Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Introduction

Exosomes are nanoscale extracellular vesicles that widely participate in intercellular communication. An increasing number of studies have reported on the neuroprotective effects of stem cell-derived exosomes in brain diseases through various delivery methods. However, only a few reports are available on the delivery and uptake of stem cell-derived exosomes in the brains of mice of different ages.

Methods

PKH-26-labelled mesenchymal stem cell-derived exosomes were collected, and their uptake was investigated in the brains of mice aged 2 weeks, 2 months, and >6 months, 24 hours after intranasal delivery.

Results

No exosomes were distributed in the whole brains of 2-week-old mice after 24 hours of intranasal delivery. However, a small number of exosomes were found in the olfactory bulb, cortex, and hippocampus of 2-month-old mice, with no exosomes observed in the cerebellum. In contrast, a large number of exosomes were ingested in all brain regions, including the olfactory bulb, cortex, hippocampus, and cerebellum, of >6-month-old mice.

Conclusion

Exosomes can enter the brains of adult mice through intranasal administration, but there are differences in the uptake rate among mice of different ages. These findings provide a theoretical basis for the future clinical administration of exosomes for treating brain disorders.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018339798240904171503
2024-10-01
2026-01-30
Loading full text...

Full text loading...

/deliver/fulltext/cdd/22/8/CDD-22-8-07.html?itemId=/content/journals/cdd/10.2174/0115672018339798240904171503&mimeType=html&fmt=ahah

References

  1. HerrmannI.K. WoodM.J.A. FuhrmannG. Extracellular vesicles as a next-generation drug delivery platform.Nat. Nanotechnol.202116774875910.1038/s41565‑021‑00931‑234211166
    [Google Scholar]
  2. KalluriR. LeBleuV.S. The biology, function, and biomedical applications of exosomes.Science20203676478eaau697710.1126/science.aau697732029601
    [Google Scholar]
  3. YangD. ZhangW. ZhangH. ZhangF. ChenL. MaL. LarcherL.M. ChenS. LiuN. ZhaoQ. TranP.H.L. ChenC. VeeduR.N. WangT. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics.Theranostics20201083684370710.7150/thno.4158032206116
    [Google Scholar]
  4. AryaS.B. CollieS.P. ParentC.A. The ins-and-outs of exosome biogenesis, secretion, and internalization.Trends Cell Biol.20243429010810.1016/j.tcb.2023.06.00637507251
    [Google Scholar]
  5. RiazifarM. PoneE.J. LötvallJ. ZhaoW. Stem Cell Extracellular Vesicles: Extended Messages of Regeneration.Annu. Rev. Pharmacol. Toxicol.201757112515410.1146/annurev‑pharmtox‑061616‑03014627814025
    [Google Scholar]
  6. ShaoJ. ZaroJ. ShenY. Advances in Exosome-Based Drug Delivery and Tumor Targeting: From Tissue Distribution to Intracellular Fate.Int. J. Nanomedicine2020159355937110.2147/IJN.S28189033262592
    [Google Scholar]
  7. LudwigN. WhitesideT.L. ReichertT.E. Challenges in Exosome Isolation and Analysis in Health and Disease.Int. J. Mol. Sci.20192019468410.3390/ijms2019468431546622
    [Google Scholar]
  8. ZhangT. FangY. WangL. GuL. TangJ. Exosome and exosomal contents in schizophrenia.J. Psychiatr. Res.202316336537110.1016/j.jpsychires.2023.05.07237267733
    [Google Scholar]
  9. HedayatM. AhmadiM. ShoaranM. RezaieJ. Therapeutic application of mesenchymal stem cells derived exosomes in neurodegenerative diseases: A focus on non-coding RNAs cargo, drug delivery potential, perspective.Life Sci.202332012156610.1016/j.lfs.2023.12156636907326
    [Google Scholar]
  10. HuangL. WuE. LiaoJ. WeiZ. WangJ. ChenZ. Research Advances of Engineered Exosomes as Drug Delivery Carrier.ACS Omega2023846433744338710.1021/acsomega.3c0447938027310
    [Google Scholar]
  11. EL AndaloussiS. MägerI. BreakefieldX.O. WoodM.J.A. Extracellular vesicles: biology and emerging therapeutic opportunities.Nat. Rev. Drug Discov.201312534735710.1038/nrd397823584393
    [Google Scholar]
  12. HeC. ZhengS. LuoY. WangB. Exosome Theranostics: Biology and Translational Medicine.Theranostics20188123725510.7150/thno.2194529290805
    [Google Scholar]
  13. OveiliE. VafaeiS. BazavarH. EslamiY. MamaghanizadehE. YasaminehS. GholizadehO. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases.Cell Commun. Signal.20232112010.1186/s12964‑022‑01017‑936690996
    [Google Scholar]
  14. HarrellC.R. VolarevicV. DjonovV. VolarevicA. Therapeutic Potential of Exosomes Derived from Adipose Tissue-Sourced Mesenchymal Stem Cells in the Treatment of Neural and Retinal Diseases.Int. J. Mol. Sci.2022239448710.3390/ijms2309448735562878
    [Google Scholar]
  15. LaiJ.J. ChauZ.L. ChenS.Y. HillJ.J. KorpanyK.V. LiangN.W. LinL.H. LinY.H. LiuJ.K. LiuY.C. LundeR. ShenW.T. Exosome Processing and Characterization Approaches for Research and Technology Development.Adv. Sci. (Weinh.)2022915210322210.1002/advs.20210322235332686
    [Google Scholar]
  16. QiuG. ZhengG. GeM. WangJ. HuangR. ShuQ. XuJ. Functional proteins of mesenchymal stem cell-derived extracellular vesicles.Stem Cell Res. Ther.201910135910.1186/s13287‑019‑1484‑631779700
    [Google Scholar]
  17. ZhangJ. LiS. LiL. LiM. GuoC. YaoJ. MiS. Exosome and exosomal microRNA: trafficking, sorting, and function.Genomics Proteomics Bioinformatics2015131172410.1016/j.gpb.2015.02.00125724326
    [Google Scholar]
  18. ChenY.A. LuC.H. KeC.C. ChiuS.J. JengF.S. ChangC.W. YangB.H. LiuR.S. Mesenchymal Stem Cell-Derived Exosomes Ameliorate Alzheimer’s Disease Pathology and Improve Cognitive Deficits.Biomedicines20219659410.3390/biomedicines906059434073900
    [Google Scholar]
  19. GuoM. YinZ. ChenF. LeiP. Mesenchymal stem cell-derived exosome: a promising alternative in the therapy of Alzheimer’s disease.Alzheimers Res. Ther.202012110910.1186/s13195‑020‑00670‑x32928293
    [Google Scholar]
  20. ChangJ. FengZ. LiY. LvH. LiuS. LuoY. HaoN. ZhaoL. LiuJ. Mesenchymal stem cell-derived extracellular vesicles: A novel promising neuroprotective agent for Alzheimer’s disease.Biochem. Pharmacol.202422211606410.1016/j.bcp.2024.11606438373595
    [Google Scholar]
  21. CaoZ. KongF. DingJ. ChenC. HeF. DengW. Promoting Alzheimer’s disease research and therapy with stem cell technology.Stem Cell Res. Ther.202415113610.1186/s13287‑024‑03737‑w38715083
    [Google Scholar]
  22. ConeA.S. YuanX. SunL. DukeL.C. VreonesM.P. CarrierA.N. KenyonS.M. CarverS.R. BenthemS.D. StimmellA.C. MoseleyS.C. HikeD. GrantS.C. WilberA.A. OlceseJ.M. MeckesD.G.Jr Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer’s disease-like phenotypes in a preclinical mouse model.Theranostics202111178129814210.7150/thno.6206934373732
    [Google Scholar]
  23. XuX. LiZ. ZuoH. ChenH. GuiY. Mesenchymal stem cell-derived exosomes altered neuron cholesterol metabolism via Wnt5a-LRP1 axis and alleviated cognitive impairment in a progressive Parkinson’s disease model.Neurosci. Lett.202278713681010.1016/j.neulet.2022.13681035870714
    [Google Scholar]
  24. ChaiX-Q. AnS-J. ZhangZ-X. ZhouY-J. GuP. ZhaoW. ChenH-X. WuR-Y. ZhouL-Y. CuiQ-Z. SunS-K. ZhangL-Q. ZhangK. XuH-J. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate Parkinson’s disease and neuronal damage through inhibition of microglia.Neural Regen. Res.202318102291230010.4103/1673‑5374.36830037056150
    [Google Scholar]
  25. GeG. SivasubramanianB.P. GengB.D. ZhaoS. ZhouQ. HuangG. O’ConnorJ.C. ClarkR.A. LiS. Long-term benefits of hematopoietic stem cell-based macrophage/microglia delivery of GDNF to the CNS in a mouse model of Parkinson’s disease.Gene Ther.2024315-632433410.1038/s41434‑024‑00451‑338627469
    [Google Scholar]
  26. RademacherD.J. Potential for Therapeutic-Loaded Exosomes to Ameliorate the Pathogenic Effects of α-Synuclein in Parkinson’s Disease.Biomedicines2023114118710.3390/biomedicines1104118737189807
    [Google Scholar]
  27. HerisR.M. ShirvalilooM. Abbaspour-AghdamS. HazratiA. ShariatiA. YoushanloueiH.R. NiaraghF.J. ValizadehH. AhmadiM. The potential use of mesenchymal stem cells and their exosomes in Parkinson’s disease treatment.Stem Cell Res. Ther.202213137110.1186/s13287‑022‑03050‑435902981
    [Google Scholar]
  28. LeeE.J. ChoiY. LeeH.J. HwangD.W. LeeD.S. Human neural stem cell-derived extracellular vesicles protect against Parkinson’s disease pathologies.J. Nanobiotechnology202220119810.1186/s12951‑022‑01356‑235468855
    [Google Scholar]
  29. QinT. LiC. XuY. QinY. JinY. HeR. LuoZ. ZhaoJ. DuanC. LuH. CaoY. HuJ. Local delivery of EGFR+NSCs-derived exosomes promotes neural regeneration post spinal cord injury via miR-34a-5p/HDAC6 pathway.Bioact. Mater.20243342444310.1016/j.bioactmat.2023.11.01338059122
    [Google Scholar]
  30. XieY. SunY. LiuY. ZhaoJ. LiuQ. XuJ. QinY. HeR. YuanF. WuT. DuanC. JiangL. LuH. HuJ. Targeted Delivery of RGD-CD146 + CD271 + Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Promotes Blood–Spinal Cord Barrier Repair after Spinal Cord Injury.ACS Nano20231718180081802410.1021/acsnano.3c0442337695238
    [Google Scholar]
  31. FanL. LiuC. ChenX. ZhengL. ZouY. WenH. GuanP. LuF. LuoY. TanG. YuP. ChenD. DengC. SunY. ZhouL. NingC. Exosomes‐Loaded Electroconductive Hydrogel Synergistically Promotes Tissue Repair after Spinal Cord Injury via Immunoregulation and Enhancement of Myelinated Axon Growth.Adv. Sci. (Weinh.)2022913210558610.1002/advs.20210558635253394
    [Google Scholar]
  32. HwangJ. JangS. KimC. LeeS. JeongH.S. Role of Stem Cell-Derived Exosomes and microRNAs in Spinal Cord Injury.Int. J. Mol. Sci.202324181384910.3390/ijms24181384937762150
    [Google Scholar]
  33. PoongodiR. YangT.H. HuangY.H. YangK.D. ChenH.Z. ChuT.Y. WangT.Y. LinH.C. ChengJ.K. Stem cell exosome-loaded Gelfoam improves locomotor dysfunction and neuropathic pain in a rat model of spinal cord injury.Stem Cell Res. Ther.202415114310.1186/s13287‑024‑03758‑538764049
    [Google Scholar]
  34. ZhangJ. LiP. ZhaoG. HeS. XuD. JiangW. PengQ. LiZ. XieZ. ZhangH. XuY. QiL. Mesenchymal stem cell-derived extracellular vesicles protect retina in a mouse model of retinitis pigmentosa by anti-inflammation through miR-146a-Nr4a3 axis.Stem Cell Res. Ther.202213139410.1186/s13287‑022‑03100‑x35922863
    [Google Scholar]
  35. WangY. ZhangQ. YangG. WeiY. LiM. DuE. LiH. SongZ. TaoY. RPE-derived exosomes rescue the photoreceptors during retina degeneration: an intraocular approach to deliver exosomes into the subretinal space.Drug Deliv.202128121822810.1080/10717544.2020.187058433501868
    [Google Scholar]
  36. WuR-Y. YuF. WangY. HuangC-Q. LinS-J. GaoR-X. Neuroprotective effect of mesenchymal stem cell-derived extracellular vesicles on optic nerve injury in chronic ocular hypertension.Neural Regen. Res.202318102301230610.4103/1673‑5374.36912137056151
    [Google Scholar]
  37. WangY. LiuX. WangB. SunH. RenY. ZhangH. Compounding engineered mesenchymal stem cell-derived exosomes: A potential rescue strategy for retinal degeneration.Biomed. Pharmacother.202417311642410.1016/j.biopha.2024.11642438471273
    [Google Scholar]
  38. ZhouH. LiuY. ZhouT. YangZ. NiB. ZhouY. XuH. LinX. LinS. HeC. LiuX. IL-23 Priming Enhances the Neuroprotective Effects of MSC-Derived Exosomes in Treating Retinal Degeneration.Invest. Ophthalmol. Vis. Sci.20246510810.1167/iovs.65.10.839102262
    [Google Scholar]
  39. HarrellC.R. DjonovV. AntonijevicA. VolarevicV. NLRP3 Inflammasome as a Potentially New Therapeutic Target of Mesenchymal Stem Cells and Their Exosomes in the Treatment of Inflammatory Eye Diseases.Cells20231218232710.3390/cells1218232737759549
    [Google Scholar]
  40. AgafonovaA. CosentinoA. RomanoI.R. GiurdanellaG. D’AngeliF. GiuffridaR. Lo FurnoD. AnfusoC.D. ManninoG. LupoG. Molecular Mechanisms and Therapeutic Implications of Human Pericyte-like Adipose-Derived Mesenchymal Stem Cells in an In Vitro Model of Diabetic Retinopathy.Int. J. Mol. Sci.2024253177410.3390/ijms2503177438339053
    [Google Scholar]
  41. DadH.A. GuT.W. ZhuA.Q. HuangL.Q. PengL.H. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms.Mol. Ther.2021291133110.1016/j.ymthe.2020.11.03033278566
    [Google Scholar]
  42. LiJ. WangT. HouX. LiY. ZhangJ. BaiW. QianH. SunZ. Extracellular vesicles: opening up a new perspective for the diagnosis and treatment of mitochondrial dysfunction.J. Nanobiotechnology202422148710.1186/s12951‑024‑02750‑839143493
    [Google Scholar]
  43. MathewB. RavindranS. LiuX. TorresL. ChennakesavaluM. HuangC.C. FengL. ZelkaR. LopezJ. SharmaM. RothS. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion.Biomaterials201919714616010.1016/j.biomaterials.2019.01.01630654160
    [Google Scholar]
  44. GaoG. LiC. MaY. LiangZ. LiY. LiX. FuS. WangY. XiaX. ZhengJ.C. Neural stem cell-derived extracellular vesicles mitigate Alzheimer’s disease-like phenotypes in a preclinical mouse model.Signal Transduct. Target. Ther.20238122810.1038/s41392‑023‑01436‑137311758
    [Google Scholar]
  45. LiuS. FanM. XuJ.X. YangL.J. QiC.C. XiaQ.R. GeJ.F. Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology.J. Neuroinflammation20221913510.1186/s12974‑022‑02393‑235130907
    [Google Scholar]
  46. EliaC.A. TamboriniM. RasileM. DesiatoG. MarchettiS. SwuecP. MazzitelliS. ClementeF. AnselmoA. MatteoliM. MalosioM.L. CocoS. Intracerebral Injection of Extracellular Vesicles from Mesenchymal Stem Cells Exerts Reduced Aβ Plaque Burden in Early Stages of a Preclinical Model of Alzheimer’s Disease.Cells201989105910.3390/cells809105931510042
    [Google Scholar]
  47. ApodacaL.A. BaddourA.A.D. GarciaC.Jr AlikhaniL. GiedzinskiE. RuN. AgrawalA. AcharyaM.M. BaulchJ.E. Human neural stem cell-derived extracellular vesicles mitigate hallmarks of Alzheimer’s disease.Alzheimers Res. Ther.20211315710.1186/s13195‑021‑00791‑x33676561
    [Google Scholar]
  48. YangY. GaoL. XiJ. LiuX. YangH. LuoQ. XieF. NiuJ. MengP. TianX. WuX. LongQ. Mesenchymal stem cell-derived extracellular vesicles mitigate neuronal damage from intracerebral hemorrhage by modulating ferroptosis.Stem Cell Res. Ther.202415125510.1186/s13287‑024‑03879‑x39135135
    [Google Scholar]
  49. TerstappenG.C. MeyerA.H. BellR.D. ZhangW. Strategies for delivering therapeutics across the blood–brain barrier.Nat. Rev. Drug Discov.202120536238310.1038/s41573‑021‑00139‑y33649582
    [Google Scholar]
  50. SweeneyM.D. SagareA.P. ZlokovicB.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders.Nat. Rev. Neurol.201814313315010.1038/nrneurol.2017.18829377008
    [Google Scholar]
  51. ZhaiY. WangQ. ZhuZ. HaoY. HanF. HongJ. ZhengW. MaS. YangL. ChengG. High-efficiency brain-targeted intranasal delivery of BDNF mediated by engineered exosomes to promote remyelination.Biomater. Sci.202210195707571810.1039/D2BM00518B36039673
    [Google Scholar]
  52. MittalD. AliA. MdS. BabootaS. SahniJ.K. AliJ. Insights into direct nose to brain delivery: current status and future perspective.Drug Deliv.2014212758610.3109/10717544.2013.83871324102636
    [Google Scholar]
  53. LochheadJ.J. ThorneR.G. Intranasal delivery of biologics to the central nervous system.Adv. Drug Deliv. Rev.201264761462810.1016/j.addr.2011.11.00222119441
    [Google Scholar]
  54. DhuriaS.V. HansonL.R. FreyW.H.II Intranasal delivery to the central nervous system: Mechanisms and experimental considerations.J. Pharm. Sci.20109941654167310.1002/jps.2192419877171
    [Google Scholar]
  55. RennerD.B. FreyW.H.II HansonL.R. Intranasal delivery of siRNA to the olfactory bulbs of mice via the olfactory nerve pathway.Neurosci. Lett.2012513219319710.1016/j.neulet.2012.02.03722387067
    [Google Scholar]
  56. HaneyM.J. KlyachkoN.L. ZhaoY. GuptaR. PlotnikovaE.G. HeZ. PatelT. PiroyanA. SokolskyM. KabanovA.V. BatrakovaE.V. Exosomes as drug delivery vehicles for Parkinson’s disease therapy.J. Control. Release2015207183010.1016/j.jconrel.2015.03.03325836593
    [Google Scholar]
  57. GaoJ. GunasekarS. XiaZ. ShalinK. JiangC. ChenH. LeeD. LeeS. PisalN.D. LuoJ.N. GriciucA. KarpJ.M. TanziR. JoshiN. Gene therapy for CNS disorders: modalities, delivery and translational challenges.Nat. Rev. Neurosci.202425855357210.1038/s41583‑024‑00829‑738898231
    [Google Scholar]
  58. LosurdoM. PedrazzoliM. D’AgostinoC. EliaC.A. MassenzioF. LonatiE. MauriM. RizziL. MolteniL. BrescianiE. DanderE. D’AmicoG. BulbarelliA. TorselloA. MatteoliM. BuffelliM. CocoS. Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer’s disease.Stem Cells Transl. Med.2020991068108410.1002/sctm.19‑032732496649
    [Google Scholar]
  59. LongQ. UpadhyaD. HattiangadyB. KimD.K. AnS.Y. ShuaiB. ProckopD.J. ShettyA.K. Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus.Proc. Natl. Acad. Sci. USA201711417E3536E354510.1073/pnas.170392011428396435
    [Google Scholar]
  60. WangY. NiuH. LiL. HanJ. LiuZ. ChuM. ShaX. ZhaoJ. Anti-CHAC1 exosomes for nose-to-brain delivery of miR-760-3p in cerebral ischemia/reperfusion injury mice inhibiting neuron ferroptosis.J. Nanobiotechnology202321110910.1186/s12951‑023‑01862‑x36967397
    [Google Scholar]
  61. GuoS. PeretsN. BetzerO. Ben-ShaulS. SheininA. MichaelevskiI. PopovtzerR. OffenD. LevenbergS. Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog sirna repairs complete spinal cord injury.ACS Nano2019139100151002810.1021/acsnano.9b0189231454225
    [Google Scholar]
  62. ZhongX.L. HuangY. DuY. HeL.Z. ChenY. ChengY. LiuH. Unlocking the therapeutic potential of exosomes derived from nasal olfactory mucosal mesenchymal stem cells: Restoring synaptic plasticity, neurogenesis, and neuroinflammation in schizophrenia.Schizophr. Bull.202450360061410.1093/schbul/sbad17238086528
    [Google Scholar]
  63. CroweT.P. GreenleeM.H.W. KanthasamyA.G. HsuW.H. Mechanism of intranasal drug delivery directly to the brain.Life Sci.2018195445210.1016/j.lfs.2017.12.02529277310
    [Google Scholar]
  64. AgrawalM. SarafS. SarafS. AntimisiarisS.G. ChouguleM.B. ShoyeleS.A. AlexanderA. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs.J. Control. Release201828113917710.1016/j.jconrel.2018.05.01129772289
    [Google Scholar]
  65. HanS. WangJ.T.W. YavuzE. ZamA. RouatbiN. UtamiR.N. Liam-OrR. GriffithsA. DicksonW. SosabowskiJ. Al-JamalK.T. Spatiotemporal tracking of gold nanorods after intranasal administration for brain targeting.J. Control. Release202335760661910.1016/j.jconrel.2023.04.02237061195
    [Google Scholar]
  66. Khosrow TayebatiS. Ejike NwankwoI. AmentaF. Intranasal drug delivery to the central nervous system: present status and future outlook.Curr. Pharm. Des.201319351052610.2174/13816121380414366223116337
    [Google Scholar]
  67. KashyapK. ShuklaR. Drug delivery and targeting to the brain through nasal route: Mechanisms, applications and challenges.Curr. Drug Deliv.2019161088790110.2174/156720181666619102912274031660815
    [Google Scholar]
  68. RenR. TanX.H. ZhaoJ.H. ZhangQ.P. ZhangX.F. MaZ.J. PengY.N. LiuQ.B. ZhangH.Y. LiY.Q. HeR. ZhaoZ.Q. YiX.N. Bone marrow mesenchymal stem cell-derived exosome uptake and retrograde transport can occur at peripheral nerve endings.Artif. Cells Nanomed. Biotechnol.20194712918292910.1080/21691401.2019.164071331317777
    [Google Scholar]
  69. MossL.D. SodeD. PatelR. LuiA. HudsonC. PatelN.A. BickfordP.C. Intranasal delivery of exosomes from human adipose derived stem cells at forty-eight hours post injury reduces motor and cognitive impairments following traumatic brain injury.Neurochem. Int.202115010517310.1016/j.neuint.2021.10517334453976
    [Google Scholar]
  70. ZhuangX. XiangX. GrizzleW. SunD. ZhangS. AxtellR.C. JuS. MuJ. ZhangL. SteinmanL. MillerD. ZhangH.G. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain.Mol. Ther.201119101769177910.1038/mt.2011.16421915101
    [Google Scholar]
  71. LiuT. WangY. ZhangM. ZhangJ. KangN. ZhengL. DingZ. The optimization design of macrophage membrane camouflaging liposomes for alleviating ischemic stroke injury through intranasal delivery.Int. J. Mol. Sci.2024255292710.3390/ijms2505292738474179
    [Google Scholar]
  72. PandeyM. JainN. KanoujiaJ. HussainZ. GorainB. Advances and challenges in intranasal delivery of antipsychotic agents targeting the central nervous system.Front. Pharmacol.20221386559010.3389/fphar.2022.86559035401164
    [Google Scholar]
  73. WuD.D. SalahY.A. NgowiE.E. ZhangY.X. KhattakS. KhanN.H. WangY. LiT. GuoZ.H. WangY.M. JiX.Y. Nanotechnology prospects in brain therapeutics concerning gene-targeting and nose-to-brain administration.iScience202326810732110.1016/j.isci.2023.10732137554468
    [Google Scholar]
  74. KhatriD.K. PreetiK. TonapeS. BhattacharjeeS. PatelM. ShahS. SinghP.K. SrivastavaS. GugulothuD. VoraL. SinghS.B. Nanotechnological advances for nose to brain delivery of therapeutics to improve the parkinson therapy.Curr. Neuropharmacol.202321349351610.2174/1570159X2066622050702270135524671
    [Google Scholar]
  75. Villar-GómezN. Ojeda-HernandezD.D. López-MuguruzaE. García-FloresS. Bonel-GarcíaN. Benito-MartínM.S. Selma-CalvoB. Canales-AguirreA.A. Mateos-DíazJ.C. Montero-EscribanoP. Matias-GuiuJ.A. Matías-GuiuJ. Gómez-PinedoU. Nose-to-Brain: The next step for stem cell and biomaterial therapy in neurological disorders.Cells20221119309510.3390/cells1119309536231058
    [Google Scholar]
  76. KimM. LeeY. LeeM. Hypoxia-specific anti-RAGE exosomes for nose-to-brain delivery of anti-miR-181a oligonucleotide in an ischemic stroke model.Nanoscale20211333141661417810.1039/D0NR07516G34477698
    [Google Scholar]
  77. PengH. LiY. JiW. ZhaoR. LuZ. ShenJ. WuY. WangJ. HaoQ. WangJ. WangW. YangJ. ZhangX. Intranasal administration of self-oriented nanocarriers based on therapeutic exosomes for synergistic treatment of Parkinson’s Disease.ACS Nano202216186988410.1021/acsnano.1c0847334985280
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018339798240904171503
Loading
/content/journals/cdd/10.2174/0115672018339798240904171503
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): brain; intranasal delivery; mesenchymal stem cells derived exosomes; Uptake
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test