Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Pharmaceutical grade sugars manufactured under Current Good Manufacturing Practice (cGMP) and complied with International Pharmaceutical Excipients Council (IPEC) quality standards, also contain a significant amount of nano-particulate impurities (NPIs). This review will focus on the origin of NPIs, the mechanism of their interference with Dynamic light scattering (DLS) and endotoxin tests, filtration technology to effectively reduce the NPIs, methodologies for analytical quantification of NPIs, guidance for setting the limits of threshold concentration and the overall impact of NPIs on the therapeutic activity, performance, stability of biopharmaceuticals and protein-based formulations. NPIs with an average particle size of 100 to 200 nm are present in sugars and are a combination of various chemicals such as dextrans (with the presence of β-glucans), ash, inorganic metal salts, aromatic colorants, . These NPIs primarily originate from raw materials and cannot be removed during the sugar refinement process. While it is commonly believed that filtering the final formulation with a 0.22 μ sterilizing grade filter removes all microbes and particles, it is important to note that NPIs cannot be filtered using this standard sterile filtration technology. Exceeding the threshold limit of NPIs can have detrimental effects on formulations containing proteins, monoclonal Antibodies (mAbs), nucleic acids, and other biopharmaceuticals. NPIs and β-glucans have a critical impact on the functionality and therapeutic activity of biomolecules and if present below the threshold limit of reaction, stability and shelf-life of biologics formulation will be greatly improved and the risk of immunogenic reactions must be significantly decreased.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018290111240119115306
2024-01-30
2025-09-26
Loading full text...

Full text loading...

References

  1. ZhuQ. ChenZ. PaulP.K. LuY. WuW. QiJ. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives.Acta Pharm. Sin. B20211182416244810.1016/j.apsb.2021.04.00134522593
    [Google Scholar]
  2. ChibaC.H. KnirschM.C. AzzoniA.R. MoreiraA.R. StephanoM.A. Cell-free protein synthesis: Advances on production process for biopharmaceuticals and immunobiological products.Biotechniques202170212613310.2144/btn‑2020‑015533467890
    [Google Scholar]
  3. ChenY. MutukuriT.T. WilsonN.E. ZhouQ.T. Pharmaceutical protein solids: Drying technology, solid-state characterization and stability.Adv. Drug Deliv. Rev.202117221123310.1016/j.addr.2021.02.01633705880
    [Google Scholar]
  4. MutukuriT.T. WilsonN.E. TaylorL.S. ToppE.M. ZhouQ.T. Effects of drying method and excipient on the structure and physical stability of protein solids: Freeze drying vs. spray freeze drying.Int. J. Pharm.202159412016910.1016/j.ijpharm.2020.12016933333176
    [Google Scholar]
  5. WangW. OhtakeS. Science and art of protein formulation development.Int. J. Pharm.201956811850510.1016/j.ijpharm.2019.11850531306712
    [Google Scholar]
  6. WeinbuchD. CheungJ.K. KetelaarsJ. FilipeV. HaweA. den EngelsmanJ. JiskootW. Nanoparticulate impurities in pharmaceutical-grade sugars and their interference with light scattering-based analysis of protein formulations.Pharm. Res.20153272419242710.1007/s11095‑015‑1634‑125630820
    [Google Scholar]
  7. ThackerS.G. HerC. Kelley-BakerL. IrelandD.D.C. ManangeeswaranM. PangE.S. VerthelyiD. Detection of innate immune response modulating impurities (IIRMI) in therapeutic peptides and proteins: Impact of excipients.Front. Immunol.20221397049910.3389/fimmu.2022.97049936148237
    [Google Scholar]
  8. PaulJ. Sheskey WalterG Cook ColinG Cable Association AP. Handbook of pharmaceutical excipients.8th edLondonPharmaceutical Press2017
    [Google Scholar]
  9. LevachevaI. SamsonovaO. TazinaE. Beck-BroichsitterM. LevachevS. StrehlowB. BaryshnikovaM. OborotovaN. BaryshnikovA. BakowskyU. Optimized thermosensitive liposomes for selective doxorubicin delivery: Formulation development, quality analysis and bioactivity proof.Colloids Surf. B Biointerfaces201412124825610.1016/j.colsurfb.2014.02.02825001189
    [Google Scholar]
  10. KannanV. BalabathulaP. ThomaL.A. WoodG.C. Effect of sucrose as a lyoprotectant on the integrity of paclitaxel-loaded liposomes during lyophilization.J. Liposome Res.201525427027810.3109/08982104.2014.99202325534990
    [Google Scholar]
  11. ZelenkováT. FissoreD. MarchisioD.L. BarresiA.A. Size control in production and freeze-drying of poly-ε-caprolactone nanoparticles.J. Pharm. Sci.201410361839185010.1002/jps.2396024737658
    [Google Scholar]
  12. NohH.J. ImA.R. KimH.S. SohngJ.K. KimC.K. KimY.S. ChoS. ParkY. Antibacterial activity and increased freeze-drying stability of sialyllactose-reduced silver nanoparticles using sucrose and trehalose.J. Nanosci. Nanotechnol.20121253884389510.1166/jnn.2012.616922852321
    [Google Scholar]
  13. HellerM.C. CarpenterJ.F. RandolphT.W. Protein formulation and lyophilization cycle design: Prevention of damage due to freeze-concentration induced phase separation.Biotechnol. Bioeng.199963216617410.1002/(SICI)1097‑0290(19990420)63:2<166::AID‑BIT5>3.0.CO;2‑H10099593
    [Google Scholar]
  14. LeslieS.B. IsraeliE. LighthartB. CroweJ.H. CroweL.M. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying.Appl. Environ. Microbiol.199561103592359710.1128/aem.61.10.3592‑3597.19957486995
    [Google Scholar]
  15. StarciucT. MalfaitB. DanedeF. PaccouL. GuinetY. CorreiaN.T. HedouxA. Trehalose or sucrose: Which of the two should be used for stabilizing proteins in the solid state? A dilemma investigated by in situ micro-raman and dielectric relaxation spectroscopies during and after freeze-drying.J. Pharm. Sci.2020109149650410.1016/j.xphs.2019.10.05531678247
    [Google Scholar]
  16. LeeJ.C. TimasheffS.N. The stabilization of proteins by sucrose.J. Biol. Chem.1981256147193720110.1016/S0021‑9258(19)68947‑77251592
    [Google Scholar]
  17. NobbmannU. ConnahM. FishB. VarleyP. GeeC. MulotS. ChenJ. ZhouL. LuY. ShengF. YiJ. HardingS.E. Dynamic light scattering as a relative tool for assessing the molecular integrity and stability of monoclonal antibodies.Biotechnol. Genet. Eng. Rev.200724111712810.1080/02648725.2007.1064809518059629
    [Google Scholar]
  18. KaszubaM. McKnightD. ConnahM.T. McNeil-WatsonF.K. NobbmannU. Measuring sub nanometre sizes using dynamic light scattering.J. Nanopart. Res.200810582382910.1007/s11051‑007‑9317‑4
    [Google Scholar]
  19. WeinbuchD. RuigrokM. JiskootW. HaweA. Nanoparticulate impurities isolated from pharmaceutical-grade sucrose are a potential threat to protein stability.Pharm. Res.201734122910292110.1007/s11095‑017‑2274‑429067591
    [Google Scholar]
  20. VargasonA.M. AnselmoA.C. MitragotriS. The evolution of commercial drug delivery technologies.Nat. Biomed. Eng.20215995196710.1038/s41551‑021‑00698‑w33795852
    [Google Scholar]
  21. KumarV. BansalV. MadhavanA. KumarM. SindhuR. AwasthiM.K. BinodP. SaranS. Active pharmaceutical ingredient (API) chemicals: A critical review of current biotechnological approaches.Bioengineered20221324309432710.1080/21655979.2022.203141235135435
    [Google Scholar]
  22. Low-in-nanoparticulate-impurities sucrose for biopharmaceutical formulations; Nelli erwin merck, markus greulich merck, tanja henzler merck, marcus nagel coriolis, georg schuster coriolis.Andrea Hawe CoriolisAvailable fromL www.pharmaexcipients.com/wp-content/uploads/2021/06/Low-in-nanoparticulate-impurities-sucrose-for-biopharmaceutical-formulations-Merck-Millipore-Sigma.pdf (accessed on: Jan 03, 2024).
    [Google Scholar]
  23. GrabarekA. NabhanM. TurbicaI. HaweA. PallardyM. JiskootW. Immunological evaluation in vitro of nanoparticulate impurities isolated from pharmaceutical-grade sucrose.J. Pharm. Sci.2021110295295810.1016/j.xphs.2020.11.01133220239
    [Google Scholar]
  24. European Patent Application; EP 3 318 281 A1Coriolis Pharma Research GmbH 82152 Martinsried (DE).2021
    [Google Scholar]
  25. NagasawaK YanoT KitabayashiG MorimotoH YamadaY OhataA UsamiM HoriuchiT Experimental proof of contamination of blood components by (1→ 3)-β-d-glucan caused by filtration with cellulose filters in the manufacturing process.J Artif Org.2003614954
    [Google Scholar]
  26. GefrohE. HewigA. VedanthamG. McClureM. KrivosheyevaA. LajmiA. LuY. Multipronged approach to managing beta‐glucan contaminants in the downstream process: Control of raw materials and filtration with charge-modified nylon 6,6 membrane filters.Biotechnol. Prog.201329367268010.1002/btpr.171823596143
    [Google Scholar]
  27. VigorK. EmersonJ. ScottR. CheekJ. BartonC. BaxH.J. JosephsD.H. KaragiannisS.N. SpicerJ.F. LentferH. Development of downstream processing to minimize beta-glucan impurities in GMP-manufactured therapeutic antibodies.Biotechnol. Prog.20163261494150210.1002/btpr.235927604040
    [Google Scholar]
  28. WangM ZhangL YangR FeiC WangX ZhangK WangC ZhengW XueF Improvement of immune responses to influenza vaccine (H5N1) by sulfated yeast beta-glucan.Int J Biol Macromol201693Pt A203207
    [Google Scholar]
  29. SandleT. Pharmaceutical product impurities: Considering beta glucans. Am Pharm Rev. Posted. 201331
    [Google Scholar]
  30. ChanG.C.F. ChanW.K. SzeD.M.Y. The effects of β-glucan on human immune and cancer cells.J. Hematol. Oncol.2009212510.1186/1756‑8722‑2‑2519515245
    [Google Scholar]
  31. BartonC. VigorK. ScottR. JonesP. LentferH. BaxH.J. JosephsD.H. KaragiannisS.N. SpicerJ.F. Beta-glucan contamination of pharmaceutical products: How much should we accept?Cancer Immunol. Immunother.201665111289130110.1007/s00262‑016‑1875‑927473075
    [Google Scholar]
  32. QiY. BruniG.O. KlassonK.T. Microbiome analysis of sugarcane juices and biofilms from Louisiana raw sugar factories.Microbiol. Spectr.2023113e04345-2210.1128/spectrum.04345‑2237162339
    [Google Scholar]
  33. MutaT. Molecular basis for invertebrate innate immune recognition of (1-->3)-β-D-glucan as a pathogen-associated molecular pattern.Curr. Pharm. Des.200612324155416110.2174/13816120677874352917100618
    [Google Scholar]
  34. WangX. QuinnP.J. Endotoxins: Lipopolysaccharides of Gram-negative bacteria.Subcell. Biochem.20105332510.1007/978‑90‑481‑9078‑2_120593260
    [Google Scholar]
  35. TamuraH. ReichJ. NagaokaI. Outstanding contributions of LAL technology to pharmaceutical and medical science: Review of methods, progress, challenges, and future perspectives in early detection and management of bacterial infections and invasive fungal diseases.Biomedicines20219553610.3390/biomedicines905053634064994
    [Google Scholar]
  36. JinY. JiaJ. LiC. XueJ. SunJ. WangK. GanY. XuJ. ShiY. LiangX. LAL test and RPT for endotoxin detection of CPT-11/DSPE-mPEG 2000 nanoformulation: What if traditional methods are not applicable?Asian J. Pharm. Sci.201813328929610.1016/j.ajps.2017.11.00332104402
    [Google Scholar]
  37. Bech ØrvingR. CarpenterB. RothS. ReichJ. KallipolitisB.H. Sonne-HansenJ. Bacterial endotoxin testing—fast endotoxin masking kinetics in the presence of lauryldimethylamine oxide.Microorganisms2020811172810.3390/microorganisms811172833158205
    [Google Scholar]
  38. BukhariM.M. SalemE.K. OsmanA. HegaziS.E. Investigations of the influence of dextran on sugar cane quality and sugar cane processing in Kenana sugar factory.J. Chem. Pharm. Res.201574381392
    [Google Scholar]
  39. Díaz-MontesE. Dextran: Sources, structures, and properties.Polysaccharides20212355456510.3390/polysaccharides2030033
    [Google Scholar]
  40. Fernandez-CerezoL. RayatA.C.M.E. ChatelA. PollardJ.M. LyeG.J. HoareM. An ultra scale-down method to investigate monoclonal antibody processing during tangential flow filtration using ultrafiltration membranes.Biotechnol. Bioeng.2019116358159010.1002/bit.2685930411315
    [Google Scholar]
  41. NordinJ.Z. BostanciogluR.B. CorsoG. EL AndaloussiS. Tangential flow filtration with or without subsequent bind-elute size exclusion chromatography for purification of extracellular vesicles.Methods Mol. Biol.2019195328729910.1007/978‑1‑4939‑9145‑7_1830912029
    [Google Scholar]
  42. WeinbuchD. HaweA. JiskootW. Highly purified sugars and sugar compositions.European Patent, EP3318281B12016
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018290111240119115306
Loading
/content/journals/cdd/10.2174/0115672018290111240119115306
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test