Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Introduction

Ginger ( (L.) Rosc), as an edible plant-derived nanoparticle, offers several advantages, such as a high return rate, low budget, no ethical barriers, and good for health. Ginger-Derived Extracellular Vesicles (GDEVs) are nanoscale vesicles isolated from ginger.

Methods

In this study, GDEVs were used to treat the alopecia mouse model, and its main active components and potential mechanism of action were investigated. The LC-MS/MS analysis of GDEVs revealed the presence of 1299 chemical compounds, among which auxiliary components were identified. Interestingly, the crux of the analysis lies in the discovery of 13 specific ingredients that play a pivotal role in hair proliferation. The aim of this study was to investigate the protective effect of GDEVs on hair loss. These advantages make ginger-derived nanoparticles a promising solution to overcome technical limitations associated with mammalian nanoparticles. This study elucidates the mechanism of action of GDEVs in the treatment of alopecia. However, the active ingredients and mechanism of action of GDEVs in the treatment of hair loss are unknown.

Results

GDEVs were isolated from ginger using the differential centrifugal method. Network pharmacological analysis of the GDEVs revealed that the anti-hair loss effect of GDEVs on alopecia was closely linked to its ability to reduce inflammation and promote the proliferation of hair follicle stem cells. Subsequently, it was applied to the balding areas of hair-loss mice using a brush. The results demonstrated that the application of GDEVs led to a rapid recovery of the balding areas and promoted the growth of healthier hair.

Conclusion

This experiment reported that GDEVs can effectively suppress the inflammatory activity in the alopecia model mice.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018321133240829074400
2024-09-10
2026-02-19
Loading full text...

Full text loading...

References

  1. Juárez-RendónK.J. Rivera SánchezG. Reyes-LópezM.A. García-OrtizJ.E. Bocanegra-GarcíaV. Guardiola-AvilaI. Altamirano-GarcíaM.L. Alopecia areata. Current situation and perspectives.Arch. Argent. Pediatr.20171156e404e41129087123
    [Google Scholar]
  2. AlessandriniA. BruniF. PiracciniB.M. StaraceM. Common causes of hair loss – clinical manifestations, trichoscopy and therapy.J. Eur. Acad. Dermatol. Venereol.202135362964010.1111/jdv.1707933290611
    [Google Scholar]
  3. RapaportJ. SadgroveN.J. ArrudaS. SwearingenA. AbidiZ. SadickN. Real-world, open-label study of the efficacy and safety of a novel serum in androgenetic alopecia.J. Drugs Dermatol.202322655956410.36849/JDD.740337276165
    [Google Scholar]
  4. KamishimaT. HirabeC. OhnishiT. TaguchiJ. MyintK.Z.Y. KogaS. Trichoscopic evaluation of dental pulp stem cell conditioned media for androgenic alopecia.J. Cosmet. Dermatol.202322113107311710.1111/jocd.1579937154468
    [Google Scholar]
  5. LyN.Y. FruechteS. HordinskyM.K. SadickN. ArrudaS. FarahR.S. Medical and procedural treatment of androgenetic alopecia – Where are we?J. Am. Acad. Dermatol.2023892S36S3910.1016/j.jaad.2023.05.00437591565
    [Google Scholar]
  6. HanA. MirmiraniP. Clinical approach to the patient with alopecia.Semin. Cutan. Med. Surg.2006251112310.1016/j.sder.2006.01.00316616299
    [Google Scholar]
  7. YangL. JinW. TangX. ZhangS. MaR. ZhaoD. SunL. Ginseng-derived nanoparticles inhibit lung cancer cell epithelial mesenchymal transition by repressing pentose phosphate pathway activity.Front. Oncol.20221294202010.3389/fonc.2022.94202036059624
    [Google Scholar]
  8. LinS.J. YueZ. PausR. Clinical pathobiology of radiotherapy-induced alopecia: a guide toward more effective prevention and hair follicle repair.J. Invest. Dermatol.202314391646165610.1016/j.jid.2023.02.04137294241
    [Google Scholar]
  9. ShinY.S. KarnaK.K. ChoiB.R. ParkJ.K. Finasteride and erectile dysfunction in patients with benign prostatic hyperplasia or male androgenetic alopecia.World J. Mens Health201937215716510.5534/wjmh.18002930209896
    [Google Scholar]
  10. NestorM.S. AblonG. GadeA. HanH. FischerD.L. Treatment options for androgenetic alopecia: Efficacy, side effects, compliance, financial considerations, and ethics.J. Cosmet. Dermatol.202120123759378110.1111/jocd.1453734741573
    [Google Scholar]
  11. MoseleyI.H. ThompsonJ.M. GeorgeE.A. RagiS.D. KangJ.H. ReginatoA.M. QureshiA. ChoE. Immune-mediated diseases and subsequent risk of alopecia areata in a prospective study of US women.Arch. Dermatol. Res.2022315480781310.1007/s00403‑022‑02444‑x36319702
    [Google Scholar]
  12. MaheY.F. ChenitiA. TacheauC. AntonelliR. Planard-LuongL. de BernardS. BuffatL. BarbaratP. Kanoun-CopyL. Low‐level light therapy downregulates scalp inflammatory biomarkers in men with androgenetic alopecia and boosts minoxidil 2% to bring a sustainable hair regrowth activity.Lasers Surg. Med.20215391208121910.1002/lsm.2339833973663
    [Google Scholar]
  13. KimC. ShinJ.M. KimD. ParkS. HongD. JungK.E. KimC.D. SeoY.J. LeeY. Role of substance p in regulating micro-milieu of inflammation in alopecia areata.Ann. Dermatol.202234427027710.5021/ad.21.16135948329
    [Google Scholar]
  14. WangJ. YangL. The role of exosomes in central nervous system tissue regeneration and repair.Biomed. Mater.202318505200310.1088/1748‑605X/ace39c37399812
    [Google Scholar]
  15. ShenY.L. LiX.Q. PanR.R. YueW. ZhangL.J. ZhangH. Medicinal plants for the treatment of hair loss and the suggested mechanisms.Curr. Pharm. Des.201824263090310010.2174/138161282466618091111481030205796
    [Google Scholar]
  16. SahebkarA. Potential efficacy of ginger as a natural supplement for nonalcoholic fatty liver disease.World J. Gastroenterol.201117227127210.3748/wjg.v17.i2.27121246004
    [Google Scholar]
  17. A comprehensive review on ginger-derived exosome-like nanoparticles as feasible therapeutic nano-agents against disease.Mat. Adv.2024202418461867
    [Google Scholar]
  18. ChenX. ZhouY. YuJ. Exosome-like nanoparticles from ginger rhizomes inhibited nlrp3 inflammasome activation.Mol. Pharm.20191662690269910.1021/acs.molpharmaceut.9b0024631038962
    [Google Scholar]
  19. ThomsonM. Al-QattanK.K. Al-SawanS.M. AlnaqeebM.A. KhanI. AliM. The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent.Prostaglandins Leukot. Essent. Fatty Acids200267647547810.1054/plef.2002.044112468270
    [Google Scholar]
  20. QiaoZ. ZhangK. LiuJ. ChengD. YuB. ZhaoN. XuF.J. Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy.Nat. Commun.2022131716410.1038/s41467‑022‑34883‑536418895
    [Google Scholar]
  21. GrzannaR. LindmarkL. FrondozaC.G. Ginger--an herbal medicinal product with broad anti-inflammatory actions.J. Med. Food20058212513210.1089/jmf.2005.8.12516117603
    [Google Scholar]
  22. LiZ. WangH. YinH. BennettC. ZhangH. GuoP. Arrowtail rna for ligand display on ginger exosome-like nanovesicles to systemic deliver sirna for cancer suppression.Sci. Rep.2018811464410.1038/s41598‑018‑32953‑730279553
    [Google Scholar]
  23. MaoY. HanM. ChenC. WangX. HanJ. GaoY. WangS. A biomimetic nanocomposite made of a ginger-derived exosome and an inorganic framework for high-performance delivery of oral antibodies.Nanoscale20211347201572016910.1039/D1NR06015E34846415
    [Google Scholar]
  24. YinL. YanL. YuQ. WangJ. LiuC. WangL. ZhengL. Characterization of the microrna profile of ginger exosome-like nanoparticles and their anti-inflammatory effects in intestinal caco-2 cells.J. Agric. Food Chem.202270154725473410.1021/acs.jafc.1c0730635261246
    [Google Scholar]
  25. SimakouT. ButcherJ.P. ReidS. HenriquezF.L. Alopecia areata: A multifactorial autoimmune condition.J. Autoimmun.201998748510.1016/j.jaut.2018.12.00130558963
    [Google Scholar]
  26. CaoM. YanH. HanX. WengL. WeiQ. SunX. LuW. WeiQ. YeJ. CaiX. HuC. YinX. CaoP. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth.J. Immunother. Cancer20197132610.1186/s40425‑019‑0817‑431775862
    [Google Scholar]
  27. ManF. MengC. LiuY. WangY. ZhouY. MaJ. LuR. The study of ginger-derived extracellular vesicles as a natural nanoscale drug carrier and their intestinal absorption in rats.AAPS PharmSciTech202122620610.1208/s12249‑021‑02087‑734297224
    [Google Scholar]
  28. AnushaR. AshinM. PriyaS. Ginger exosome-like nanoparticles (GELNs) induced apoptosis, cell cycle arrest, and anti-metastatic effects in triple-negative breast cancer MDA-MB-231 cells. Food and chemical toxicology.Int. j. pub. British Indus. Biolo. Research Asso.2023182114102
    [Google Scholar]
  29. SalemM.A. ZayedA. Liquid chromatography–tandem mass spectrometry-based profiling of plant hormones.Methods Mol. Biol.2022246212513310.1007/978‑1‑0716‑2156‑1_1035152385
    [Google Scholar]
  30. ZhaoL. QianS. WangX. SiT. XuJ. WangZ. SunQ. YangY. RongR. UPLC-Q-Exactive/MS based analysis explore the correlation between components variations and anti-influenza virus effect of four quantified extracts of Chaihu Guizhi decoction.J. Ethnopharmacol.2024319311731810.1016/j.jep.2023.11731837838293
    [Google Scholar]
  31. DingY. WangY. ZhangY. DangB. HuS. ZhaoC. HuangY. ZhengG. MaT. ZhangT. Alpha-linolenic acid improves nasal mucosa epithelial barrier function in allergic rhinitis by arresting CD4+ T cell differentiation via IL-4Rα-JAK2-STAT3 pathway.Phytomedicine202311615482510.1016/j.phymed.2023.15482537178572
    [Google Scholar]
  32. LiR. ShiC. WeiC. WangC. DuH. LiuR. WangX. HongQ. ChenX. Fufang Shenhua tablet inhibits renal fibrosis by inhibiting PI3K/AKT.Phytomedicine202311615487310.1016/j.phymed.2023.15487337257328
    [Google Scholar]
  33. ZhouY. TangG. LiX. SunW. LiangY. GanD. LiuG. SongW. WangZ. Study on the chemical constituents of nut oil from Prunus mira Koehne and the mechanism of promoting hair growth.J. Ethnopharmacol.202025811283110.1016/j.jep.2020.11283132283192
    [Google Scholar]
  34. ChenL.P. FanB. GuH. YangL.Q. LiX.F. Effects of baicalin on alopecia and the associated mechanism.Biomed. Res. Int.20222022313912310.1155/2022/3139123
    [Google Scholar]
  35. CaoS. ZhangD. YuanJ. DengW. WenS. QinB. LiY. Inflammatory cytokine expression in the skin of patients with postherpetic neuralgia.J. Int. Med. Res.202048810.1177/030006052092958232840164
    [Google Scholar]
  36. GastaldelloA. LivingstoneD.E. AbernethieA.J. TsangN. WalkerB.R. HadokeP.W. AndrewR. Safer topical treatment for inflammation using 5α-tetrahydrocorticosterone in mouse models.Biochem. Pharmacol.2017129738410.1016/j.bcp.2017.01.00828131845
    [Google Scholar]
  37. ManjunathanT. GuruA. ArokiarajJ. GopinathP. 6‐gingerol and semisynthetic 6‐gingerdione counteract oxidative stress induced by ros in zebrafish.Chem. Biodivers.20211812e210065010.1002/cbdv.20210065034599795
    [Google Scholar]
  38. WangX. ZhangX. LiJ. FuJ. ZhaoM. ZhangW. WengW. LiQ. Network pharmacology and LC-MS approachs to explore the active compounds and mechanisms of Yuanjiang decoction for treating bradyarrhythmia.Comput. Biol. Med.202315210643510.1016/j.compbiomed.2022.10643536535207
    [Google Scholar]
  39. WangX. ChenH. TianR. ZhangY. DrutskayaM.S. WangC. GeJ. FanZ. KongD. WangX. CaiT. ZhouY. WangJ. WangJ. WangS. QinZ. JiaH. WuY. LiuJ. NedospasovS.A. TredgetE.E. LinM. LiuJ. JiangY. WuY. Macrophages induce AKT/β-catenin-dependent Lgr5 stem cell activation and hair follicle regeneration through TNF.Nat. Commun.2017811409110.1038/ncomms1409128345588
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018321133240829074400
Loading
/content/journals/cdd/10.2174/0115672018321133240829074400
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): alopecia; anti-inflammatory; EVs; Ginger; hair follicle stem cell; hair loss
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test