Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Nanomaterials, especially nanofibers, hold considerable promise as drug delivery systems (DDS) by providing targeted administration of drugs due to their unique properties, such as large surface area, high porosity, and mechanical robustness. Nanofibers can be fabricated using various techniques like electrospinning, self-assembly, phase separation, and template synthesis, offering properties such as adjustable size, shape, high precision, and biodegradability. Additionally, features such as multiple target functionalization, controlled release of the drug, and prolonged circulation of the drug make nanofibers particularly suitable for biomedical applications, including drug delivery, tissue regeneration, and biosensing. This comprehensive review explores the characteristics, types, fabrication methods, and applications of nanofibers. Diverse types of polymer nanofibers are used in drug delivery, such as blended nanofibers, core-shell nanofibers, and layer-by-layer assembly, each demonstrating their own advantages in controlled drug release and targeted therapy. Electrospun nanofibers are extensively utilized in biomedical applications due to their superior mechanical performance and high porosity and advancements in coaxial electrospinning enabling the fabrication of core-shell nanofibers, offering controlled drug release kinetics and protection of loaded molecules. These nanofibers demonstrate enhanced bioactivity and biocompatibility and can find application in tissue engineering. Furthermore, this review addresses the challenges associated with nanofiber production, including reproducibility and scalability. Nanofibers exhibit the potential to revolutionize medical treatment across diverse therapeutic areas. Future research directions and challenges in nanofiber-based drug delivery discussed in this review offer guidance for further advancements in this rapidly evolving field.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018325012240902122946
2024-08-20
2026-02-16
Loading full text...

Full text loading...

References

  1. SinghB. KimK. ParkM.H. On-demand drug delivery systems using nanofibers.Nanomaterials (Basel)20211112341110.3390/nano1112341134947758
    [Google Scholar]
  2. PantB. ParkM. ParkS.J. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review.Pharmaceutics201911730510.3390/pharmaceutics1107030531266186
    [Google Scholar]
  3. LiJ. LiuY. AbdelhakimH. Drug delivery applications of coaxial electrospun nanofibres in cancer therapy.Molecules2022276180310.3390/molecules2706180335335167
    [Google Scholar]
  4. HarishV. TewariD. GaurM. YadavA.B. SwaroopS. BechelanyM. BarhoumA. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications.Nanomaterials (Basel)202212345710.3390/nano1203045735159802
    [Google Scholar]
  5. JiffrinR. RazakS.I.A. JamaludinM.I. HamzahA.S.A. MazianM.A. JayaM.A.T. NasrullahM.Z. MajrashiM. TheyabA. AldarmahiA.A. AwanZ. Abdel-DaimM.M. AzadA.K. Electrospun nanofiber composites for drug delivery: A review on current progresses.Polymers (Basel)20221418372510.3390/polym1418372536145871
    [Google Scholar]
  6. MorieA. GargT. GoyalA.K. RathG. Nanofibers as novel drug carrier – An overview.Artif. Cells Nanomed. Biotechnol.201644113514310.3109/21691401.2014.92787925016918
    [Google Scholar]
  7. HiwraleA. BharatiS. PingaleP. RajputA. Nanofibers: A current era in drug delivery system.Heliyon202399e1891710.1016/j.heliyon.2023.e1891737674834
    [Google Scholar]
  8. IsaacB. TaylorR.M. ReifsniderK. Mechanical and dielectric properties of aligned electrospun fibers.Fibers (Basel)202191410.3390/fib9010004
    [Google Scholar]
  9. XueJ. WuT. DaiY. XiaY. Electrospinning and electrospun nanofibers: Methods, materials, and applications.Chem. Rev.201911985298541510.1021/acs.chemrev.8b0059330916938
    [Google Scholar]
  10. Torres-MartínezE.J. Cornejo BravoJ.M. Serrano MedinaA. Pérez GonzálezG.L. Villarreal GómezL.J. A summary of electrospun nanofibers as drug delivery system: Drugs loaded and biopolymers used as matrices.Curr. Drug Deliv.201815101360137410.2174/156720181566618072311432630033869
    [Google Scholar]
  11. AdepuS. RamakrishnaS. Controlled drug delivery systems: Current status and future directions.Molecules20212619590510.3390/molecules2619590534641447
    [Google Scholar]
  12. ZupančičŠ. Core-shell nanofibers as drug delivery systems.Acta Pharm.201969213115310.2478/acph‑2019‑001431259723
    [Google Scholar]
  13. WildyM. LuP. Electrospun Nanofibers: Shaping the Future of Controlled and Responsive Drug Delivery.Materials (Basel)20231622706210.3390/ma1622706238004992
    [Google Scholar]
  14. FengL. XieN. ZhongJ. Carbon nanofibers and their composites: A review of synthesizing, properties and applications.Materials (Basel)2014753919394510.3390/ma705391928788657
    [Google Scholar]
  15. NugeT. TshaiK. LimS. NordinN. HoqueM. Preparation and characterization of CU-, FE-, AG-, ZN-and NI-doped gelatin nanofibers for possible applications in antibacterial nanomedicine.JESTEC20171216881
    [Google Scholar]
  16. LeeH.J. LeeS. UthamanS. ThomasR. HyunH. JeongY. ChoC.S. ParkI.K. Biomedical applications of magnetically functionalized organic/inorganic hybrid nanofibers.Int. J. Mol. Sci.2015166136611367710.3390/ijms16061366126084046
    [Google Scholar]
  17. NematiS. KimS. ShinY.M. ShinH. Current progress in application of polymeric nanofibers to tissue engineering.Nano Converg.2019613610.1186/s40580‑019‑0209‑y31701255
    [Google Scholar]
  18. HuangR. LiW. LvX. LeiZ. BianY. DengH. WangH. LiJ. LiX. Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing.Biomaterials201553587510.1016/j.biomaterials.2015.02.07625890707
    [Google Scholar]
  19. DuanX. ChenH. GuoC. Polymeric nanofibers for drug delivery applications: A recent review.J. Mater. Sci. Mater. Med.202233127810.1007/s10856‑022‑06700‑436462118
    [Google Scholar]
  20. JarakI. SilvaI. DominguesC. SantosA.I. VeigaF. FigueirasA. Nanofiber carriers of therapeutic load: Current trends.Int. J. Mol. Sci.20222315858110.3390/ijms2315858135955712
    [Google Scholar]
  21. Kenry LimC.T. Nanofiber technology: Current status and emerging developments.Prog. Polym. Sci.20177011710.1016/j.progpolymsci.2017.03.002
    [Google Scholar]
  22. BayerI.S. A review of sustained drug release studies from nanofiber hydrogels.Biomedicines2021911161210.3390/biomedicines911161234829843
    [Google Scholar]
  23. VasitaR. KattiD.S. Nanofibers and their applications in tissue engineering.Int. J. Nanomedicine200611153010.2147/nano.2006.1.1.1517722259
    [Google Scholar]
  24. Contreras-CáceresR. CabezaL. PerazzoliG. DíazA. López-RomeroJ.M. MelguizoC. PradosJ. Electrospun nanofibers: Recent applications in drug delivery and cancer therapy.Nanomaterials (Basel)20199465610.3390/nano904065631022935
    [Google Scholar]
  25. BhattaraiR.S. BachuR.D. BodduS.H.S. BhaduriS. Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery.Pharmaceutics2018111510.3390/pharmaceutics1101000530586852
    [Google Scholar]
  26. AbadiB. GoshtasbiN. BolourianS. TahsiliJ. Adeli-SardouM. ForootanfarH. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications.Front. Bioeng. Biotechnol.20221098697510.3389/fbioe.2022.98697536561047
    [Google Scholar]
  27. YeK. KuangH. YouZ. MorsiY. MoX. Electrospun nanofibers for tissue engineering with drug loading and release.Pharmaceutics201911418210.3390/pharmaceutics1104018230991742
    [Google Scholar]
  28. MohammadianF. EatemadiA. Drug loading and delivery using nanofibers scaffolds.Artif. Cells Nanomed. Biotechnol.201745588188810.1080/21691401.2016.118572627188394
    [Google Scholar]
  29. LuY. HuangJ. YuG. CardenasR. WeiS. WujcikE.K. GuoZ. Coaxial electrospun fibers: Applications in drug delivery and tissue engineering.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168565467710.1002/wnan.139126848106
    [Google Scholar]
  30. Castillo-HenríquezL Vargas-ZúñigaR Pacheco-MolinaJ Vega-BaudritJ. Electrospun nanofibers: A nanotechnological approach for drug delivery and dissolution optimization in poorly water-soluble drugs.ADMET DMPK20208432535310.5599/admet.844
    [Google Scholar]
  31. SantoroM. ShahS.R. WalkerJ.L. MikosA.G. Poly(lactic acid) nanofibrous scaffolds for tissue engineering.Adv. Drug Deliv. Rev.201610720621210.1016/j.addr.2016.04.01927125190
    [Google Scholar]
  32. DeFratesK.G. MooreR. BorgesiJ. LinG. MulderigT. BeachleyV. HuX. Protein-based fiber materials in medicine: A review.Nanomaterials (Basel)20188745710.3390/nano807045729932123
    [Google Scholar]
  33. ZhangZ. HuJ. MaP.X. Nanofiber-based delivery of bioactive agents and stem cells to bone sites.Adv. Drug Deliv. Rev.201264121129114110.1016/j.addr.2012.04.00822579758
    [Google Scholar]
  34. LiT. LuX.M. ZhangM.R. HuK. LiZ. Peptide-based nanomaterials: Self-assembly, properties and applications.Bioact. Mater.20221126828210.1016/j.bioactmat.2021.09.02934977431
    [Google Scholar]
  35. SankarS. O’NeillK. Bagot D’ArcM. RebecaF. BuffierM. AleksiE. FanM. MatsudaN. GilE.S. SpirioL. Clinical use of the self-assembling peptide RADA16: A review of current and future trends in biomedicine.Front. Bioeng. Biotechnol.2021967952510.3389/fbioe.2021.67952534164387
    [Google Scholar]
  36. YanH. LiJ. TianW. HeL. TuoX. QiuT. A new approach to the preparation of poly(p-phenylene terephthalamide) nanofibers.RSC Advances2016632265992660510.1039/C6RA01602B
    [Google Scholar]
  37. XieC. YangS. HeR. LiuJ. ChenY. GuoY. GuoZ. QiuT. TuoX. Recent advances in self-assembly and application of para-aramids.Molecules20222714441310.3390/molecules2714441335889286
    [Google Scholar]
  38. BarhoumA. PalK. RahierH. UludagH. KimI.S. BechelanyM. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications.Appl. Mater. Today20191713510.1016/j.apmt.2019.06.015
    [Google Scholar]
  39. TiwariR. TiwariG. LahiriA. RV. RaiA.K. Localized delivery of drugs through medical textiles for treatment of burns: A perspective approach.Adv. Pharm. Bull.202011224826010.34172/apb.2021.03033880346
    [Google Scholar]
  40. AlmetwallyA.A. El-SakhawyM. ElshakankeryM. KasemM. Technology of nano-fibers: Production techniques and properties-Critical review.J Text Assoc2017781514
    [Google Scholar]
  41. Pérez-PageM. YuE. LiJ. RahmanM. DrydenD.M. ViduR. StroeveP. Template-based syntheses for shape controlled nanostructures.Adv. Colloid Interface Sci.2016234517910.1016/j.cis.2016.04.00127154387
    [Google Scholar]
  42. LeeJ.W. SongK.H. Fibrous hydrogels by electrospinning: Novel platforms for biomedical applications.J. Tissue Eng.2023142041731423119188110.1177/2041731423119188137581121
    [Google Scholar]
  43. NayakR. PadhyeR. KyratzisI.L. TruongY.B. ArnoldL. Recent advances in nanofibre fabrication techniques.Text. Res. J.201282212914710.1177/0040517511424524
    [Google Scholar]
  44. CuiW. ZhouY. ChangJ. Electrospun nanofibrous materials for tissue engineering and drug delivery.Sci. Technol. Adv. Mater.201011101410810.1088/1468‑6996/11/1/01410827877323
    [Google Scholar]
  45. CelebiogluA. UyarT. Encapsulation and stabilization of α-lipoic acid in cyclodextrin inclusion complex electrospun nanofibers: Antioxidant and fast-dissolving α-lipoic acid/cyclodextrin nanofibrous webs.J. Agric. Food Chem.20196747130931310710.1021/acs.jafc.9b0558031693349
    [Google Scholar]
  46. RodriguesF.J. CedranM.F. BicasJ.L. SatoH.H. Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review.Food Res. Int.202013710968210.1016/j.foodres.2020.10968233233258
    [Google Scholar]
  47. YaoM. XieJ. DuH. McClementsD.J. XiaoH. LiL. Progress in microencapsulation of probiotics: A review.Compr. Rev. Food Sci. Food Saf.202019285787410.1111/1541‑4337.1253233325164
    [Google Scholar]
  48. ZareM. DziemidowiczK. WilliamsG.R. RamakrishnaS. Encapsulation of pharmaceutical and nutraceutical active ingredients using electrospinning processes.Nanomaterials (Basel)2021118196810.3390/nano1108196834443799
    [Google Scholar]
  49. DingY. LiW. ZhangF. LiuZ. Zanjanizadeh EzaziN. LiuD. SantosH.A. Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy.Adv. Funct. Mater.2019292180285210.1002/adfm.201802852
    [Google Scholar]
  50. JiangZ. ZhengZ. YuS. GaoY. MaJ. HuangL. YangL. Nanofiber scaffolds as drug delivery systems promoting wound healing.Pharmaceutics2023157182910.3390/pharmaceutics1507182937514015
    [Google Scholar]
  51. NagarajanS. BechelanyM. KalkuraN.S. MieleP. BohatierC.P. BalmeS. Electrospun nanofibers for drug delivery in regenerative medicine.Applications of targeted nano drugs and delivery systems.AmsterdamElsevier201959562510.1016/B978‑0‑12‑814029‑1.00020‑X
    [Google Scholar]
  52. ElsadekN.E. NagahA. IbrahimT.M. ChopraH. GhonaimG.A. EmamS.E. CavaluS. AttiaM.S. Electrospun nanofibers revisited: An update on the emerging applications in nanomedicine.Materials (Basel)2022155193410.3390/ma1505193435269165
    [Google Scholar]
  53. Al-EniziA.M. ZaghoM.M. ElzatahryA.A. Polymer-based electrospun nanofibers for biomedical applications.Nanomaterials (Basel)20188425910.3390/nano804025929677145
    [Google Scholar]
  54. MemicA. AbdullahT. MohammedH.S. Joshi NavareK. ColombaniT. BencherifS.A. Latest progress in electrospun nanofibers for wound healing applications.ACS Appl. Bio Mater.20192395296910.1021/acsabm.8b0063735021385
    [Google Scholar]
  55. RošicR. KocbekP. PelipenkoJ. KristlJ. BaumgartnerS. Nanofibers and their biomedical use.Acta Pharm.201363329530410.2478/acph‑2013‑002424152893
    [Google Scholar]
  56. ZhouT. LiG. LinS. TianT. MaQ. ZhangQ. ShiS. XueC. MaW. CaiX. LinY. Electrospun poly (3-hydroxybutyrate-co-4-hydroxybutyrate)/graphene oxide scaffold: Enhanced properties and promoted in vivo bone repair in rats.ACS Appl. Mater. Interfaces2017949425894260010.1021/acsami.7b1426729148704
    [Google Scholar]
  57. ZahraF.T. QuickQ. MuR. Electrospun PVA fibers for drug delivery: A review.Polymers (Basel)20231518383710.3390/polym1518383737765691
    [Google Scholar]
  58. FuY. LiX. RenZ. MaoC. HanG. Multifunctional electrospun nanofibers for enhancing localized cancer treatment.Small20181433180118310.1002/smll.20180118329952070
    [Google Scholar]
  59. LiuS. ZhouG. LiuD. XieZ. HuangY. WangX. WuW. JingX. Inhibition of orthotopic secondary hepatic carcinoma in mice by doxorubicin-loaded electrospun polylactide nanofibers.J. Mater. Chem. B Mater. Biol. Med.20131110110910.1039/C2TB00121G32260617
    [Google Scholar]
  60. HuangW. HuoM. ChengN. WangR. New forms of electrospun nanofibers applied in cardiovascular field.Front. Cardiovasc. Med.2022880107710.3389/fcvm.2021.80107735127862
    [Google Scholar]
  61. HoC.M.B. MishraA. LinP.T.P. NgS.H. YeongW.Y. KimY.J. YoonY.J. 3D printed polycaprolactone carbon nanotube composite scaffolds for cardiac tissue engineering.Macromol. Biosci.2017174160025010.1002/mabi.20160025027892655
    [Google Scholar]
  62. ParhamS. KharaziA.Z. Bakhsheshi-RadH.R. GhayourH. IsmailA.F. NurH. BertoF. Electrospun nano-fibers for biomedical and tissue engineering applications: A comprehensive review.Materials (Basel)2020139215310.3390/ma1309215332384813
    [Google Scholar]
  63. WangH.J. DiL. RenQ.S. WangJ.Y. Applications and degradation of proteins used as tissue engineering materials.Materials (Basel)20092261363510.3390/ma202061336676350
    [Google Scholar]
  64. RickelA.P. DengX. EngebretsonD. HongZ. Electrospun nanofiber scaffold for vascular tissue engineering.Mater. Sci. Eng. C202112911237310.1016/j.msec.2021.11237334579892
    [Google Scholar]
  65. LabibG. Overview on zein protein: A promising pharmaceutical excipient in drug delivery systems and tissue engineering.Expert Opin. Drug Deliv.2018151657510.1080/17425247.2017.134975228662354
    [Google Scholar]
  66. LiG. ZhangT. LiM. FuN. FuY. BaK. DengS. JiangY. HuJ. PengQ. LinY. Electrospun fibers for dental and craniofacial applications.Curr. Stem Cell Res. Ther.20149318719510.2174/1574888X0966614021315171724524795
    [Google Scholar]
  67. ZafarM. NajeebS. KhurshidZ. VazirzadehM. ZohaibS. NajeebB. SefatF. Potential of electrospun nanofibers for biomedical and dental applications.Materials (Basel)2016927310.3390/ma902007328787871
    [Google Scholar]
  68. IbrahimM.A. AlhalafiM.H. EmamE.A.M. IbrahimH. MosaadR.M. A Review of Chitosan and Chitosan Nanofiber: Preparation, Characterization, and Its Potential Applications.Polymers (Basel)20231513282010.3390/polym1513282037447465
    [Google Scholar]
  69. GoyalR. MacriL.K. KaplanH.M. KohnJ. Nanoparticles and nanofibers for topical drug delivery.J. Control. Release2016240779210.1016/j.jconrel.2015.10.04926518723
    [Google Scholar]
  70. ChuahL.H. LooH.L. GohC.F. FuJ.Y. NgS.F. Chitosan-based drug delivery systems for skin atopic dermatitis: Recent advancements and patent trends.Drug Deliv. Transl. Res.20231351436145510.1007/s13346‑023‑01307‑w36808298
    [Google Scholar]
  71. Abu OwidaH. Al-NabulsiJ.I. AlnaimatF. Al SharahA. Al-AyyadM. TurabN.M. AbdullahM. Advancement of nanofibrous mats and common useful drug delivery applications.Adv. Pharmacol. Pharm. Sci.2022202211410.1155/2022/907383735492808
    [Google Scholar]
  72. KulkarniD. MusaleS. PanzadeP. Paiva-SantosA.C. SonwaneP. MadiboneM. ChoundheP. GiramP. CavaluS. Surface functionalization of nanofibers: The multifaceted approach for advanced biomedical applications.Nanomaterials (Basel)20221221389910.3390/nano1221389936364675
    [Google Scholar]
  73. TomarY. PanditN. PriyaS. SinghviG. Evolving trends in nanofibers for topical delivery of therapeutics in skin disorders.ACS Omega2023821183401835710.1021/acsomega.3c0092437273582
    [Google Scholar]
  74. XiaoL. LiuH. HuangH. WuS. XueL. GengZ. CaiL. YanF. 3D nanofiber scaffolds from 2D electrospun membranes boost cell penetration and positive host response for regenerative medicine.J. Nanobiotechnol.202422132210.1186/s12951‑024‑02578‑238849858
    [Google Scholar]
  75. KoohzadF AsoodehA. yaluronic Acid/Gelatin Coaxial Nanofibers Incorporated with Berberine–Arginine for Wound Healing.ACS Appl. Nano Mater.20247124c02174
    [Google Scholar]
  76. JamnongkanT. SirichaicharoenkolK. KongsomboonV. SrinuanJ. SrisawatN. PangonA. MongkholrattanasitR. TammasakchaiA. HuangC.F. Innovative Electrospun Nanofiber Mats Based on Polylactic Acid Composited with Silver Nanoparticles for Medical Applications.Polymers (Basel)202416340910.3390/polym1603040938337298
    [Google Scholar]
  77. HajishorehN.K. MellatyarH. KaamyabiS. AbasalizadehF. AkbarzadehA. Preparation and Evaluation of Polyurethane-Based Nanofibers for Controlled Release of Simvastatin for the Treatment of Cardiac Disorders.Bionanoscience20241421687169510.1007/s12668‑024‑01380‑6
    [Google Scholar]
  78. ParkS.K. ShinJ.H. LeeD.U. JungJ.H. HwangI. YooS.H. LeeH.C. ParkI. KimW. LeeD.Y. ChoiD.Y. Facile Fabrication of Multifunctional Hydrogel Nanoweb Coating Using Carboxymethyl Chitosan-Based Short Nanofibers for Blood-Contacting Medical Devices.Nano Lett.202424298920892810.1021/acs.nanolett.4c0165938874568
    [Google Scholar]
  79. MalaraA. Environmental concerns on the use of the electrospinning technique for the production of polymeric micro/nanofibers.Sci. Rep.2024141829310.1038/s41598‑024‑58936‑538594337
    [Google Scholar]
  80. OmerS. ForgáchL. ZelkóR. SebeI. Scale-up of electrospinning: Market overview of products and devices for pharmaceutical and biomedical purposes.Pharmaceutics202113228610.3390/pharmaceutics1302028633671624
    [Google Scholar]
  81. GhajariehA. HabibiS. TalebianA. Biomedical applications of nanofibers.Russ. J. Appl. Chem.202194784787210.1134/S1070427221070016
    [Google Scholar]
  82. WangP. LvH. CaoX. LiuY. YuD.G. Recent progress of the preparation and application of electrospun porous nanofibers.Polymers (Basel)202315492110.3390/polym1504092136850206
    [Google Scholar]
  83. ChiH ChanV LiC HsiehJ LinP TsaiY-H ChenY Fabrication of polylactic acid/paclitaxel nano fibers by electrospinning for cancer therapeutics.BMC Chem.20201416310.1186/s13065‑020‑00711‑4
    [Google Scholar]
  84. MonteiroN. MartinsM. MartinsA. FonsecaN.A. MoreiraJ.N. ReisR.L. NevesN.M. Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin.Acta Biomater.20151819620510.1016/j.actbio.2015.02.01825749293
    [Google Scholar]
  85. RychterM. Baranowska-KorczycA. MilanowskiB. JarekM. MaciejewskaB.M. CoyE.L. LulekJ. Cilostazol-loaded poly (ε-Caprolactone) electrospun drug delivery system for cardiovascular applications.Pharm. Res.20183523210.1007/s11095‑017‑2314‑029368067
    [Google Scholar]
  86. HeydariP. VarshosazJ. Zargar KharaziA. KarbasiS. Preparation and evaluation of poly glycerol sebacate/poly hydroxy butyrate core‐shell electrospun nanofibers with sequentially release of ciprofloxacin and simvastatin in wound dressings.Polym. Adv. Technol.20182961795180310.1002/pat.4286
    [Google Scholar]
  87. LiX. LiJ. GaoY. KuangY. ShiJ. XuB. Molecular nanofibers of olsalazine form supramolecular hydrogels for reductive release of an anti-inflammatory agent.J. Am. Chem. Soc.201013250177071770910.1021/ja109269v21121607
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018325012240902122946
Loading
/content/journals/cdd/10.2174/0115672018325012240902122946
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test