Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background

Ovarian cancer presents a substantial risk to women's health and lives, with early detection and treatment proving challenging. Targeted nanodelivery systems are viewed as a promising approach to enhance the effectiveness of ovarian cancer treatment and ultrasonic imaging outcomes.

Objective

A phase-shifted nanodelivery system (NPs) loaded with paclitaxel (PTX) and further conjugated with avidin (Ab) was studied, with the goal of investigating the effects of targeted nanodelivery strategies on the therapeutic efficacy and ultrasonic imaging of ovarian cancer. This study provides a foundation for future treatments utilizing this approach.

Methods

PTX-NPs were prepared using the single water-in-oil (O/W) emulsion solvent evaporation method, with avidin coupling achieved through biotin-avidin affinity. The encapsulation efficiency and release profile of PTX were analyzed using UV spectrophotometry. The phase-shift properties of the Ab-PTX-NPs delivery system were evaluated, and the targeting efficiency, cytotoxicity against SKOV3 cells, and biosafety of various nanodelivery systems were assessed.

Results

The prepared nanodelivery system showed a stable and uniform structure with a good particle size distribution and exhibited favorable release characteristics under ultrasound exposure. experiments revealed that the nanodelivery system displayed excellent targeting and cytotoxic effects against SKOV3 cells, indicating the potential of the Ab-PTX-NPs delivery system for targeted ovarian cancer therapy. safety studies demonstrated the high biosafety of the prepared nanodelivery system.

Conclusion

A novel nanodelivery system was developed, and the experimental results obtained provide a solid experimental basis for further research on ultrasound molecular imaging technology, offering new insights into targeted ultrasound molecular imaging and the treatment of ovarian cancer.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018300502240530064139
2024-06-05
2025-09-26
Loading full text...

Full text loading...

References

  1. BoseS. SahaP. ChatterjeeB. SrivastavaA.K. Chemokines driven ovarian cancer progression, metastasis and chemoresistance: Potential pharmacological targets for cancer therapy.Semin. Cancer Biol.202286Pt 256857910.1016/j.semcancer.2022.03.02835378273
    [Google Scholar]
  2. de VisserK.E. JoyceJ.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth.Cancer Cell202341337440310.1016/j.ccell.2023.02.01636917948
    [Google Scholar]
  3. XiongJ. WuM. ChenJ. LiuY. ChenY. FanG. LiuY. ChengJ. WangZ. WangS. LiuY. ZhangW. Cancer-erythrocyte hybrid membrane-camouflaged magnetic nanoparticles with enhanced photothermal-immunotherapy for ovarian cancer.ACS Nano20211512197561977010.1021/acsnano.1c0718034860006
    [Google Scholar]
  4. KurokiL. GuntupalliS.R. Treatment of epithelial ovarian cancer.BMJ2020371m377310.1136/bmj.m377333168565
    [Google Scholar]
  5. Permuth-WeyJ. SellersT.A. Epidemiology of ovarian cancer.Cancer EpidemiologyMethods in Molecular Biology; Humana PressTotowa, NJ200947241343710.1007/978‑1‑60327‑492‑0_20
    [Google Scholar]
  6. SiegelR. MaJ. ZouZ. JemalA. Cancer statistics, 2014.CA Cancer J. Clin.201464192910.3322/caac.2120824399786
    [Google Scholar]
  7. KonstantinopoulosP.A. MatulonisU.A. Clinical and translational advances in ovarian cancer therapy.Nat. Can.2023491239125710.1038/s43018‑023‑00617‑937653142
    [Google Scholar]
  8. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  9. YangL. XieH.J. LiY.Y. WangX. LiuX.X. MaiJ. Molecular mechanisms of platinum-based chemotherapy resistance in ovarian cancer (Review).Oncol. Rep.20224748210.3892/or.2022.829335211759
    [Google Scholar]
  10. MorandS. DevanaboyinaM. StaatsH. StanberyL. NemunaitisJ. Ovarian cancer immunotherapy and personalized medicine.Int. J. Mol. Sci.20212212653210.3390/ijms2212653234207103
    [Google Scholar]
  11. FanZ. HanD. FanX. ZhaoL. Ovarian cancer treatment and natural killer cell-based immunotherapy.Front. Immunol.202314130814310.3389/fimmu.2023.130814338187402
    [Google Scholar]
  12. XiaoY. BiM. GuoH. LiM. Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis.EBioMedicine20227910400110.1016/j.ebiom.2022.10400135439677
    [Google Scholar]
  13. BaraniM. BilalM. SabirF. RahdarA. KyzasG.Z. Nanotechnology in ovarian cancer: Diagnosis and treatment.Life Sci.202126611891410.1016/j.lfs.2020.11891433340527
    [Google Scholar]
  14. AnY. YangQ. Tumor‐associated macrophage-targeted therapeutics in ovarian cancer.Int. J. Cancer20211491213010.1002/ijc.3340833231290
    [Google Scholar]
  15. DavodabadiF. SajjadiS.F. SarhadiM. MirghasemiS. Nadali HezavehM. KhosraviS. Kamali AndaniM. CordaniM. BasiriM. GhavamiS. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery.Eur. J. Pharmacol.202395817601310.1016/j.ejphar.2023.17601337633322
    [Google Scholar]
  16. SiminiakN. CzepczyńskiR. ZaborowskiM.P. IżyckiD. Immunotherapy in ovarian cancer.Arch. Immunol. Ther. Exp.20227011910.1007/s00005‑022‑00655‑835941287
    [Google Scholar]
  17. SmithE.R. WangJ.Q. YangD.H. XuX.X. Paclitaxel resistance related to nuclear envelope structural sturdiness.Drug Resist. Updat.20226510088110.1016/j.drup.2022.10088136368286
    [Google Scholar]
  18. MinL. HanJ.C. ZhangW. GuC.C. ZouY.P. LiC.C. Strategies and lessons learned from total synthesis of taxol.Chem. Rev.202312384934497110.1021/acs.chemrev.2c0076336917457
    [Google Scholar]
  19. LebleuC. PletL. MoussyF. GittonG. Da Costa MoreiraR. GuduffL. BurlotB. GodiveauR. MerryA. LecommandouxS. ErrastiG. PhilippeC. DelacroixT. ChakrabartiR. Improving aqueous solubility of paclitaxel with polysarcosine-b-poly(γ-benzyl glutamate) nanoparticles.Int. J. Pharm.202363112250110.1016/j.ijpharm.2022.12250136529355
    [Google Scholar]
  20. MaH. TianT. CuiZ. Targeting ovarian cancer stem cells: A new way out.Stem Cell Res. Ther.20231412810.1186/s13287‑023‑03244‑436788591
    [Google Scholar]
  21. van SteinR.M. AalbersA.G.J. SonkeG.S. van DrielW.J. Hyperthermic intraperitoneal chemotherapy for ovarian and colorectal cancer.JAMA Oncol.2021781231123810.1001/jamaoncol.2021.058033956063
    [Google Scholar]
  22. ShaoC. LiuF. LeW. MeiT. WangT. ChenL. LeiY. CuiS. ChenB. CuiZ. In vitro and in vivo targeting imaging of pancreatic cancer using a Fe3O4@SiO2 nanoprobe modified with anti-mesothelin antibody.Int. J. Nanomedicine20162195219510.2147/IJN.S104501
    [Google Scholar]
  23. FaustJ.R. HamillD. KolbE.A. GopalakrishnapillaiA. BarweS.P. Mesothelin: An immunotherapeutic target beyond solid tumors.Cancers2022146155010.3390/cancers1406155035326701
    [Google Scholar]
  24. LvJ. LiP. Mesothelin as a biomarker for targeted therapy.Biomark. Res.2019711810.1186/s40364‑019‑0169‑831463062
    [Google Scholar]
  25. LiuW. TaiC.H. LiuX. PastanI. Anti-mesothelin immunotoxin induces mesothelioma eradication, anti-tumor immunity, and the development of tertiary lymphoid structures.Proc. Natl. Acad. Sci. USA202211948e221492811910.1073/pnas.221492811936409889
    [Google Scholar]
  26. SchoutropE. El-SerafiI. PoiretT. ZhaoY. GultekinO. HeR. Moyano-GalceranL. CarlsonJ.W. LehtiK. HassanM. MagalhaesI. MattssonJ. Mesothelin-specific CAR T cells target ovarian cancer.Cancer Res.202181113022303510.1158/0008‑5472.CAN‑20‑270133795251
    [Google Scholar]
  27. CannellaR. PilatoG. MazzolaM. BartolottaT.V. New microvascular ultrasound techniques: Abdominal applications.Radiol. Med.202312891023103410.1007/s11547‑023‑01679‑637495910
    [Google Scholar]
  28. GolematiS. CokkinosD.D. Recent advances in vascular ultrasound imaging technology and their clinical implications.Ultrasonics202211910659910.1016/j.ultras.2021.10659934624584
    [Google Scholar]
  29. TangR. HeH. LinX. WuN. WanL. ChenQ. HuY. ChengC. CaoY. GuoX. ZhouY. XiongX. ZhengM. WangQ. LiF. ZhouY. LiP. Novel combination strategy of high intensity focused ultrasound (HIFU) and checkpoint blockade boosted by bioinspired and oxygen-supplied nanoprobe for multimodal imaging-guided cancer therapy.J. Immunother. Cancer2023111e00622610.1136/jitc‑2022‑00622636650023
    [Google Scholar]
  30. DahanM. CortetM. LafonC. PadillaF. Combination of focused ultrasound, immunotherapy, and chemotherapy.J. Ultrasound Med.202342355957310.1002/jum.1605335869903
    [Google Scholar]
  31. DuongV. MuruganandanS. Ultrasound elastography as a promising new approach to optimize diagnostic yield of pleural biopsy.Ann. Am. Thorac. Soc.20232091233123410.1513/AnnalsATS.202305‑477ED37655957
    [Google Scholar]
  32. ZhaoW. AhmadD. TothJ. BascomR. HigginsW.E. Endobronchial ultrasound image simulation for image-guided bronchoscopy.IEEE Trans. Biomed. Eng.202370131833010.1109/TBME.2022.319016535819999
    [Google Scholar]
  33. GirtsR.M. HarmonK.K. PaganJ.I. AlbertoA. HernandezM.G. StockM.S. The influence of ultrasound image depth and gain on skeletal muscle echo intensity.Appl. Physiol. Nutr. Metab.202247883984610.1139/apnm‑2021‑081035436421
    [Google Scholar]
  34. ZhengQ. XiaB. HuangX. LuoJ. ZhongS. LiX. Nanomedicines for high‑intensity focused ultrasound cancer treatment and theranostics (Review).Exp. Ther. Med.202325417010.3892/etm.2023.1186937006877
    [Google Scholar]
  35. WijntjesJ. van AlfenN. Muscle ultrasound: Present state and future opportunities.Muscle Nerve202163445546610.1002/mus.2708133051891
    [Google Scholar]
  36. KlibanovA.L. Ultrasound contrast.Invest. Radiol.2021561506110.1097/RLI.000000000000073333181574
    [Google Scholar]
  37. GuoH. WangZ. DuQ. LiP. WangZ. WangA. Stimulated phase-shift acoustic nanodroplets enhance vancomycin efficacy against methicillin-resistant Staphylococcus aureus biofilms.Int. J. Nanomedicine2017124679469010.2147/IJN.S13452528721044
    [Google Scholar]
  38. OmataD. UngaJ. SuzukiR. MaruyamaK. Lipid-based microbubbles and ultrasound for therapeutic application.Adv. Drug Deliv. Rev.2020154-15523624410.1016/j.addr.2020.07.00532659255
    [Google Scholar]
  39. LoskutovaK. TorrasM. ZhaoY. SvaganA.J. GrishenkovD. Cellulose nanofiber-coated perfluoropentane droplets: Fabrication and biocompatibility study.Int. J. Nanomedicine2023181835184710.2147/IJN.S39762637051314
    [Google Scholar]
  40. XinL. ZhangC. ChenJ. JiangY. LiuY. JinP. WangX. WangG. HuangP. Ultrasound-activatable phase-shift nanoparticle as a targeting antibacterial agent for efficient eradication of pseudomonas aeruginosa biofilms.ACS Appl. Mater. Interfaces20221442474204743110.1021/acsami.2c1316636222290
    [Google Scholar]
  41. ShiM. ZuoF. TaoY. LiuY. LuJ. ZhengS. LuJ. HouP. LiJ. XuK. Near-infrared laser-induced phase-shifted nanoparticles for US/MRI-guided therapy for breast cancer.Colloids Surf. B Biointerfaces202019611127810.1016/j.colsurfb.2020.11127832835889
    [Google Scholar]
  42. DongW. HuangA. HuangJ. WuP. GuoS. LiuH. QinM. YangX. ZhangB. WanM. ZongY. Plasmid-loadable magnetic/ultrasound-responsive nanodroplets with a SPIO-NP dispersed perfluoropentane core and lipid shell for tumor-targeted intracellular plasmid delivery.Biomater. Sci.20208195329534510.1039/D0BM00699H32793943
    [Google Scholar]
  43. LiJ. WuT. LiS. ChenX. DengZ. HuangY. Nanoparticles for cancer therapy: A review of influencing factors and evaluation methods for biosafety.Clin. Transl. Oncol.20232572043205510.1007/s12094‑023‑03117‑536807057
    [Google Scholar]
  44. SuH. WangY. GuY. BowmanL. ZhaoJ. DingM. Potential applications and human biosafety of nanomaterials used in nanomedicine.J. Appl. Toxicol.201838132410.1002/jat.347628589558
    [Google Scholar]
  45. MengY. QiuL. ZengX. HuX. ZhangY. WanX. MaoX. WuJ. XuY. XiongQ. ChenZ. ZhangB. HanJ. Targeting CRL4 suppresses chemoresistant ovarian cancer growth by inducing mitophagy.Signal Transduct. Target. Ther.20227138810.1038/s41392‑022‑01253‑y36481655
    [Google Scholar]
  46. YangK. HanW. JiangX. PiffkoA. BugnoJ. HanC. LiS. LiangH. XuZ. ZhengW. WangL. WangJ. HuangX. TingJ.P.Y. FuY.X. LinW. WeichselbaumR.R. Zinc cyclic di-AMP nanoparticles target and suppress tumours via endothelial STING activation and tumour-associated macrophage reinvigoration.Nat. Nanotechnol.202217121322133110.1038/s41565‑022‑01225‑x36302963
    [Google Scholar]
  47. StaffN.P. FehrenbacherJ.C. CaillaudM. DamajM.I. SegalR.A. RiegerS. Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems.Exp. Neurol.202032411312110.1016/j.expneurol.2019.11312131758983
    [Google Scholar]
  48. YuD.L. LouZ.P. MaF.Y. NajafiM. The interactions of paclitaxel with tumour microenvironment.Int. Immunopharmacol.202210510855510.1016/j.intimp.2022.10855535121223
    [Google Scholar]
  49. LiY. ZhiS. WuT. ChenH.X. KangR. MaD.Z. SongyangZ. HeC. LiangP. LuoG.Z. Systematicidentification of CRISPR off-target effects by CROss-seq.Protein Cell2022pwac01810.1093/procel/pwac01837084235
    [Google Scholar]
  50. ChengX. LiZ. ShanR. LiZ. WangS. ZhaoW. ZhangH. ChaoL. PengJ. FeiT. LiW. Modeling CRISPR-Cas13d on-target and off-target effects using machine learning approaches.Nat. Commun.202314175210.1038/s41467‑023‑36316‑336765063
    [Google Scholar]
  51. ZhangB. SunJ. YuanY. JiD. SunY. LiuY. LiS. ZhuX. WuX. HuJ. XieQ. WuL. LiuL. ChengB. ZhangY. JiangL. ZhaoL. YuF. SongW. WangM. XuY. MaS. FeiY. ZhangL. ZhouD. ZhangX. Proximity-enabled covalent binding of IL-2 to IL-2Rα selectively activates regulatory T cells and suppresses autoimmunity.Signal Transduct. Target. Ther.2023812810.1038/s41392‑022‑01208‑336690610
    [Google Scholar]
  52. ChenZ. LuoH. GubuA. YuS. ZhangH. DaiH. ZhangY. ZhangB. MaY. LuA. ZhangG. Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding.Front. Cell Dev. Biol.202311109180910.3389/fcell.2023.109180936910146
    [Google Scholar]
  53. PastanI. HassanR. Discovery of mesothelin and exploiting it as a target for immunotherapy.Cancer Res.201474112907291210.1158/0008‑5472.CAN‑14‑033724824231
    [Google Scholar]
  54. SnellD. GundeT. WarmuthS. ChatterjeeB. BrockM. HessC. JohanssonM. SimoninA. SpigaF.M. WeinertC. KirkN. BasslerN. Campos CarrascosaL. FlückigerN. HeizR. WagenS. GiezendannerN. AlbertiA. YamanY. MahlerD. DiemD. LichtlenP. UrechD. An engineered T-cell engager with selectivity for high mesothelin-expressing cells and activity in the presence of soluble mesothelin.OncoImmunology2023121223340110.1080/2162402X.2023.223340137456982
    [Google Scholar]
  55. HagertyB.L. PegnaG.J. XuJ. TaiC.H. AlewineC. Mesothelin-targeted recombinant immunotoxins for solid tumors.Biomolecules202010797310.3390/biom1007097332605175
    [Google Scholar]
  56. WittwerN.L. StaudacherA.H. LiapisV. CardarelliP. WarrenH. BrownM.P. An anti-mesothelin targeting antibody drug conjugate induces pyroptosis and ignites antitumor immunity in mouse models of cancer.J. Immunother. Cancer2023113e00627410.1136/jitc‑2022‑00627436878534
    [Google Scholar]
  57. QualiottoA.N. BaldaviraC.M. BalancinM. Ab’SaberA. TakagakiT. CapelozziV.L. Mesothelin expression remodeled the immune-matrix tumor microenvironment predicting the risk of death in patients with malignant pleural mesothelioma.Front. Immunol.202314126892710.3389/fimmu.2023.126892737901248
    [Google Scholar]
  58. Tabatabaei MirakabadF.S. Nejati-KoshkiK. AkbarzadehA. YamchiM.R. MilaniM. ZarghamiN. ZeighamianV. RahimzadehA. AlimohammadiS. HanifehpourY. JooS.W. PLGA-based nanoparticles as cancer drug delivery systems.Asian Pac. J. Cancer Prev.201415251753510.7314/APJCP.2014.15.2.51724568455
    [Google Scholar]
  59. SemeteB. BooysenL. LemmerY. KalomboL. KatataL. VerschoorJ. SwaiH.S. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems.Nanomedicine20106566267110.1016/j.nano.2010.02.00220230912
    [Google Scholar]
  60. AnchetaL.R. ShrammP.A. BouajramR. HigginsD. LappiD.A. Streptavidin-saporin: Converting biotinylated materials into targeted toxins.Toxins202315318110.3390/toxins1503018136977072
    [Google Scholar]
  61. NguyenT.T. SlyK.L. ConboyJ.C. Comparison of the energetics of avidin, streptavidin, neutrAvidin, and anti-biotin antibody binding to biotinylated lipid bilayer examined by second-harmonic generation.Anal. Chem.201284120120810.1021/ac202375n22122646
    [Google Scholar]
  62. SedlakS.M. SchendelL.C. GaubH.E. BernardiR.C. Streptavidin/biotin: Tethering geometry defines unbinding mechanics.Sci. Adv.2020613eaay599910.1126/sciadv.aay599932232150
    [Google Scholar]
  63. LiangQ. SunM. MaY. WangF. SunZ. DuanJ. Adverse effects and underlying mechanism of amorphous silica nanoparticles in liver.Chemosphere2023311Pt 113695510.1016/j.chemosphere.2022.13695536280121
    [Google Scholar]
  64. TaylorS.K. KosticN. StojanovicM.N. Oligonucleotide-blocked streptavidin for biotinylation analysis.Bioconjug. Chem.2023341929610.1021/acs.bioconjchem.2c0025536006852
    [Google Scholar]
  65. Santos-BarriopedroI. van MierloG. VermeulenM. Off-the-shelf proximity biotinylation using ProtA-TurboID.Nat. Protoc.2023181365710.1038/s41596‑022‑00748‑w36224470
    [Google Scholar]
  66. SchaubJ.M. RuanQ. TetinS.Y. Epifluorescent single- molecule counting with Streptavidin-Phycoerythrin conjugates.Anal. Biochem.202265911495510.1016/j.ab.2022.11495536265689
    [Google Scholar]
  67. ZhouH. FuJ. FuQ. FengY. HongR. LiP. WangZ. HuangX. LiF. Biotin-streptavidin-guided two-step pretargeting approach using PLGA for molecular ultrasound imaging and chemotherapy for ovarian cancer.PeerJ20219e1148610.7717/peerj.1148634113492
    [Google Scholar]
  68. GieseckeT. HynynenK. Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro.Ultrasound Med. Biol.20032991359136510.1016/S0301‑5629(03)00980‑314553814
    [Google Scholar]
  69. LoskutovaK. NimanderD. GouwyI. ChenH. GhorbaniM. SvaganA.J. GrishenkovD. A study on the acoustic response of pickering perfluoropentane droplets in different media.ACS Omega2021685670567810.1021/acsomega.0c0611533681606
    [Google Scholar]
  70. YuanZ. DemithA. StoffelR. ZhangZ. ParkY.C. Light-activated doxorubicin-encapsulated perfluorocarbon nanodroplets for on-demand drug delivery in an in vitro angiogenesis model: Comparison between perfluoropentane and perfluorohexane.Colloids Surf. B Biointerfaces201918411048410.1016/j.colsurfb.2019.11048431522023
    [Google Scholar]
  71. YangD. ChenQ. ZhangM. FengG. SunD. LinL. JingX. Drug-loaded acoustic nanodroplet for dual-imaging guided highly efficient chemotherapy against nasopharyngeal carcinoma.Int. J. Nanomedicine2022174879489410.2147/IJN.S37751436262190
    [Google Scholar]
  72. WangM. YangQ. LiM. ZouH. WangZ. RanH. ZhengY. JianJ. ZhouY. LuoY. RanY. JiangS. ZhouX. Multifunctional nanoparticles for multimodal imaging-guided low-intensity focused ultrasound/immunosynergistic retinoblastoma therapy.ACS Appl. Mater. Interfaces20201255642565710.1021/acsami.9b2207231940169
    [Google Scholar]
  73. GuoX. LinJ. PanL. HeK. HuangZ. ChenJ. LinC. ZengB. LuoS. WangM. Ultrasound-triggered release of miR-199a-3p from liposome nanobubbles for enhanced hepatocellular carcinoma treatment.Artif. Cells Nanomed. Biotechnol.202351156057110.1080/21691401.2023.226813737850395
    [Google Scholar]
  74. LiM. ZhuY. YangC. YangM. RanH. ZhuY. ZhangW. Acoustic triggered nanobomb for US imaging guided sonodynamic therapy and activating antitumor immunity.Drug Deliv.20222912177218910.1080/10717544.2022.209505835815688
    [Google Scholar]
  75. NsanzamahoroS. ChengW. MutuyimanaF.P. LiL. WangW. RenC. YiT. ChenH. ChenX. Target triggered fluorescence “turn-off” of silicon nanoparticles for cobalt detection and cell imaging with high sensitivity and selectivity.Talanta202021012063610.1016/j.talanta.2019.12063631987169
    [Google Scholar]
  76. LiJ. ZengH. LiL. YangQ. HeL. DongM. Advanced generation therapeutics: Biomimetic nanodelivery system for tumor immunotherapy.ACS Nano20231724245932461810.1021/acsnano.3c1021238055350
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018300502240530064139
Loading
/content/journals/cdd/10.2174/0115672018300502240530064139
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test