drug delivery. It minimizes gastrointestinal side effects, prevents hepatic first-pass metabolism, lowers dosage frequency, and boosts patient compliance.

Objective

This review aims to examine the nanostructured systems for transdermal drug delivery, focusing on their types, design, development and mechanism in enhancing drug permeation through the skin.

Methods

This review article synthesized findings from recent studies on nanostructured systems used in transdermal drug delivery systems. With a particular focus on offering a comprehensive understanding of transdermal drug delivery methods and augmentation strategies, the author examines current trends and potential uses of transdermal technologies.

Results

Nanostructured systems have shown increased drug penetration, improved bioavailability and controlled release profiles.

Conclusion

Nanostructured systems offer a versatile and effective approach to overcoming the limitations of traditional transdermal drug delivery methods. Future research should focus on optimizing these systems for clinical applications, ensuring safety and regulatory compliance.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018355526250311045617
2025-08-04
2025-08-13
Loading full text...

Full text loading...

References

  1. Liu L. Zhao W. Ma Q. Gao Y. Wang W. Zhang X. Dong Y. Zhang T. Liang Y. Han S. Cao J. Wang X. Sun W. Ma H. Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. Nanoscale Adv. 2023 5 6 1527 1558 10.1039/D2NA00530A 36926556
    [Google Scholar]
  2. Bird D. Ravindra N.M. Transdermal drug delivery and patches—An overview. Med. Devices Sens. 2020 3 6 e10069 10.1002/mds3.10069
    [Google Scholar]
  3. Zaid Alkilani A. Sharaire Z. Hamed R. Basheer H.A. Transdermal delivery system of doxycycline-loaded niosomal gels: toward enhancing doxycycline stability. ACS Omega 2024 9 31 33542 33556 10.1021/acsomega.4c01224 39130600
    [Google Scholar]
  4. Ramadon D. McCrudden M.T.C. Courtenay A.J. Donnelly R.F. Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv. Transl. Res. 2022 12 4 758 791 10.1007/s13346‑021‑00909‑6 33474709
    [Google Scholar]
  5. Jeong W.Y. Kwon M. Choi H.E. Kim K.S. Recent advances in transdermal drug delivery systems: a review. Biomater. Res. 2021 25 1 24 10.1186/s40824‑021‑00226‑6 34321111
    [Google Scholar]
  6. Sala M. Diab R. Elaissari A. Fessi H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm. 2018 535 1-2 1 17 10.1016/j.ijpharm.2017.10.046 29111097
    [Google Scholar]
  7. Kathe K. Kathpalia H. Film forming systems for topical and transdermal drug delivery. Asian J. Pharma. Sci. 2017 12 6 487 497 10.1016/j.ajps.2017.07.004 32104362
    [Google Scholar]
  8. Marwah H. Garg T. Goyal A.K. Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv. 2016 23 2 564 578 10.3109/10717544.2014.935532 25006687
    [Google Scholar]
  9. Ahmed Saeed AL-Japairai K. Mahmood S. Hamed Almurisi S. Reddy Venugopal J. Rebhi Hilles A. Azmana M. Raman S. Current trends in polymer microneedle for transdermal drug delivery. Int. J. Pharm. 2020 587 119673 10.1016/j.ijpharm.2020.119673 32739388
    [Google Scholar]
  10. Lee H. Song C. Baik S. Kim D. Hyeon T. Kim D.H. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 2018 127 35 45 10.1016/j.addr.2017.08.009 28867296
    [Google Scholar]
  11. Global Information. 2024 Available from: https://www.giiresearch.com/report/ires1602189-transdermal-drug-delivery-system-market-by-type.html (Accessed on: 15 December, 2024).
  12. Polaris Market Research. 2024 Available from: https://www.polarismarketresearch.com/industry-analysis/transdermal-drug-delivery-systems-market#:~:text=Global%20transdermal%20drug%20delivery%20systems%20market%20size%20was%20valued%20at,4.3%25%20during%20the%20forecast%20period (Accessed on: 15 December, 2024).
  13. IMARC. 2024 Available from: https://www.imarcgroup.com/transdermal-drug-delivery-systems-market (Accessed on: 15 December, 2024).
  14. Market Data Forecast. 2024 Available from: https://www.marketdataforecast.com/market-reports/transdermal-drug-delivery-system-market (Accessed on: 15 December, 2024).
  15. Perumal O. Murthy S.N. Kalia Y.N. Turning theory into practice: the development of modern transdermal drug delivery systems and future trends. Skin Pharmacol. Physiol. 2013 26 4-6 331 342 10.1159/000351815 23921120
    [Google Scholar]
  16. Krishnan V. Mitragotri S. Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Adv. Drug Deliv. Rev. 2020 153 87 108 10.1016/j.addr.2020.05.011 32497707
    [Google Scholar]
  17. Abdo J.M. Sopko N.A. Milner S.M. The applied anatomy of human skin: A model for regeneration. Wound Medicine 2020 28 100179 10.1016/j.wndm.2020.100179
    [Google Scholar]
  18. Mohamed S.A. Hargest R. Surgical anatomy of the skin. Surgery 2022 40 1 1 7 10.1016/j.mpsur.2021.11.021
    [Google Scholar]
  19. Wong R. Geyer S. Weninger W. Guimberteau J.C. Wong J.K. The dynamic anatomy and patterning of skin. Exp. Dermatol. 2016 25 2 92 98 10.1111/exd.12832 26284579
    [Google Scholar]
  20. Ita K. Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics 2015 7 3 90 105 10.3390/pharmaceutics7030090 26131647
    [Google Scholar]
  21. Pathak Y. Thassu D. Pathak Y. Thassu D. Drug delivery nanoparticles formulation and characterization. Drug Deliv. Nanopart. Formulat. Charact. 2009 191 1 6 10.3109/9781420078053
    [Google Scholar]
  22. Liu P. Chen G. Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 2022 27 4 1372 10.3390/molecules27041372 35209162
    [Google Scholar]
  23. Ashtikar M. Nagarsekar K. Fahr A. Transdermal delivery from liposomal formulations – Evolution of the technology over the last three decades. J. Control. Release 2016 242 126 140 10.1016/j.jconrel.2016.09.008 27620074
    [Google Scholar]
  24. Reza Mozafari M. Johnson C. Hatziantoniou S. Demetzos C. Nanoliposomes and their applications in food nanotechnology. J. Liposome Res. 2008 18 4 309 327 10.1080/08982100802465941 18951288
    [Google Scholar]
  25. Jaradat E. Meziane A. Lamprou D.A. Paclitaxel-loaded elastic liposomes synthesised by microfluidics technique for enhance transdermal delivery. Drug Deliv. Transl. Res. 2024 10.1007/s13346‑024‑01672‑0 39020246
    [Google Scholar]
  26. Lombardo D. Kiselev M.A. Methods of liposomes preparation: formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics 2022 14 3 543 10.3390/pharmaceutics14030543 35335920
    [Google Scholar]
  27. El-Nabarawi M.A. Bendas E.R. El Rehem R.T.A. Abary M.Y.S. Transdermal drug delivery of paroxetine through lipid-vesicular formulation to augment its bioavailability. Int. J. Pharm. 2013 443 1-2 307 317 10.1016/j.ijpharm.2013.01.016 23337629
    [Google Scholar]
  28. Large D.E. Abdelmessih R.G. Fink E.A. Auguste D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021 176 113851 10.1016/j.addr.2021.113851 34224787
    [Google Scholar]
  29. Ghanbarzadeh S. Valizadeh H. Zakeri-Milani P. Application of response surface methodology in development of sirolimus liposomes prepared by thin film hydration technique. Bioimpacts 2013 3 2 75 81 10.5681/bi.2013.016 23878790
    [Google Scholar]
  30. El Fawal G. Hong H. Song X. Wu J. Sun M. Zhang L. He C. Mo X. Wang H. Polyvinyl alcohol/hydroxyethylcellulose containing ethosomes as a scaffold for transdermal drug delivery applications. Appl. Biochem. Biotechnol. 2020 191 4 1624 1637 10.1007/s12010‑020‑03282‑1 32198603
    [Google Scholar]
  31. Chauhan N. Vasava P. Khan S.L. Siddiqui F.A. Islam F. Chopra H. Emran T.B. Ethosomes: A novel drug carrier. Ann. Med. Surg. (Lond.) 2022 82 104595 10.1016/j.amsu.2022.104595 36124209
    [Google Scholar]
  32. Paliwal S. Tilak A. Sharma J. Dave V. Sharma S. Yadav R. Patel S. Verma K. Tak K. Flurbiprofen loaded ethosomes - transdermal delivery of anti-inflammatory effect in rat model. Lipids Health Dis. 2019 18 1 133 10.1186/s12944‑019‑1064‑x 31170970
    [Google Scholar]
  33. Sakdiset P. Amnuaikit T. Pichayakorn W. Pinsuwan S. Formulation development of ethosomes containing indomethacin for transdermal delivery. J. Drug Deliv. Sci. Technol. 2019 52 760 768 10.1016/j.jddst.2019.05.048
    [Google Scholar]
  34. Andleeb M. Shoaib Khan H.M. Daniyal M. Development, characterization and stability evaluation of topical gel loaded with ethosomes containing Achillea millefolium L. extract. Front. Pharmacol. 2021 12 603227 10.3389/fphar.2021.603227 33912036
    [Google Scholar]
  35. Verma P. Pathak K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J. Adv. Pharm. Technol. Res. 2010 1 3 274 282 10.4103/0110‑5558.72415 22247858
    [Google Scholar]
  36. Yang L. Wu L. Wu D. Shi D. Wang T. Zhu X. Mechanism of transdermal permeation promotion of lipophilic drugs by ethosomes. Int. J. Nanomedicine 2017 12 3357 3364 10.2147/IJN.S134708 28490875
    [Google Scholar]
  37. Niu X.Q. Zhang D.P. Bian Q. Feng X.F. Li H. Rao Y.F. Shen Y.M. Geng F.N. Yuan A.R. Ying X.Y. Gao J.Q. Mechanism investigation of ethosomes transdermal permeation. Int. J. Pharm. X 2019 1 100027 10.1016/j.ijpx.2019.100027 31517292
    [Google Scholar]
  38. Nainwal N. Jawla S. Singh R. Saharan V.A. Transdermal applications of ethosomes – a detailed review. J. Liposome Res. 2019 29 2 103 113 10.1080/08982104.2018.1517160 30156120
    [Google Scholar]
  39. Alshehri S. Hussain A. Altamimi M.A. Ramzan M. In vitro, ex vivo, and in vivo studies of binary ethosomes for transdermal delivery of acyclovir: A comparative assessment. J. Drug Deliv. Sci. Technol. 2021 62 102390 10.1016/j.jddst.2021.102390
    [Google Scholar]
  40. Al-Ameri A.A.F. Al-Gawhari F.J. Formulation development of meloxicam binary ethosomal hydrogel for topical delivery: In vitro and in vivo assessment. Pharmaceutics 2024 16 7 898 10.3390/pharmaceutics16070898 39065595
    [Google Scholar]
  41. Jiang D. Jiang Y. Wang K. Wang Z. Pei Y. Wu J. He C. Mo X. Wang H. Binary ethosomes-based transdermal patches assisted by metal microneedles significantly improve the bioavailability of carvedilol. J. Drug Deliv. Sci. Technol. 2022 74 103498 10.1016/j.jddst.2022.103498
    [Google Scholar]
  42. Raj A. Dua K. Nair R.S. Sarath Chandran C. Alex A.T. Transethosome: An ultra-deformable ethanolic vesicle for enhanced transdermal drug delivery. Chem. Phys. Lipids 2023 255 105315 10.1016/j.chemphyslip.2023.105315 37356610
    [Google Scholar]
  43. Ahmed T.A. Preparation of transfersomes encapsulating sildenafil aimed for transdermal drug delivery: Plackett–Burman design and characterization. J. Liposome Res. 2015 25 1 1 10 10.3109/08982104.2014.950276 25148294
    [Google Scholar]
  44. Panchaxari Gadad A. Patil A.S. Singh Y. Mallappa Dandagi P. Bolmal U.B. Basu A. Development and evaluation of flurbiprofen loaded transethosomes to improve transdermal delivery. Ind. J. Pharma. Educ. Res. 2020 54 4 954 962 10.5530/ijper.54.4.189
    [Google Scholar]
  45. Patel V. Patel P. Patel J.V. Patel P.M. Dendrimer as a versatile platform for biomedical application: A review. J. Indian Chem. Soc. 2022 99 7 100516 10.1016/j.jics.2022.100516
    [Google Scholar]
  46. Yang G-Y. Huang B. Dong W. Wang W. Hua Ji C. Zhou F.N. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac. Drug Des. Devel. Ther. 2015 9 3867 3876 10.2147/DDDT.S75702 26229447
    [Google Scholar]
  47. Zhao T. Zhou M. Wu R. Wang H. Zouboulis C.C. Zhu M. Lee M. Dendrimer-conjugated isotretinoin for controlled transdermal drug delivery. J. Nanobiotechnology 2023 21 1 285 10.1186/s12951‑023‑02052‑5 37605256
    [Google Scholar]
  48. Santos A. Veiga F. Figueiras A. Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials (Basel) 2019 13 1 65 10.3390/ma13010065 31877717
    [Google Scholar]
  49. Chauhan A.S. Sridevi S. Chalasani K.B. Jain A.K. Jain S.K. Jain N.K. Diwan P.V. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J. Control. Release 2003 90 3 335 343 10.1016/S0168‑3659(03)00200‑1 12880700
    [Google Scholar]
  50. Kirkby M. Sabri A.B. Scurr D.J. Moss G.P. Dendrimer-mediated permeation enhancement of chlorhexidine digluconate: Determination of in vitro skin permeability and visualisation of dermal distribution. Eur. J. Pharm. Biopharm. 2021 159 77 87 10.1016/j.ejpb.2020.12.014 33359754
    [Google Scholar]
  51. Manikkath J. Manikkath A. Shavi G.V. Bhat K. Mutalik S. Low frequency ultrasound and PAMAM dendrimer facilitated transdermal delivery of ketoprofen. J. Drug Deliv. Sci. Technol. 2017 41 334 343 10.1016/j.jddst.2017.07.021
    [Google Scholar]
  52. Gökçe B.B. Boran T. Emlik Çalık F. Özhan G. Sanyal R. Güngör S. Dermal delivery and follicular targeting of adapalene using PAMAM dendrimers. Drug Deliv. Transl. Res. 2021 11 2 626 646 10.1007/s13346‑021‑00933‑6 33666878
    [Google Scholar]
  53. Lee J.W. Park J.H. Prausnitz M.R. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008 29 13 2113 2124 10.1016/j.biomaterials.2007.12.048 18261792
    [Google Scholar]
  54. Jung J.H. Jin S.G. Microneedle for transdermal drug delivery: current trends and fabrication. J. Pharm. Investig. 2021 51 5 503 517 10.1007/s40005‑021‑00512‑4 33686358
    [Google Scholar]
  55. Dalvi M. Kharat P. Thakor P. Bhavana V. Singh S.B. Mehra N.K. Panorama of dissolving microneedles for transdermal drug delivery. Life Sci. 2021 284 119877 10.1016/j.lfs.2021.119877 34384832
    [Google Scholar]
  56. Waghule T. Singhvi G. Dubey S.K. Pandey M.M. Gupta G. Singh M. Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019 109 1249 1258 10.1016/j.biopha.2018.10.078 30551375
    [Google Scholar]
  57. Hoang M. Ita K. Bair D. Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride. Pharmaceutics 2015 7 4 379 396 10.3390/pharmaceutics7040379 26426039
    [Google Scholar]
  58. Chen J. Huang W. Huang Z. Liu S. Ye Y. Li Q. Huang M. Fabrication of tip-dissolving microneedles for transdermal drug delivery of meloxicam. AAPS PharmSciTech 2018 19 3 1141 1151 10.1208/s12249‑017‑0926‑7 29218581
    [Google Scholar]
  59. Liang L. Chen Y. Zhang B.L. Zhang X.P. Liu J.L. Shen C.B. Cui Y. Guo X.D. Optimization of dip-coating methods for the fabrication of coated microneedles for drug delivery. J. Drug Deliv. Sci. Technol. 2020 55 101464 10.1016/j.jddst.2019.101464
    [Google Scholar]
  60. Ashraf M.W. Tayyaba S. Nisar A. Afzulpurkar N. Bodhale D.W. Lomas T. Poyai A. Tuantranont A. Design, fabrication and analysis of silicon hollow microneedles for transdermal drug delivery system for treatment of hemodynamic dysfunctions. Cardiovasc. Eng. 2010 10 3 91 108 10.1007/s10558‑010‑9100‑5 20730492
    [Google Scholar]
  61. Filho D. Guerrero M. Pariguana M. Marican A. Durán-Lara E.F. Hydrogel-based microneedle as a drug delivery system. Pharmaceutics 2023 15 10 2444 10.3390/pharmaceutics15102444 37896204
    [Google Scholar]
  62. Yan Q. Wang W. Weng J. Zhang Z. Yin L. Yang Q. Guo F. Wang X. Chen F. Yang G. Dissolving microneedles for transdermal delivery of huperzine A for the treatment of Alzheimer’s disease. Drug Deliv. 2020 27 1 1147 1155 10.1080/10717544.2020.1797240 32729341
    [Google Scholar]
  63. Chen B.Z. He M.C. Zhang X.P. Fei W.M. Cui Y. Guo X.D. A novel method for fabrication of coated microneedles with homogeneous and controllable drug dosage for transdermal drug delivery. Drug Deliv. Transl. Res. 2022 12 11 2730 2739 10.1007/s13346‑022‑01123‑8 35128623
    [Google Scholar]
  64. Chen J. Qiu Y. Zhang S. Yang G. Gao Y. Controllable coating of microneedles for transdermal drug delivery. Drug Dev. Ind. Pharm. 2015 41 3 415 422 10.3109/03639045.2013.873447 24378200
    [Google Scholar]
  65. Hou X. Li J. Hong Y. Ruan H. Long M. Feng N. Zhang Y. Advances and prospects for hydrogel-forming microneedles in transdermal drug delivery. Biomedicines 2023 11 8 2119 10.3390/biomedicines11082119 37626616
    [Google Scholar]
  66. Migdadi E.M. Courtenay A.J. Tekko I.A. McCrudden M.T.C. Kearney M.C. McAlister E. McCarthy H.O. Donnelly R.F. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J. Control. Release 2018 285 142 151 10.1016/j.jconrel.2018.07.009 29990526
    [Google Scholar]
  67. Aldawood F.K. Andar A. Desai S. A comprehensive review of microneedles: types, materials, processes, characterizations and applications. Polymers (Basel) 2021 13 16 2815 10.3390/polym13162815 34451353
    [Google Scholar]
  68. Nagarkar R. Singh M. Nguyen H.X. Jonnalagadda S. A review of recent advances in microneedle technology for transdermal drug delivery. J. Drug Deliv. Sci. Technol. 2020 59 101923 10.1016/j.jddst.2020.101923
    [Google Scholar]
  69. Yeung C. Chen S. King B. Lin H. King K. Akhtar F. Diaz G. Wang B. Zhu J. Sun W. Khademhosseini A. Emaminejad S. A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics 2019 13 6 064125 10.1063/1.5127778 31832123
    [Google Scholar]
  70. van der Maaden K. Heuts J. Camps M. Pontier M. Terwisscha van Scheltinga A. Jiskoot W. Ossendorp F. Bouwstra J. Hollow microneedle-mediated micro-injections of a liposomal HPV E743–63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. J. Control. Release 2018 269 347 354 10.1016/j.jconrel.2017.11.035 29174441
    [Google Scholar]
  71. Carter P. Narasimhan B. Wang Q. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. Int. J. Pharm. 2019 555 49 62 10.1016/j.ijpharm.2018.11.032 30448309
    [Google Scholar]
  72. Gandhi S. Shende P. Cyclodextrins-modified metallic nanoparticles for effective cancer therapy. J. Control. Release 2021 339 41 50 10.1016/j.jconrel.2021.09.025 34560156
    [Google Scholar]
  73. Javadzadeh Y. Bahari L.A. Chapter 8 - Therapeutic Nanostructures for Dermal and Transdermal Drug Delivery. Nano- and Microscale Drug Delivery Systems London Elsevier 2017 131 146 10.1016/B978‑0‑323‑52727‑9.00008‑X
    [Google Scholar]
  74. Palmer B. DeLouise L. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules 2016 21 12 1719 10.3390/molecules21121719 27983701
    [Google Scholar]
  75. Huang Y. Yu F. Park Y.S. Wang J. Shin M.C. Chung H.S. Yang V.C. Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials 2010 31 34 9086 9091 10.1016/j.biomaterials.2010.08.046 20828812
    [Google Scholar]
  76. Kumari S. Singh B.N. Srivastava P. Effect of copper nanoparticles on physico-chemical properties of chitosan and gelatin-based scaffold developed for skin tissue engineering application. 3 Biotech. 2019 9 3 102 10.1007/s13205‑019‑1624‑9
    [Google Scholar]
  77. Kraeling M.E.K. Topping V.D. Keltner Z.M. Belgrave K.R. Bailey K.D. Gao X. Yourick J.J. In vitro percutaneous penetration of silver nanoparticles in pig and human skin. Regul. Toxicol. Pharmacol. 2018 95 314 322 10.1016/j.yrtph.2018.04.006 29635060
    [Google Scholar]
  78. Larese Filon F. Crosera M. Mauro M. Baracchini E. Bovenzi M. Montini T. Fornasiero P. Adami G. Palladium nanoparticles exposure: Evaluation of permeation through damaged and intact human skin. Environ. Pollut. 2016 214 497 503 10.1016/j.envpol.2016.04.077 27131807
    [Google Scholar]
  79. Chandrakala V. Aruna V. Angajala G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Materials 2022 5 6 1593 1615 10.1007/s42247‑021‑00335‑x 35005431
    [Google Scholar]
  80. Chen Y. Feng X. Gold nanoparticles for skin drug delivery. Int. J. Pharm. 2022 625 122122 10.1016/j.ijpharm.2022.122122 35987319
    [Google Scholar]
  81. Ahsan A. Farooq M.A. Therapeutic potential of green synthesized silver nanoparticles loaded PVA hydrogel patches for wound healing. J. Drug Deliv. Sci. Technol. 2019 54 101308 10.1016/j.jddst.2019.101308
    [Google Scholar]
  82. Saddik M.S. Alsharif F.M. El-Mokhtar M.A. Al-Hakkani M.F. El-Mahdy M.M. Farghaly H.S. Abou-Taleb H.A. Biosynthesis, characterization, and wound-healing activity of phenytoin-loaded copper nanoparticles. AAPS PharmSciTech 2020 21 5 175 10.1208/s12249‑020‑01700‑5 32556636
    [Google Scholar]
  83. Ramadan S. Guo L. Li Y. Yan B. Lu W. Hollow copper sulfide nanoparticle-mediated transdermal drug delivery. Small 2012 8 20 3143 3150 10.1002/smll.201200783 22829400
    [Google Scholar]
  84. Hola K. Zhang Y. Wang Y. Giannelis E.P. Zboril R. Rogach A.L. Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 2014 9 5 590 603 10.1016/j.nantod.2014.09.004
    [Google Scholar]
  85. Demirci S. McNally A.B. Ayyala R.S. Lawson L.B. Sahiner N. Synthesis and characterization of nitrogen-doped carbon dots as fluorescent nanoprobes with antimicrobial properties and skin permeability. J. Drug Deliv. Sci. Technol. 2020 59 101889 10.1016/j.jddst.2020.101889
    [Google Scholar]
  86. Roy A. Samanta S. Singha K. Maity P. Kumari N. Ghosh A. Dhara S. Pal S. Development of a thermoresponsive polymeric composite film using cross-linked β-cyclodextrin embedded with carbon quantum dots as a transdermal drug carrier. ACS Appl. Bio Mater. 2020 3 5 3285 3293 10.1021/acsabm.0c00246 35025371
    [Google Scholar]
  87. Wang L. Pan H. Gu D. Li P. Su Y. Pan W. A composite system combining self-targeted carbon dots and thermosensitive hydrogels for challenging ocular drug delivery. J. Pharm. Sci. 2022 111 5 1391 1400 10.1016/j.xphs.2021.09.026 34563534
    [Google Scholar]
  88. Jiang X. Zhao H. Li W. Microneedle-mediated transdermal delivery of drug-carrying nanoparticles. Front. Bioeng. Biotechnol. 2022 10 840395 10.3389/fbioe.2022.840395 35223799
    [Google Scholar]
  89. Shah P. Goodyear B. Haq A. Puri V. Michniak-Kohn B. Evaluations of quality by design (qbd) elements impact for developing niosomes as a promising topical drug delivery platform. Pharmaceutics 2020 12 3 246 10.3390/pharmaceutics12030246 32182792
    [Google Scholar]
  90. Auda S.H. Fathalla D. Fetih G. El-Badry M. Shakeel F. Niosomes as transdermal drug delivery system for celecoxib: In vitro and in vivo studies. Polym. Bull. 2016 73 5 1229 1245 10.1007/s00289‑015‑1544‑8
    [Google Scholar]
  91. Zidan A.S. Hosny K.M. Ahmed O.A.A. Fahmy U.A. Assessment of simvastatin niosomes for pediatric transdermal drug delivery. Drug Deliv. 2014 23 5 1 14 10.3109/10717544.2014.980896 25386740
    [Google Scholar]
  92. Usama A. Fetih G. El-Faham T. Performance of meloxicam niosomal gel formulations for transdermal drug delivery. Br. J. Pharm. Res. 2016 12 2 1 14 10.9734/BJPR/2016/26985
    [Google Scholar]
  93. Ghanbarzadeh S. Khorrami A. Arami S. Nonionic surfactant-based vesicular system for transdermal drug delivery. Drug Deliv. 2015 22 8 1071 1077 10.3109/10717544.2013.873837 24400680
    [Google Scholar]
  94. Bhardwaj P. Tripathi P. Gupta R. Pandey S. Niosomes: A review on niosomal research in the last decade. J. Drug Deliv. Sci. Technol. 2020 56 101581 10.1016/j.jddst.2020.101581
    [Google Scholar]
  95. Pandey S.S. Shah K.M. Maulvi F.A. Desai D.T. Gupta A.R. Joshi S.V. Shah D.O. Topical delivery of cyclosporine loaded tailored niosomal nanocarriers for improved skin penetration and deposition in psoriasis: Optimization, ex vivo and animal studies. J. Drug Deliv. Sci. Technol. 2021 63 102441 10.1016/j.jddst.2021.102441
    [Google Scholar]
  96. Alnaim A.S. Shah H. Nair A.B. Mewada V. Patel S. Jacob S. Aldhubiab B. Morsy M.A. Almuqbil R.M. Shinu P. Shah J. Qbd-based approach to optimize niosomal gel of levosulpiride for transdermal drug delivery. Gels 2023 9 3 213 10.3390/gels9030213 36975662
    [Google Scholar]
  97. Ma Q. Zhang J. Lu B. Lin H. Sarkar R. Wu T. Li X. Nanoemulgel for improved topical delivery of desonide: formulation design and characterization. AAPS PharmSciTech 2021 22 5 163 10.1208/s12249‑021‑02035‑5 34031790
    [Google Scholar]
  98. Kaur R. Ajitha M. Formulation of transdermal nanoemulsion gel drug delivery system of lovastatin and its in vivo characterization in glucocorticoid induced osteoporosis rat model. J. Drug Deliv. Sci. Technol. 2019 52 968 978 10.1016/j.jddst.2019.06.008
    [Google Scholar]
  99. Li H. Peng Q. Guo Y. Wang X. Zhang L. Preparation and in vitro and in vivo study of asiaticoside-loaded nanoemulsions and nanoemulsions-based gels for transdermal delivery. Int. J. Nanomedicine 2020 15 3123 3136 10.2147/IJN.S241923 32440114
    [Google Scholar]
  100. Abtahi-Naeini B. Hadian S. Sokhanvari F. Hariri A. Varshosaz J. Shahmoradi Z. Feizi A. Khorvash F. Hakamifard A. Effect of adjunctive topical liposomal azithromycin on systemic azithromycin on old world cutaneous leishmaniasis: a pilot clinical study. Iran. J. Pharm. Res. 2021 20 2 383 389 10.22037/ijpr.2020.113710.14445 34567168
    [Google Scholar]
  101. Microneedle Patch Study in Healthy Infants/Young Children. Available from: https://clinicaltrials.gov/study/NCT03207763 Accessed on 16 December, 2024.
  102. Horev A. Sagi O. Zur E. Ben-Shimol S. Topical liposomal amphotericin B gel treatment for cutaneous leishmaniasis caused by Leishmania major: a double‐blind, randomized, placebo‐controlled, pilot study. Int. J. Dermatol. 2023 62 1 40 47 10.1111/ijd.16407 36040071
    [Google Scholar]
  103. Salem H.F. Kharshoum R.M. Awad S.M. Ahmed Mostafa M. Abou-Taleb H.A. Tailoring of retinyl palmitate-based ethosomal hydrogel as a novel nanoplatform for acne vulgaris management: fabrication, optimization, and clinical evaluation employing a split-face comparative study. Int. J. Nanomedicine 2021 16 4251 4276 10.2147/IJN.S301597 34211271
    [Google Scholar]
  104. Eugster R. Luciani P. Liposomes: Bridging the gap from lab to pharmaceuticals. Curr. Opin. Colloid Interface Sci. 2024 101875 10.1016/j.cocis.2024.101875
    [Google Scholar]
  105. Cheng T. Tai Z. Shen M. Li Y. Yu J. Wang J. Zhu Q. Chen Z. Advance and challenges in the treatment of skin diseases with the transdermal drug delivery system. Pharmaceutics 2023 15 8 2165 10.3390/pharmaceutics15082165 37631379
    [Google Scholar]
  106. Lee M.K. Liposomes for enhanced bioavailability of water-insoluble drugs: In vivo evidence and recent approaches. Pharmaceutics 2020 12 3 264 10.3390/pharmaceutics12030264 32183185
    [Google Scholar]
  107. Moammeri A. Chegeni M.M. Sahrayi H. Ghafelehbashi R. Memarzadeh F. Mansouri A. Akbarzadeh I. Abtahi M.S. Hejabi F. Ren Q. Current advances in niosomes applications for drug delivery and cancer treatment. Mater. Today Bio 2023 23 100837 10.1016/j.mtbio.2023.100837 37953758
    [Google Scholar]
  108. Musielak E. Krajka-Kuźniak V. Liposomes and ethosomes: comparative potential in enhancing skin permeability for therapeutic and cosmetic applications. Cosmetics 2024 11 6 191 10.3390/cosmetics11060191
    [Google Scholar]
  109. Avcil M. Çelik A. Microneedles in drug delivery: progress and challenges. Micromachines (Basel) 2021 12 11 1321 10.3390/mi12111321 34832733
    [Google Scholar]
  110. Wang J. Li B. Qiu L. Qiao X. Yang H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J. Biol. Eng. 2022 16 1 18 10.1186/s13036‑022‑00298‑5 35879774
    [Google Scholar]
  111. Moghimipour E. Salami A. Monjezi M. Formulation and evaluation of liposomes for transdermal delivery of celecoxib. Jundishapur J. Nat. Pharm. Prod. 2015 10 1 e17653 10.17795/jjnpp‑17653 27747190
    [Google Scholar]
  112. Abouhussein D.M.N. Enhanced transdermal permeation of BCS class IV aprepitant using binary ethosome: Optimization, characterization and ex vivo permeation. J. Drug Deliv. Sci. Technol. 2021 61 102185 10.1016/j.jddst.2020.102185
    [Google Scholar]
  113. Jøraholmen M.W. Basnet P. Acharya G. Škalko-Basnet N. PEGylated liposomes for topical vaginal therapy improve delivery of interferon alpha. Eur. J. Pharm. Biopharm. 2017 113 132 139 10.1016/j.ejpb.2016.12.029 28087379
    [Google Scholar]
  114. He J. Zhang Z. Zheng X. Li L. Qi J. Wu W. Lu Y. Design and evaluation of dissolving microneedles for enhanced dermal delivery of propranolol hydrochloride. Pharmaceutics 2021 13 4 579 10.3390/pharmaceutics13040579 33921712
    [Google Scholar]
  115. Kim Y.C. Quan F.S. Yoo D.G. Compans R.W. Kang S.M. Prausnitz M.R. Improved influenza vaccination in the skin using vaccine coated microneedles. Vaccine 2009 27 49 6932 6938 10.1016/j.vaccine.2009.08.108 19761836
    [Google Scholar]
  116. Akbari J. Saeedi M. Morteza-Semnani K. Hashemi S.M.H. Babaei A. Eghbali M. Mohammadi M. Rostamkalaei S.S. Asare-Addo K. Nokhodchi A. Innovative topical niosomal gel formulation containing diclofenac sodium (niofenac). J. Drug Target. 2022 30 1 108 117 10.1080/1061186X.2021.1941060 34116599
    [Google Scholar]
  117. Zaid Alkilani A. Hamed R. Abdo H. Swellmeen L. Basheer H.A. Wahdan W. Abu Kwiak A.D. Formulation and evaluation of azithromycin-loaded niosomal gel: optimization, in vitro studies, rheological characterization, and cytotoxicity study. ACS Omega 2022 7 44 39782 39793 10.1021/acsomega.2c03762 36385887
    [Google Scholar]
  118. Waqas M.K. Sadia H. Khan M.I. Omer M.O. Siddique M.I. Qamar S. Zaman M. Butt M.H. Mustafa M.W. Rasool N. Development and characterization of niosomal gel of fusidic acid: In-vitro and ex-vivo approaches. Des. Monomers Polym. 2022 25 1 165 174 10.1080/15685551.2022.2086411 35711622
    [Google Scholar]
  119. Aodah A.H. Hashmi S. Akhtar N. Ullah Z. Zafar A. Zaki R.M. Khan S. Ansari M.J. Jawaid T. Alam A. Ali M.S. Formulation development, optimization by box–behnken design, and in vitro and ex vivo characterization of hexatriacontane-loaded transethosomal gel for antimicrobial treatment for skin infections. Gels 2023 9 4 322 10.3390/gels9040322 37102934
    [Google Scholar]
  120. Naeff R. Feasibility of topical liposome drugs produced on an industrial scale. Adv. Drug Deliv. Rev. 1996 18 3 343 347 10.1016/0169‑409X(95)00080‑Q
    [Google Scholar]
  121. NanoPass technologies Ltd. 2024 Available from: https://www.nanopass.com/micronjet-microneedle-device/ (Accessed on: 16 December, 2024).
  122. Alkilani A.Z. Nasereddin J. Hamed R. Nimrawi S. Hussein G. Abo-Zour H. Donnelly R.F. Beneath the skin: a review of current trends and future prospects of transdermal drug delivery systems. Pharmaceutics 2022 14 6 1152 10.3390/pharmaceutics14061152 35745725
    [Google Scholar]
  123. Akhtar N. Singh V. Yusuf M. Khan R.A. Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. Biomed. Enginee. 2020 65 3 243 272 10.1515/bmt‑2019‑0019 31926064
    [Google Scholar]
  124. Ng L.C. Gupta M. Transdermal drug delivery systems in diabetes management: A review. Asian J. Pharma. Sci. 2020 15 1 13 25 10.1016/j.ajps.2019.04.006 32175015
    [Google Scholar]
  125. Sabbagh F. Kim B.S. Recent advances in polymeric transdermal drug delivery systems. J. Control. Release 2022 341 132 146 10.1016/j.jconrel.2021.11.025 34813879
    [Google Scholar]
  126. Wong W.F. Ang K.P. Sethi G. Looi C.Y. Recent advancement of medical patch for transdermal drug delivery. Medicina (Kaunas) 2023 59 4 778 10.3390/medicina59040778 37109736
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018355526250311045617
Loading
/content/journals/cdd/10.2174/0115672018355526250311045617
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: metallic nanoparticles ; nanosystems ; niosomes ; microneedles ; Transdermal ; dendrimers ; liposomes ; ethosomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test