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 Abstract: Chronic ischemic heart failure (CIHF), caused by myocardial injury and cell loss, is a 
growing public health concern. Despite substantial investments in pharmaco- and device thera-
pies for acute myocardial infarction and CIHF over the past decades, long-term prognosis has 
shown little improvement. There is a clear need to develop novel therapeutic strategies capable 
of attenuating progression from acute to chronic myocardial damage, reducing adverse myocar-
dial remodeling, and enhancing myocardial contractility. Cell-based approaches are an important 
direction in basic and clinical research. Nevertheless, candidate cell types tested to-date in exper-
imental and human studies show several fundamental limitations, including insufficient quanti-
ties and potency, poor myocardial uptake, immunogenicity and/or risk of tumorigenicity. Human 
umbilical cord matrix is a rich source of mesenchymal stem cells (Wharton’s jelly mesenchymal 
stem cells, WJMSCs). WJMSCs are naturally low-immunogenic, demonstrate high plasticity and 
proliferation capacity, and exhibit an absence of tumorigenic potential. Moreover, by producing 
specific anti-inflammatory cytokines and chemokines, they reduce the inflammatory response 
(hence their use in graft-versus-host disease) and have pro-angiogenic, anti-apoptotic, and anti-
fibrotic properties, making them a natural player in myocardial repair and regeneration. Further-
more, WJMSCs can be expanded ex vivo with high genomic stability and full clonogenic poten-
tial and can be standardized as an “off-the-shelf” next-generation advanced therapy medicinal 
product (ATMP). This review aggregates essential, contemporary information on the properties 
and fundamental mechanisms of WJMSCs addressing the process of infarct healing and chronic 
myocardial injury. It discusses outcomes from pre-clinical studies, demonstrating improvements 
in myocardial function and reductions in fibrosis in animal models, paving the way for human 
ATMP trials. 
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1. INTRODUCTION 

Cardiovascular disease will remain the leading cause of 
overall death and premature death in the coming decades, 
with acute myocardial infarction (AMI) and chronic ischem-
ic heart failure (CIHF) as the main disease states [1, 2].  
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Data-driven prognoses show that CIHF will remain the num-
ber one cause of permanent disability, resulting together with 
its need for repeated hospitalizations in a major socio-
economic burden [2]. Despite very substantial investments 
and research efforts over the last decades, today, the societal 
cost of cardiovascular disease remains substantially higher 
than that of cancer [2]. Although several major cardiovascu-
lar research endeavors of the last decades have produced new 
pharmacologic and device therapies (Table 1) [3-41], those 
have not translated into major improvements in quality of  
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life or survival in cardiovascular disease patients [1, 2, 42]. 
This is despite >50% reductions in age-standardized mortali-
ty rates for acute coronary syndromes occurring in high-
income countries compared with <15% reductions in lower-
middle-income countries of the world during the past 20 
years [43]. One important reason is that the reduction in 
AMI deaths, seen with improved treatment strategies and 
networks, results in an increased number of individuals suf-
fering from CIHF, posing a new challenge [44-46]. Overall, 
CIHF has a growing prevalence with very little change in 
prognosis over the years [42, 47]. In Europe, deaths from 
cardiovascular disease in those aged <70 years, commonly 
referred to as premature, remain a particular concern, with 
>60 million potential years of life lost to cardiovascular dis-
ease in Europe annually [48]. 

Therefore, the development of novel cardiac therapies 
with longer-term survival benefits is presently a major and 
largely unmet need [1, 2, 42, 49, 50]. The development (and 
implementation) of evidence-based new treatment approach-
es must be supported by consistent surveillance and monitor-
ing so that the interventions can be appropriately targeted 
and evaluated translating into a public health benefit [48]. 

Major clinical trials that have determined contemporary 
clinical practice in acute myocardial infarction and heart 
failure with reduced left-ventricular ejection fraction and 
their key endpoints (Table 1). 

Cell-based reparative and regenerative approaches are to-
day one of the fundamental research areas not only in cardi-
ovascular medicine but also in other medical fields such as 
neuronal injury and neurodegenerative diseases (e.g., Parkin-
son's disease, epilepsy, diabetes and gerontology) [1, 2, 51-
53]. Regenerative medicine is anticipated to boost tissue 
repair and potentially provide effective replacement cell(s) 
and/or tissue(s) able to integrate into the ischemic zone(s) 
where, up till now, the damage has been considered “irre-
versible” [54].  

First-generation myocardial regenerative approaches, alt-
hough attractive conceptually for their simplicity, quickly 
faced a number of fundamental limitations, including not 
only insufficient quantities and potency of the therapeutic cell 
candidates but also their poor uptake in myocardial injury 
zone(s) [54, 55]. Meta-analyses of clinical studies employing 
1st-generation stem cell therapies in AMI and CIHF demon-
strate, at best, only mild benefits in the reduction of LV re-
modeling and/or increase in LVEF (with mesenchymal stem 
cells appearing more effective than bone-marrow mononuclear 
cells) and minimal/absent clinical benefit(s) in the context of 
heterogeneous, inconsistent and overall low-quality evidence 
[56-59]. This indicates the need to develop novel, more effica-
cious, cell-based strategies that should be subjected to rigorous 
(placebo/sham-controlled) appropriately-powered clinical 
studies employing blinded observer/observer-independent 
evaluation of cardiac function [60].  

Table 1. Key endpoints in major clinical trials in acute myocardial infarction and heart failure with reduced left-ventricular  
ejection fraction.   

Acute Myocardial Infraction 

Therapy Trial Endpoint(s) 

Primary PCI 

Stone 2016 [3] 
 
 

Keeley E. [4];  Dalby Ml. [5] 
 

↓ Infarct Size 
Infarct Size = Mortality Predictor 

 
↓ Mortality 

↓ Re-infarction 

Aspirin 
ISIS-2 [6]; Fuster V. [7] 

 
↓ Mortality 

↓ Re-infarction 

P2Y12 receptor inhibitor 
PCI-CURE [8]; Verdoia M. [9] 

 
↓ Mortality 

↓ Re-infarction 

High-dose statin therapy 
MIRACL [10]; Afilalo J. [11]; Navarese EP. [12]; 

Pan Y. [13] 
↓ Mortality 
↓ MACE 

Beta-blockers 
CAPRICORN [14] 

 
Joo SJ. [15] 

↓ Mortality 
↓ Re-infarction in patients with LVEF ≤40% 

↓ MACE in patients with LVEF <50% 

ACE inhibitors 
SAVE [16], AIRE [17], Køber L. [18], Sleight P. 

[19] 
↓ Mortality 

↓ Severe Heart Failure 
↓ Heart Failure Progression 

ICD in patients with LVEF ≤35% Moss AJ. [20] ↓ Sudden Cardiac Death 
 

(Table 1) Contd… 
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Heart Failure with Reduced Left-Ventricular Ejection Fraction 

Therapy Trial Endpoint(s) 

ACE-I 
CONSENSUS [21], SOLVD [22] ↓Mortality 

↓Heart Failure Hospitalization 

Beta-blocker 

MERIT-HF [23], U.S. Carvedilol Heart Failure Study [24], CO-
PERNICUS [25], SENIORS [26], CIBIS-II [27], Cleland J. [28] 

↑ LVEF  

↓Mortality 

↓Heart Failure Hospitalization 

MRA 
Randomized Aldactone Evaluation Study, EMPHASIS-HF  

[29, 30] 
↓Mortality 

↓Heart Failure Hospitalization 

SGLT2 inhibitor 
(dapagliflozin or em-

pagliflozin) 

DAPA-HF [31], EMPEROR-Reduced [32] ↓Mortality 

↓Heart Failure Hospitalization 

Sacubitril/Valsartan 

PARADIGM-HF [33] 

 

 

 Zhou X. [34] 

↓CV Mortality 

↓Heart Failure Progression 

 

↑ LVEF  

↓ LV Adverse Remodeling   

     (LVEDD, LVEDVI)  

↓ MACE  

↓ Heart Failure Hospitalization  

Diuretics in patients 
with signs and/or 

symptoms of  
congestion 

Faris R. [35] ↓ Mortality 

↓ Heart Failure Hospitalization  

↑ Exercise Capacity  

ARB 
CHARM-Alternative [36] ↓ Cardiovascular mortality   

↓ Heart Failure Hospitalization  

ICD SCD-HeFT [37] ↓ Mortality 

CRT D/P - patients 
with sinus rhythm, 
LBBB, QRS width 

>150 ms 

CARE-HF [38] 

 

 

 

REVERSE [39] 

 

 

COMPANION [40] 

 

 

MADIT-CRT  [41] 

↑ LVEF   

↓ LV Adverse Remodeling (LVESVI)  

↓ Mortality 

 

↓ LV Adverse Remodeling (LVESVI)  

↓ Heart Failure Worsening  

 

↓ Mortality 

↓ Heart Failure Hospitalization  

 

↑ LVEF   

↓ LV Adverse Remodeling (LVEDD)  

↓ Mortality 
Abbreviations: ACE-I = angiotensin-converting enzyme inhibitor; LVEF = left ventricle ejection fraction; MRA = mineralocorticoid receptor antagonist; SGLT2 = Sodium-glucose 
co-transporter 2; MACE = major adverse cardiovascular event; CV = cardiovascular; LVEDD = left ventricle end-diastolic diameter; LVEDVI = indexed left ventricle end-diastolic 
volume; ARB = angiotensin-receptor blocker; ICD = implantable cardioverter-defibrillator; CRT D/P = cardiac resynchronization therapy - defibrillator/pacemaker; LBBB = left 
bundle branch block; QRS = Q, R, and S waves of an ECG; LVESVI = left ventricle end-systolic volume index; PCI = percutaneous coronary intervention; AMI = acute myo-
cardial infarction; NB. ↓Mortality = ↑survival cf. (Table 4). 
  

Novel, abundant sources of therapeutic cells, standardiza-
tion of biological products, and improved delivery  
methods have been widely identified as key research targets 
in cell-based cardiovascular repair and regeneration [2, 13, 
61, 62].  

Mesenchymal stem cells residing in the umbilical cord 
matrix are a unique stem cell candidate that can address 
some important shortcomings of the typical 1st generation 
cell sources:  hematopoietic bone marrow cells showing poor 
regeneration capacity [55, 62, 63], and induced pluripotent 
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stem cells were found tumorigenic [64-66] (Fig. 1). The um-
bilical cord matrix mesenchymal stem cells, known as Whar-
ton’s jelly mesenchymal stem cells (WJMSCs), possess 
unique features crucial for their potential therapeutic use [62, 
67-75].  

Importantly, WJMSCs do not express major histocompat-
ibility complex (MHC) class II antigens and show a low ex-
pression of class I antigens. Thus, although allogeneic, 
WJMSCs are low-immunogenic, naturally overcoming a 
major disadvantage of other allogenic stem cell types con-
sidered for human use [76]. With their high plasticity, high 
proliferation capacity, and absence of tumorigenic potential, 
WJMSCs are today a particularly promising tool for the 
next-generation cardiovascular regenerative approaches [62, 
70, 77, 78]. Evidence from WJMSCs characterization studies 
and from preclinical studies of WJMSCs use in the repair of 
acute and chronic myocardial injury [74, 79] position WJM-
SCs as a leading contemporary candidate tool in myocardial 
regeneration.  

WJMSCs can be standardized as an “off-the-shelf” inves-
tigational (and potentially therapeutic) medicinal product 
(i.e. an advanced therapy medicinal product - ATMP1). The 
non-invasive harvest of WJMSCs (a “waste” material) and 
their reproducible expansion meet the highly desirable fea-
tures of a cell-based biological product for use in ATMP 
clinical trials, hospital exemption administration, as well as 
for eventual routine clinical applications [2]. 

                                                
1 Under the European Medicines Agency the acronym used is  "ATMP"; in 
the USA the equivalent Food and Drug Administration  acronym  is 
"RMAT" (Regenerative Medicine Advanced Therapy Designation). 

This overview provides a comprehensive knowledge base 
with regard to the biological and therapeutic properties of 
WJMSCs in their capacity to stimulate myocardial repair and 
regeneration. WJMSCs studies in small- and large-animal 
models of acute and chronic myocardial injury are discussed 
along with mechanistic insights into WJMSCs-mediated my-
ocardial repair and regeneration, providing a foundational 
tool for clinical studies.      

2. WJMSCs UNIQUE PROPERTIES  

Stem cells are generally classified into embryonic stem 
cells, fetal stem cells, and adult stem cells [80]. Embryonic 
stem cells are pluripotent - they can give rise to tissues from 
the three germ layers [80]. Mesenchymal stem cells, depend-
ing on the type of source tissue from which they are isolated, 
can be classified as fetal or adult [80]. Mesenchymal stem 
cells are multipotent, and ability to differentiate into tissues 
from a particular germ layer. Mesenchymal stem cells are 
fibroblast-like, non-hematopoietic stem cells that efficiently 
proliferate in vitro (enabling their expansion) and may be re-
transplanted in vivo [81]. Bone marrow [82-84] and several 
other fetal and adult tissues have been identified as an abun-
dant source of mesenchymal stem cells [85-91]. One particu-
larly attractive source of mesenchymal stem cells is the um-
bilical cord [67, 81]. 

The umbilical cord (Fig. 1) is composed of two umbilical 
arteries and one vein that are surrounded by a mucoid tissue 
rich in proteoglycans and mucopolysaccharides and covered 
by amniotic epithelium [92, 93]. The mesenchymal stem 
cells of the umbilical cord matrix (WJMSCs) are trapped in 
the mucoid connective tissue during embryogenesis [67]. 

 
Fig. (1). Umbilical cord cross section (according to Ref. [91], modified). It is worth noting that cells isolated from different compartments of 
the umbilical cord exhibit distinct properties. The vascular perivascular area contains highly differentiated cells, whereas the amniotic sub-
chorionic region harbors immature cells with a high proliferative potential [94]. (A higher resolution / colour version of this figure is availa-
ble in the electronic copy of the article). 

Umbilical arteries

3. Subamnion

Amnion

2. Peri-vascular

1. Inter-vascular

Umbilical vein
WHARTON’s JELLY 

compartments

..
.
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WJMSCs are present in the subamnion as well as in the in-
tervascular and peri-vascular compartment of the umbilical 
cord (Fig. 1). Subamniotic WJMSCs are the least differenti-
ated and are considered to have greater proliferative potential 
[92-94]. Standardization of the WJMSCs isolation, charac-
terization, and expansion is feasible, and it is critical on the 
path towards WJMSCs use as an ATMP therapeutic agent 
[95, 96]. 

As the umbilical cord is considered a waste tissue, 
WJMSCs harvesting - in contrast to embryo-derived stem 
cells - does not raise any ethical concerns. WJMSCs can be 
relatively easily isolated, harvested, and cultured [97]. With 
their fetal origin, WJMSCs represent a unique type of mes-
enchymal stem cell, characterized by their youthful proper-
ties such as higher proliferative potential, slower aging, and 
lower differentiation compared to adult mesenchymal stem 
cells. Since WJMSCs do not exhibit tumorigenic potential 
[98, 99], they can be safely used in regenerative medicine 
[100, 101]. 

WJMSCs completely fulfill all the criteria outlined for 
mesenchymal stem cells by the International Society of Cel-
lular Therapy [102]. Specifically, WJMSCs (1) are plastic-
adherent cells, (2) exhibit an elongated, spindle-shaped mor-
phology (Table 2), (3) express mesenchymal stem cells 
markers (≥ 95% expression of CD105, CD73 and CD90 as 
assessed by flow cytometry and ≤ 2% positivity for CD45, 
CD34, CD14 or CD11b, CD79a or CD19, and (4) demon-
strate a three-lineage differentiation potential [67, 70, 92, 
102-105].  

WJMSCs can be reproducibly expanded to large quanti-
ties, making them available as an “off-the-shelf” cellular 
ATMP regenerative product [67, 106]. As fetal cells, they 
display high proliferative potential and delayed senescence. 
WJMSCs can undergo a slightly higher (50-70) number of 
divisions than the Hayflick limit for somatic cells (40 to 60) 
[107]. Moreover, the WJMSCs aging process (senescence) 
occurs much later compared to other mesenchymal stem 
cells, such as those derived from bone marrow or adipose 
tissue [108, 109]. WJMSCs, being ontologically young, re-
tain their proliferative capacity for an extended period. The 
WJMSCs aging process and the loss of division capacity 
occur later, suggesting a greater 'efficiency' over a longer 
period. The number of divisions of WJMSCs may vary de-
pending on culture conditions, donor age, and other factors 
[107-110]. 

WJMSCs exhibit the expression of several pluripotency 
markers including octamer-binding transcription factor 4 
(OCT-4), SRY (sex determining region Y)-box 2 (SOX2), 
MYC proto-oncogene, bHLH transcription factor (c-MYC), 
homeobox protein NANOG, LIN28 protein, stage specific 
embryonic antigens (SSEA 1, 3, and 4), Kruppel-like tran-
scription factor 4 (KLF4), teratocarcinoma-derived growth 
factor 1 (TDGF1), and zinc finger protein 42 (ZFP42); how-
ever, their expression levels are significantly lower com-
pared to embryonic stem cells (ESCs) or induced pluripotent 
stem cells (iPS) [105]. These markers are consistent with the 
enhanced regenerative and differentiation potential of WJM-
SCs [67-69]. However, in contrast to pluripotent cells, 
WJMSCs are non-tumorigenic [70, 111]. Particularly im-
portant are the NANOG and OCT-4 factors that are crucial 

for maintaining the stemness state and the ability to self-
renew [69, 70, 81, 92].  

Importantly, WJMSCs exhibit elevated expression of ear-
ly cardiac transcription factors such as kinase insert domain 
receptor (KDR), insulin gene enhancer protein 1 (Isl-1), and  
NK2 homeobox 5 transcription factor (Nkx2.5) [69]. The 
WJMSCs expression of these early cardiac transcription fac-
tors can exceed that of human embryonic stem cells [69]. 
WJMSCs express C-X-C chemokine receptors types 3 and 4, 
consistent with migratory and homing capabilities [69]. 
WJMSCs are markedly chemoattracted towards the ventricu-
lar myocardium, integrating robustly into the depth of is-
chemic cardiac tissue. These properties favor WJMSCs use 
in cardiovascular regenerative medicine [112].  

The differences between WJMSCs and pluripotent stem 
cells are fundamental in the context of clinical use. The tu-
morigenic potential of embryonic or induced pluripotent 
cells has posed significant limitations in clinical applications 
[64, 113-116], thereby restricting their therapeutic potential 
[117]. 

One particularly important WJMSCs feature in the con-
text of allogenic transplantation is their low immunogenicity 
[118-120]. Due to (1) low expression of MHC I molecules 
(that are normally present on the surface membrane of all 
nucleated cells in the human body and are responsible for the 
presentation of peptide fragments of proteins within the cell 
to cytotoxic T cells, triggering an immediate immune system 
response against any recognized  “non-self” antigen); and (2) 
lack of MHC II molecule expression (normally found only 
on antigen-presenting cells and important in initiating im-
mune responses), WJMSCs do not induce alloreactive lym-
phocyte proliferative response [118-120]. In addition, WJM-
SCs exhibit high expression of human leukocyte antigen G 
(HLA-G), a non-classical human leukocyte antigen class I 
molecule with strong immune-inhibitory properties [121]. 
HLA-G, typically present in trophoblast, is partially respon-
sible for the tolerance of fetal tissue by the maternal immune 
system [121].  

A number of studies have demonstrated the genetic sta-
bility of WJMSCs, defined as the absence of chromosome 
elimination, displacement, or chromosomal imbalance, and 
have shown that WJMSCs can be safely and reproducibly 
expanded in vitro [99, 122]. Moreover, WJMSCs are not 
susceptible to spontaneous malignant transformation in vitro, 
and no tumor formation has been observed in animal studies 
[97, 99]. Recently, Musiał-Wysocka et al. [70] investigated 
the safety of WJMSCs in comparison to induced pluripotent 
stem cells cultured in both normoxia and hypoxia and then 
injected into immunodeficient mice. The study confirmed 
that WJMSCs do not form teratomas in vivo even after cul-
ture in hypoxic conditions, whereas induced pluripotent stem 
cell-injected mice developed tumors, with histopathological 
analysis confirming typical teratoma morphology [65, 70].  

Finally, WJMSCs share some properties with young fi-
broblasts (Table 2) [123-128], making them a natural candi-
date for fibroblast replacement in biological processes in-
volving these cells.   
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3. TISSUE REPAIR VERSUS REGENERATION 

‘Repair’ is understood as mending tissue that is injured, 
damaged or defective. The process of repair suggests re-
building a part of the loss without completely replacing it. 
Regeneration is a more advanced process of renewal and 
regrowth of the injured tissue or organ, involving the for-
mation of a new tissue. The processes of myocardial repair 
and regeneration cannot be totally separated from each other, 
as they overlap and work together to improve heart function. 
Unlike repair, which often leads to scar tissue formation, 
regeneration restores the tissue to its original state with func-
tional cells. In myocardial repair, while some aspects like 
inflammation and fibrosis are beneficial, excessive scarring 
can impair heart function. Regeneration offers the potential 
for restoring normal heart function after injury, as opposed to 
relying on scar tissue, which leads to impaired heart function 
over time. Promoting of the right balance between these two 
processes is important for restoring optimal heart function. 

Fig. (2) [66, 67, 86, 105, 126, 129-140] provides a sche-
matic presentation of mechanisms underlying WJMSCs re-
parative and regenerative capacities according to published 
evidence. Cell-to-cell interactions relevant to WJMSCs-
mediated repair and regeneration are listed in Table 3 [85, 
131, 141-151]. 

4. TYPES AND MECHANISMS OF MYOCARDIAL 
ISCHEMIC INJURY TO BE ADDRESSED BY CELL-
BASED REPAIR AND REGENERATION 
4.1. Acute Myocardial Infarction 

Occlusion of an epicardial coronary artery causes acute 
hypoperfusion in the area supplied by the infarct-related ar-
tery, resulting in myocardial tissue damage. Without rapid 
reperfusion, most of the hypoperfused area becomes necrot-
ic. The damage may extend to the total zone perfused by the 
occluded artery (area-at-risk). Prompt restitution of myocar-
dial perfusion by pharmacologic and/or mechanical therapy 
salvages (at least part of) the area at risk from necrosis [152].  

Human acute myocardial infarction (AMI) is typically 
associated with a loss of ≈109 cardiomyocytes [153].  How-
ever, it is important to note that - given the cardiomyocyte to 
endothelial cell ratio in the mammalian heart (≈3:1) - AMI 
leads to a concomitant loss of ≈3x109 other (mostly endothe-
lial) cells [153]. The latter is relevant, as the re-
pair/regeneration process needs to address the injury/loss of 
cells other than cardiomyocytes, namely the endothelial 
cells. The aim of cell-based regenerative therapies is to limit 
the loss and help rebuild the damaged tissue. However, the 
magnitude of the myocardial tissue loss due to myocardial 
infarction suggests that any substantial repair/regeneration of 
the loss is unlikely with the strategies employed so far. 

Table 2. Comparison of fundamental characteristics of WJMSCs vs. fibroblasts. 

Characteristics WJMSCs Fibroblasts 

Morphology 

 
Thin, elongated, spindle-shaped [123] 

 
Stellate-shaped [123] 

Source 
Naturally present in human umbilical cord - arranged in 
a concentric fashion with their long axis at right angle 

to the long axis of the cord [66, 67, 69, 124, 125] 
Naturally present in human connective tissue [126] 

Stemness markers 
OCT-4 
SOX-2 
c-MYC 

NANOG 

PRESENT 
[67-69, 81] 

ABSENT 
[127] 

Progenitor cell marker STRO-1 PRESENT [68] ABSENT [128] 

 
Surface markers 

( - absent  / + present ) 

- CD 271 
+ CD 31 

+ CD 146 
+ VE-Cadherin 

- FSP-1 
[77] 

+ CD 271 
- CD 31 

- CD 146 
- VE-Cadherin 

+ FSP-1 
[77] 

Differentiation potential 
HIGH 
[77] 

RESTRICTED 
[77] 

Abbreviations: OCT-4 - octamer-binding transcription factor 4; SOX-2 - SRY (sex determining region Y)-box 2; c-MYC - MYC proto-oncogene, bHLH transcription factor; 
NANOG - homeobox protein NANOG; STRO-1 - stem cell antigen STRO-1; FSP-1 - fibroblast-specific protein 1. 
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Infarction results, in the first phase, from the acute reduc-
tion in oxygen delivery due to interrupted (or markedly di-
minished) blood supply. However, ischemic injury is inextri-
cably related to another fundamental damage-causing mech-
anism that follows ischemia: reperfusion (hence “ischemia-
reperfusion” injury). The reperfusion stage persists for sev-
eral days. Reperfusion restores blood flow and oxygen pro-
vision  to the ischemic tissue, a process that is in part benefi-
cial and in part deleterious. The generation of reactive oxy-
gen species enhances, through oxidative stress, endothelial 
and other cellular damage and stimulates inflammation [152, 
154, 155]. It is important to recognize that while some myo-
cardial cells die with ischemia, others die during reperfusion 
(lethal reperfusion injury) [156]. 

Necrosis triggers an extensive inflammatory reaction 
[157, 158]. Inflammatory cascades induce a cytokine storm, 
resulting in damage to cellular structures and cell death. The 
immune response to myocardial injury involves well defin-
ied players, such as neutrophils, monocytes/macrophages, 
dendritic cells, lymphocytes, and cardiac fibroblasts [154]. It 
is increasingly understood that immunomodulation during or 
after reperfusion may constitute an important therapeutic 
approach [154, 159]. Thus, the WJMSCs' immunomodulato-
ry properties [92, 131, 160] may be particularly relevant in 
the context of reducing immune-modulated myocardial  
injury.  

Although necrotic cell death is considered the leading 
mechanism of cellular loss in myocardial ische-
mia/reperfusion injury [152], several other forms of cardiac 
cell death have been recently reported to play a role in myo-
cardial infarction. Those include apoptosis, autophagy, and 
necroptosis [154]. 

Necrosis is an uncoordinated and unregulated mechanism 
followed by an inflammatory response [152]. Typical mor-
phological features of necrosis include contraction bands, 
karyolysis, mitochondrial swelling and disruption, mem-
brane disruption in cardiomyocytes accompanied by micro-
vascular destruction, interstitial hemorrhage, and inflamma-
tion [161, 162].  In contrast to necrosis, apoptosis, autopha-
gy, and necroptosis are regulated pathophysiological pro-
cesses that are controlled by specific signal transduction 
pathways [152].  

Apoptosis is an energy-consuming form of cell death ini-
tiated by activation of sarcolemmal receptors such as FAS 
cell surface death receptor and tumor necrosis factor α (TNF-
ɑ) as well as the mitochondrial release of cytochrome c, trig-
gering a caspase cascade which results in intracellular prote-
olysis, without an inflammatory response [163]. 

Autophagy is another regulated process contributing to 
myocardial ischemia-reperfusion injury. Autophagy is char-
acterized by lysosomal degradation and recycling of proteins 
[164]. The presence of double-membrane vesicles (autopha-
gosomes) and increased expression of characteristic proteins 
are typical of an autophagic process. 

Necroptosis incorporates hallmarks of necrosis and apop-
tosis [152]. However, necroptosis is a regulated process that 
needs activation by specific kinases, and can be inhibited by 
necrostatin [165, 166]. Although myocardial infarction has 
been considered primarily necrotic, the features characteris-

tic of apoptosis, autophagy, and necroptosis are present in 
the infarct zone [152, 167].  

Apoptosis is detected upon reperfusion in AMI cardio-
myocytes and progresses up to 6 days post-reperfusion, in 
association with with infiltrated macrophages [168]. The 
Akt/mTOR/p70S6K pathway is also activated upon AMI 
reperfusion and remains elevated for up to 6 days (p<0.05). 
Ischemia activates the TLR-4-MyD88-dependent (cyto-
kines/chemokines) and -independent (IRF-3) pathways in 
both ischemic and non-ischemic myocardium and remains 
high up to 6 days post-reperfusion (p<0.05) [168]. Accord-
ingly, leukocytes and macrophages are progressively recruit-
ed to the ischemic myocardium (p<0.05). Ischemia up-
regulates pro-fibrotic TGF-β that gradually rises collagen1-
A1/-A3 mRNA with subsequent increase in total collagen 
fibrils and fibroblasts from 3 days post-reperfusion onwards 
(p<0.005) [168]. MMP-2 activity increases from ischemia to 
3 days post-reperfusion (p<0.05). There is a timely coordi-
nated cellular and molecular response to myocardial ische-
mia and reperfusion within the first 6 days after AMI [168]. 
Understanding of the mechanisms involved in tissue repair 
may facilitate the development of novel cardioprotective 
strategies. 

Much effort has been invested in studying the molecular 
mechanisms underlying the development and progression of 
ischemia/reperfusion injury and post-ischemic cardiac re-
modeling [169]. Both during ischemia-reperfusion in the 
setting of AMI and during the chronic remodeling process 
following AMI, oxidative stress substantially contributes to 
cardiac damage [169]. Reactive oxygen species (ROS) gen-
erated within mitochondria are particular drivers of mecha-
nisms contributing to ischemia/reperfusion injury, including 
induction of mitochondrial permeability transition or oxida-
tive damage of intramitochondrial structures and molecules 
[169]. 

4.2. Infarct Healing 

Tissue healing after myocardial infarction occurs through 
the activation of an endogenous repair response (endogenous 
myocardial reparation) [170]. Healing after myocardial in-
farction consists of three overlapping stages that include an 
inflammatory phase, a proliferative phase, and resolution 
[171]. Fundamental cellular players are neutrophils, mono-
cytes/macrophages, dendritic cells, lymphocytes, and cardiac 
fibroblasts [154].      

Coronary artery ligation results in pathological changes 
in cardiac muscle supplied by the infarct-related artery. 
Within 20 minutes, intracellular edema, swelling and distor-
tion of the transverse tubular system, the sarcoplasmic re-
ticulum and mitochondria are observed; these changes are 
reversible [155].  However, prolonged ischemia (~20 to 40 
minutes) causes irreversible changes [172]. Irreversible dam-
age occurs with its characteristic mitochondrial abnormali-
ties such as swelling and internal disruption and margination 
of amorphous nuclear chromatin and relaxation of myofibrils 
[170].  

In its early stage, myocardial injury triggers a local in-
flammatory response [158]. This leads to systemic inflam-
mation, including stimulation of bone marrow-derived leu-
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kocytes and activation of complement, leading to the re-
cruitment of neutrophils and monocytes at the infarcted area. 
Within 6-8 hours after AMI activated, neutrophils infiltrate 
into the ischemic myocardium, peaking at 1-3 days, and pro-
duce pro-inflammatory factors that attract monocytes [158].  

Around the 3-7th day of infarction, monocytes and mac-
rophages infiltrate the border zone of the infarct [172]. At 
the injury site, monocytes differentiate into macrophages. 
There is disintegration of myofibers and phagocytosis and 
promotion of necrotic debris removal [172]. The monocyte 
infiltration is biphasic; pro-inflammatory monocytes pre-
dominate within the first 48 hours (peaking at days 3-4), 
whereas anti-inflammatory monocytes start to prevail 4-7 
days later, peaking about day 7 [172]. M1 macrophages, pre-
dominant in the initial inflammatory phase, secrete high lev-
els of pro-inflammatory cytokines, chemokines, and matrix 
metalloproteinases [170]. M2 macrophages, through their 
anti-inflammatory and pro-angiogenic properties, downregu-
late inflammatory response in myocardial infarction healing 
(Table 3) [170, 173]. Infiltration of the infarcted area by B 
lymphocytes peaks at day 5 post-AMI and is responsible for 
pro-inflammatory response and mobilization of monocytes 
from bone marrow [174]. The ratio of pro-inflammatory ver-
sus anti-inflammatory macrophages is modulated by cyto-
kines [175]. Activated monocytes and macrophages partici-
pate in crosstalk with other cells, including cardiomyocytes, 
fibroblasts, immune cells, and vascular endothelial cells. The 
pro-inflammatory response is crucial for wound repair, scar 
formation and compensatory hypertrophy after AMI [176], 
but a delay in alleviation of inflammation leads to myocyte 
hypertrophy, apoptosis and adverse LV remodeling, finally 
leading to heart failure [177]. The cytokine-mediated switch 
from the inflammatory to anti-inflammatory response - a 
process that can be mechanistically enhanced by WJMSCs at 
several levels (Fig. 2) - plays an important role in reducing 
cardiac remodeling after AMI.   

4.3. Role of Cardiac Fibroblasts in Myocardial Healing 

Fibroblasts play a fundamental role in every phase of the 
healing response. They preserve the integrity of the extracel-
lular matrix network, maintaining its geometry and function 
[178]. In the proliferative phase, fibroblasts transdifferentiate 
to myofibroblasts, which become the dominant cell type in-
filtrating the infarct border zone [179]. 

Moreover, fibroblast activation is coordinated with the 
inflammatory response via paracrine mechanisms [179]. 
They present a high proliferative capacity, express contrac-
tile proteins [157], produce higher levels of extracellular 
matrix proteins [170], and modulate matrix metabolism by 
expressing matrix metalloproteinases (MMPs) and their in-
hibitors [157]. These mechanisms protect the infarct zone 
against rupture and, by their contractile activity, retract the 
borders of the scar area, enabling wound healing [180, 181].  

Fibroblasts interact with cardiomyocytes through several 
mechanisms [179]. These communications are essential for 
the myocardium to heal and recover [179]. Within the pro-
cess of cardiac repair, the interaction between cardiac fibro-
blasts and cardiomyocytes is crucial for myocardium healing 
and recovery [179].  Downregulation of intestinal myofibro-
blasts occurs predominantly via inhibition of myocardin-

related transcription factor A [147], providing an important 
mechanism for resolving the inflammatory processes (matu-
ration phase). The maturation phase is characterized by the 
completion of collagen-based scar formation [147].   

Apart from being a crucial determinant of cardiac repair, 
fibroblasts play an important role in long-term adverse re-
modeling [182]. The remodeling process can also be en-
hanced through the allogenic application of mesenchymal 
stem cells. WJMSCs share several properties with young 
fibroblasts [127], making them uniquely suited as a player in 
myocardial repair (Table 2). 

4.4. WJMSCs as ‘Natural’ Players in Infarct Healing and 
Repair  

Evidence shows that WJMSCs are naturally chemoat-
tracted towards the myocardial ischemic tissue and integrate 
with it [112]. A number of properties exhibited by WJMSCs 
are relevant to modulating the fundamental mechanisms on 
the interface of acute myocardial injury and healing, as well 
as in chronic myocardial ischemia injury (Fig. 2).   

First, WJMSCs share several properties with young car-
diac fibroblasts [128], making WJMSCs a natural player in 
the cardiac repair process [61, 74, 183].  WJMSCs transplan-
tation into the infarct zone may exert benefit through at least 
2 fundamental mechanisms, including (1) modulation of na-
tive fibroblast function and (2) fibroblast replacement. 
WJMSCs may affect native fibroblasts via the WJMSCs 
immunomodulatory effects (Table 3 and Figs. 3A, B), result-
ing in downregulation of interstitial fibrosis [140]. Partial 
replacement of native fibroblasts with WJMSCs can also 
inhibit excessive inflammatory response and myofibroblast 
formation, improving internal scar formation balance (Fig. 
2). In addition, due to key genetic factors (that are absent in 
fibroblasts; Table 2), WJMSCs are able to transdifferentiate 
into cardiomyocytes and endothelial cells [66, 67, 135, 136, 
184, 185]. Nevertheless, transdifferentiation is rather unlike-
ly to dominate the WJMSCS-mediated myocardial repair, 
indicating a leading role of WJMSCs immunomodulatory 
and paracrine mechanisms (Figs. 2 and 3A, B).      

WJMSCs - by their anti-inflammatory and immuno-
modulatory properties - may facilitate a switch from pro-
inflammatory to anti-inflammatory mechanisms in the form-
ing scar and thus exert a therapeutic effect by reducing scar 
formation, limiting the area at risk, and modulating the 
stunned myocytes so that they regain their physiologic con-
tractile function [67, 104, 136, 157]. Evidence suggests that 
a switch from pro-inflammatory neutrophils (N1) and mac-
rophages (M1) to their anti-inflammatory phenotypes (N2 
and M2) may underlie an important part of the WJMSCs 
therapeutic effect [142, 186] (Table 3 and Figs. 3A, B) [61, 
71-76, 80, 89, 170, 184, 185, 187-206]. 

Overall, WJMSCs' immunomodulatory properties are 
consistent with enhancing the process of cardiac repair. In 
particular, WJMSCs secrete anti-inflammatory and immuno-
suppressive chemokines such as interleukin 10 and trans-
forming growth factors β1 [75, 92, 131, 160] and suppress 
pro-inflammatory cytokines including interleukin 2 and in-
terferon‐gamma [141]. Furthermore, WJMSCs - through 
their immunomodulatory properties and interactions with 
immune cells [142] - may alleviate the inflammatory 
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Fig. (2). WJMSCs stimulation of myocardial repair and regeneration: fundamental mechanisms. Abbreviations: WJMSCs - Wharton’s jelly 
mesenchymal stem cells, EPCs - endothelial progenitor cells, VEGF - vascular endothelial growth factor, HGF - hepatocyte growth factor, IL-
8 - Interleukin 8, IL-10 - Interleukin 10, HIF-1α - hypoxia-inducible factor-1α, IL-1α - Interleukin 1α, IL-6 - Interleukin 6, TNF-α - tumor 
necrosis factor α, TGF-β1 - transforming growth factor β1, LV - left ventricle. (A higher resolution / colour version of this figure is available 
in the electronic copy of the article). 

 
Fig. (3). Contd… 
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Fig. (3). (A) Therapeutic properties of Wharton’s jelly mesenchymal stem cells driving cardiac regeneration. (B) Cellular and molecular 
mechanisms underlying the therapeutic effects of Wharton’s jelly mesenchymal stem cells in ischemic heart injury. (A and B) illustrate the 
paracrine mechanisms of action mediated by Wharton’s jelly mesenchymal stem cells (WJMSCs) in cardiac tissue regeneration following 
ischemic injury. The diagrams showcase the diverse therapeutic properties of WJMSCs, including the promotion of cardiac repair, inhibition 
of fibrosis, enhancement of vascular regeneration, and modulation of the immune environment to support tissue repair and functional recov-
ery. WJMSCs exert their therapeutic effects on key cardiac cell types, including cardiomyocytes, cardiac fibroblasts, endothelial cells, and 
immune cells. WJMSCs promote cardiomyocyte proliferation and regeneration while protecting these cells from apoptosis and oxidative 
stress, leading to improved mitochondrial function. This protection is achieved through the downregulation of reactive oxygen species (ROS) 
and the enhancement of mitochondrial function, which supports the metabolic and energy demands of cardiomyocytes essential for recovery 
and improved cardiac performance. These mechanisms highlight the critical role of WJMSCs in preserving and repairing cardiomyocytes 
under ischemic conditions. WJMSCs support cardiac fibroblasts by enhancing their survival and proliferation, limiting fibrosis through the 
inhibition of fibroblast-to-myofibroblast differentiation, and facilitating extracellular matrix remodeling. Additionally, WJMSCs may induce 
the transdifferentiation of cardiac fibroblasts into cardiomyocytes, further contributing to tissue repair. Endothelial cells benefit from WJMSC 
activity through enhanced protection against apoptosis and the stimulation of angiogenesis and vasculogenesis. These processes involve pro-
moting endothelial cell proliferation and migration, leading to the formation of new blood vessels that restore blood supply to damaged tis-
sues. WJMSCs also play a pivotal role in immunomodulation by regulating immune cell activity. They shift macrophages from the pro-
inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, promote the activity of regulatory T cells, and reduce the pro-
inflammatory activity of other T cell subsets. B cells and neutrophils exhibit decreased proliferation and activity, helping to mitigate inflam-
mation, while NK cells reduce their cytotoxic responses. Finally, WJMSCs contribute to tissue regeneration by attracting progenitor cells and 
other reparative cell types to the site of injury through chemoattraction, facilitating their homing and integration into the damaged tissue. The 
molecules involved are indicated in the diagrams. Abbreviations: VEGF – Vascular Endothelial Growth Factor, HGF – Hepatocyte Growth 
Factor, IGF-1 – Insulin-Like Growth Factor 1, bFGF/FGF-2 – Basic Fibroblast Growth Factor 2, TGF-β – Transforming Growth Factor 
Beta, IL-6 – Interleukin 6, IL-8/CXCL8 – Interleukin 8 (Chemokine (C-X-C motif) Ligand 8), Ang-1 – Angiopoietin-1, PDGF – Platelet-
Derived Growth Factor, MMP-1 – Matrix Metalloproteinase 1, MMP-2 – Matrix Metalloproteinase 2, MMP-9 – Matrix Metalloproteinase 9, 
IL-10 – Interleukin 10, SDF-1/CXCL12 – Stromal-Derived Factor 1, CXCL1 – Chemokine (C-X-C motif) Ligand 1 (GRO-alpha), CXCL2 
– Chemokine (C-X-C motif) Ligand 2, CXCL5 – Chemokine (C-X-C motif) Ligand 5, CXCL10 – Chemokine (C-X-C motif) Ligand 10, 
CX3CL1 – Chemokine (C-X3-C motif) Ligand 1 (Fractalkine), CCL2/MCP-1 – Chemokine (C-C motif) Ligand 2 (Monocyte Chemoattract-
ant Protein-1), CCL3 – Chemokine (C-C motif) Ligand 3, CCL4 – Chemokine (C-C motif) Ligand 4, CCL6 – Chemokine (C-C motif) Lig-
and 6, IDO – Indoleamine 2,3-Dioxygenase, LIF – Leukemia Inhibitory Factor, GM-CSF – Granulocyte-Macrophage Colony-Stimulating 
Factor, HLA-G – Human Leukocyte Antigen G, miR-21 – MicroRNA-21, miR-133 – MicroRNA-133, miR-1 – MicroRNA-1, miR-126 – 
MicroRNA-126, PGE2 – Prostaglandin E2, BMP-2 – Bone Morphogenetic Protein 2, TIMPs – Tissue Inhibitors of Metalloproteinases, M1 
– Pro-inflammatory Macrophages (Classically Activated Macrophages), M2 – Anti-inflammatory Macrophages (Alternatively Activated 
Macrophages), Th1/Th17 – T Helper Cells Type 1 and Type 17, Tregs – Regulatory T Cells, NK Cells – Natural Killer Cells. (A higher 
resolution / colour version of this figure is available in the electronic copy of the article). 
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response and inhibit myocardial fibrosis [139, 140]. Specifi-
cally, WJMSCs suppress T lymphocyte proliferation [46, 
187, 188], inhibit the differentiation of T helper cells [142, 
144], modulate T regulatory cell induction [142], and sup-
press NK cells [142] (Table 3). 

Along with their high proliferation capacity and release 
of large concentrations of chemokines, WJMSCs exhibit pro-
angiogenic activity and modulate matrix remodeling [121, 
189]. The WJMSCs-mediated reduction of inflammation [150], 
decrease in interstitial fibrosis [120, 150, 170], stimulation of 
angiogenesis [71, 72, 120, 150, 185, 190, 191] and preservation 
of cardiomyocytes indicate a unique role for WJMSCs  
in myocardial repair and regeneration (Figs. 3A, B). Important-
ly, after WJMSCs are phagocytosed by monocytes,  
WJMSCS-derived extracellular vesicles may sustain  
therapeutic effect [192].   

Finally, evidence from the murine model of myocardial 
infarction demonstrates WJMSCs promotion of wound heal-
ing by upregulation of genes involved in re-epithelialization 
TGF-β2 and neovascularization (HIF-1α) [193].  

4.5. Chronic Ischemic Heart Failure 

AMI (or repeated AMIs, including multiple small AMIs) 
underlie the development of CIHF. Scar formation and the 
loss of contractility cause major pathologic changes in func-
tion and structure of the left ventricle, termed “adverse re-
modeling” [194]. At the cellular level, myocardial remodel-
ing involves alterations in myocyte biology, including stimu-
lation of their adverse hypertrophy [195]. Pathologic changes 
in the extracellular matrix include initiation of interstitial 
fibrosis [195]. Cellular and molecular changes of cardiomy-
ocytes and the surrounding interstitium result in the systolic 
and diastolic dysfunction of the left ventricular myocardium, 
underlying the symptoms and clinical presentation of con-
gestive heart failure. Remodeling of the injured left ventricle 
after myocardial infarction due to volume and pressure over-
load results in increased wall stress, leading to macroscopic 
left ventricular dilation. Macroscopic changes include modi-
fication of left ventricular geometry: increased size, spherici-
ty and left ventricular wall thinning [195].     

Reduced ejection fraction and impaired contractility re-
sult from loss of contractile myocytes. The decrease in viable 
and correctly functional myocytes occurs through two major 
mechanisms, including necrosis and apoptosis [195]. Hyper-
trophic cardiomyocytes in the remodeled myocardium are 
susceptible to diffuse ischemia [194]. This, taken together 
with subendocardial blood flow reduction in the hyper-
trophic muscle, promotes subendocardial ischemic cell ne-
crosis [196, 197].  Pressure and volume overload lead to neu-
rohormonal stimulation, including the renin-angiotensin-
aldosterone cascade, β-adrenergic stimulation, reactive oxy-
gen species, inflammatory cytokines (e.g., TNF-α), and me-
chanical stress. These activate the process of cardiomyocyte 
apoptosis [198-201]. Therefore, inhibition of pro-
inflammatory processes is an important therapeutic target.   

Molecular mechanisms underlying the development of 
CIHF, including metabolic alterations, reactive oxygen spe-
cies overproduction, inflammation, autophagy deregulation, 
and mitochondrial dysfunction, have been recently reviewed 
in detail [169, 202]. Mitochondrial dysfunction is a key fea-

ture of CIHF [203]. Based on the mechanistic insight gained 
from rodent studies, the mechanisms for decreased mito-
chondrial oxidative capacity include altered mitochondrial 
ultrastructure, proteomic remodelling and oxidative damage 
of proteins and mitochondrial DNA, as well as impaired mi-
tochondrial Ca2+ handling that accelerates the development 
of myocardial contractile dysfunction [203]. The transplanta-
tion of viable and redox-competent mitochondria has been 
proposed to improve myocardial recovery after ischemic 
damage [202], but a recent human translation of mitochon-
drial transplantation failed to provide consistent benefits 
[204]. 

5. WJMSCs-MEDIATED MECHANISMS OF MYO-
CARDIAL REPAIR AND REGENERATION   
5.1. Paracrine Actions, Proangiogenic Capacity and 
Trophic Support 

WJMSCs secrete paracrine factors, including cytokines, 
chemokines, and growth factors, which regulate stress-
induced apoptotic pathways to enhance the survival of in-
jured cardiac cells. WJMSCs release large quantities of pro-
angiogenic factors, such as vascular endothelial growth fac-
tor (VEGF), stromal cell-derived factor-1 (SDF-1) and angi-
opoietin-1 (ANGPT-1), along with other angiogenic factors 
such as hepatocyte growth factor (HGF), TGF-β1, TGF-β2, 
basic fibroblast growth factor (bFGF), matrix metallopro-
teinases (MMPs), epidermal growth factor (EGF), platelet-
derived growth factor-AA (PDGF-AA), and granulocyte 
colony-stimulating factor (G-CSF). These factors are crucial 
for initiating and maintaining angiogenesis [61, 71, 72, 97, 
104, 122, 136, 137, 190, 205, 206]. WJMSCs also release 
pro-angiogenic chemokines from the CXC-chemokine fami-
ly, including CXCL1, CXCL5, CXCL6, CXCL8 [85, 120, 
144, 207, 208], and a number of other molecules document-
ed to promote angiogenesis in animal models of myocardial 
injury (e.g., VEGF, Netrin-1, Ang-1) [97, 104, 122, 136, 
137, 144].    

VEGF exhibits pleiotropic functions, promoting angio-
genesis by supporting cell migration, proliferation, differen-
tiation, and endothelial cell survival.  Among the growth 
factors, VEGF appears to be the most critical for effective 
vasculogenesis (the formation of new blood vessels de novo) 
as well as angiogenesis (where new blood vessels form from 
pre-existing ones). VEGF secretion is stimulated by pro-
inflammatory cytokines such as IFN-γ and IL-1β. VEGF 
overexpression by mesenchymal stem cells activates the 
SDF-1α/CXCR4 pathway and other mechanisms, including 
PI3K-NFκB, leading to the recruitment of pericytes and mi-
gration of cardiac stem cells into areas of infarction, stimu-
lating angiogenesis. The elevated levels of VEGF exert anti-
apoptotic and anti-hypertrophic effects on the ischemia-
damaged cardiomyocytes [144, 185]. 

5.2. Transdifferentiation  

The self-renewal capability of WJMSCs, their high pro-
liferation rate, and their capacity for multilineage differentia-
tion are well-documented [106, 209]. The multipotent char-
acter of WJMSCs enables their differentiation into deriva-
tives of all three germ layers [66, 93, 98, 210-213]. Further-
more, there is evidence for WJMSCs capacity to transdiffer-
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entiate into endothelial cells [184] and cardiomyocytes [67]. 
When cultured with 5-azacytidine, WJMSCs transdifferenti-
ate into cells expressing cardiomyocyte-specific proteins, 
including troponin I, troponin T, F-actin, N-cadherin, con-
nexin 43, α-actin, GATA binding protein 4, and desmin [67, 
69]. Recent studies in animal models have shown survival of 
the transplanted WJMSCs for several weeks after admin-
istration and their differentiation into cardiac-like cells ex-
pressing cTnT by immunohistochemistry [125] (Table 3).  

5.3. Immunomodulation 

The immunogenicity of WJMSCs is known to be signifi-
cantly lower compared to mesenchymal stem cells derived 
from other sources [118, 131, 142, 149, 159]. However, the 
mechanisms underlying the immunosuppressive properties of 
WJMSCs are complex and not yet fully elucidated. WJMSCs 
modulate immunity through both soluble factors and cell-cell 
contact [151]. WJMSCs do not express HLA-DR and co-
stimulatory molecules such as CD40, CD80, and CD86 that 
are required for T-cell activation [103, 148, 188]. The absence 
of HLA class II antigens (including HLA-DR), along with the 
low expression levels of HLA class I antigens (HLA-A, HLA-
B, HLA-C), allows WJMSCs to maintain their immune-
privileged status, which helps them evade immune attack and 
minimizes the risk of rejection when transplanted into an al-
logeneic environment. This mechanism, combined with the 
immunomodulatory properties of WJMSCs, enhances their 
potential for allogeneic transplantation [103, 188, 214-217]. 

Through the secretion of indoleamine 2,3-dioxygenase 
(IDO), WJMSCs inhibit the differentiation of T follicular 
helper cells (Tfh), which leads to (1) the suppression of ex-
cessive immune responses; (2) the promotion of immune 
tolerance; and (3) the reduction of inflammation [85, 131]. 
The inhibition of Tfh differentiation by IDO helps prevent 
excessive antibody production, which can be important in 
avoiding autoimmune diseases or unwanted immune reac-
tions, such as those following transplantation. IDO activity 
also contributes to the induction of immune tolerance, which 

is beneficial in transplantation (e.g., to reduce graft rejection) 
and in treating autoimmune diseases, as it lowers the risk of 
immune system aggression against the body’s own tissues. 
IDO's action is associated with inhibiting the number of cir-
culating pro-inflammatory Tfh cells, thereby reducing over-
all inflammation in the body and aiding in the treatment of 
various inflammatory conditions where an excessive immune 
response is particularly dangerous [186, 208]. 

Moreover, WJMSCs suppress the production of IFN-γ, 
stimulate the secretion of IL-10, and modulate the induction 
of T-regulatory cells [147-149]. The production of IL-6 by 
WJMSCs inhibits dendritic cells and induces them to adopt 
tolerogenic phenotypes [144, 214]. By producing prosta-
glandin E2, WJMSCs suppress the cytotoxicity of NK cells 
[144, 145] and inhibit the proliferation of CD4+ and CD8+ 
T-cells [144, 215].  

WJMSCs have been successfully used in the treatment of 
graft-versus-host disease [216], particularly in steroid-resistant 
cases where standard glucocorticoid-based treatments fail to 
provide a therapeutic effect [217]. WJMSCs exert their immu-
nosuppressive effects through multiple mechanisms: they in-
hibit the activation and proliferation of T-cells, suppress neu-
trophil adhesion to inflamed endothelium, and enhance the 
expansion of regulatory T-cells [218]. Recent data suggest that 
the immunomodulatory and anti-inflammatory properties of 
WJMSCs, administered iv. in doses ranging from 5 x 105 to 3 
x 106 cells, may effectively counteract the cytokine storm aris-
ing from COVID-19 infection [219-222]. 
6. ROLE OF ANIMAL MODELS OF AMI AND CIHF 
IN ADVANCING CLINICAL RESEARCH  

Pre-clinical evaluation of novel therapies for AMI and 
CIHF plays a pivotal role in advancing human trials. Animal 
models play a crucial role in generating the preclinical evi-
dence enabling to perform Phase 1/2 human studies on myo-
cardial repair and regeneration [104, 126, 136-139, 151]. 

Table 3. Effects of WJMSCs on cell-to-cell mechanisms of infarct healing and remodel. 

- Key Cellular Players WJMSCs Action WJMSCs Effect References 

AMI 

M1/M2 macrophages Switch to M2 enhancement Reduced overt inflammation [131, 141, 142] 

N1/N2 neutrophiles Switch towards N2 dominance Reduced overt inflammation [143] 

NK cells Suppression Inhibition of cytotoxicity [92, 142, 144, 145] 

Fibroblast-cardiomyocyte crosstalk Fibroblast replacement Cardiomyocyte enhancement [146] 

T-helper cells Inhibition of differentiation Reduced inflammation [142, 144] 

T-regulatory cells Immunomodulation Reduced inflammation [142, 147-149] 

CIHF 

Fibroblast: interstitial fibrosis ↓ Fibrosis 

↓ Apoptosis 

↓ Hypertrophy 

↑ Connexin 43 expression 

↑ Cardiomyocyte preservation [85, 141, 150, 151] Cardiomyocyte: apoptosis, hypertrophy,  
connectivity 

Note: See text and Fig. (3) for cytokine and transductory molecular mechanisms. 
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While bench studies enable the investigation of cellular and 
molecular interactions, small-animal models (rodents, rabbit, 
guinea pigs) allow initial ‘proof of concept’ experiments [79]. 
Nevertheless, novel pharmacotherapies effective in rodents may 
fail to translate to humans [223]. Because of critical structural, 
functional, and molecular differences between small and large 
mammalian hearts, promising therapeutic approaches generally 
require preclinical testing in larger animal models before human 
translation [224] (cf., Table 4). Several animal models of AMI 
and CIHF have been developed, with those based on ligation of 
the left anterior descending coronary artery (LAD) considered 
most relevant to human ischemic heart disease [225, 226]. Re-
producibility of infarct size and LV remodeling in animal mod-
els usually allows to demonstrate the therapeutic effects of a 
new intervention with “n” numbers lower than those needed in 
human clinical studies.   

Small-animal models serve as invaluable tools that have 
greatly advanced the treatment of myocardial disease, in-
cluding the development of new treatments [203, 227, 228]. 
Despite their widespread use and acceptance, studies per-
formed in small rodent models should nevertheless be inter-
preted with caution [203, 227]. Rodents, especially mice and 
rats, are powerful tools to study the mechanisms involved in 
the development of CIHF and novel therapeutic strategies. 
The human, mouse, and rat genomes have nearly the same 
size, each containing about 30,000 protein-coding genes, 
with about 99% of the genes encoded in the mouse genome 
having a homologue in humans [203, 227]. Further ad-
vantages of rodent models are the short breeding cycle and 
the availability of a variety of genetically engineered gain-
of-function and loss-of-function models [203, 227]. Despite 
the specific limitations and differences outlined above, myo-
cardial energetics and contraction are overall relatively simi-
lar between small rodents and humans. Consequently, nu-
merous proteins share functions across species, which makes 
small rodent models inevitable tools to rapidly conduct 
proof-of-principle studies and to test different myocardial 
treatment strategies in AMI and CIHF [203, 227]. Rodents 
are typically on the same or very similar genetic background, 
which does not reflect the genetic heterogeneity of the pa-
tient population [203, 227]. Human ventricular myocytes 
predominately express β-myosin heavy chain, whereas adult 
murine cardiomyocytes mainly express α-MHC with rapid 
ATPase activity [203, 227]. Rabbit and pig show a greater 
than human potential for lethal arrhythmias in relation to 
acute myocardial ischemia [229]. The rat model of CIHF 
bears several shortcomings, including high mortality rates 
and limited recapitulation of the pathophysiology, etiology, 
and progression of human CIHF [230]. Furthermore, several 
differences comparing the small-animal and human hearts 
exist that result from the difference in heart rate (about 500-
600 beats per minute in mice, 350 beats per minute in rats, 
60-80 beats per minute in humans) [203, 227]. Advance-
ments in magnetic resonance imaging and high-resolution 
transthoracic echocardiography enable today a detailed as-
sessment of contractile function even in small rodents [203, 
227]. Nevertheless, it is generally accepted that results from 
small-animal models require validation in large animals prior 
to trials in humans [203, 227]. 

Large animals (including pigs, sheep, and goats) are phy-
logenetically, physiologically and structurally closer to hu-

mans than rodents and therefore, at a molecular level, they 
have greater sequence homology with humans making inter-
pretation of molecular events in large animals more relevant 
to man [79]. Aside from obvious similarities in size and 
physiology with humans, larger animals, such as pigs, are 
more clinically relevant models for studying the func-
tion/shape aspects of cardiac remodeling because the devel-
opment of collateral blood vessels and the structural and 
functional alterations after AMI more closely recapitulate the 
human clinical phenotype [225, 226]. Large-animal models 
have provided significant advances in clinical practice [231]. 
Large animals are more similar physiologically and anatomi-
cally to man (size, tissue structure, and life span) and large 
animals are an ‘out bred’ population that more closely repre-
sents the heterogeneity of the human population than the 
‘inbred’ small animal strains used in medical research [79].  

Preclinical models of AMI and CIHF in large-animal 
models play a central role in providing new tools for early 
diagnosis and treatment [231]. Although economic costs, 
handling, personnel skills, and the necessary equipment are 
often limiting factors, large-animal models offer important 
advantages in terms of better clinical translation: they offer 
greater structural and functional similarity, and some models 
can also recapitulate the associated comorbidities [231]. 
LAD  ligation is designed to affect large areas of the LV, so 
that later measurements of cardiac changes reach statistical 
significance without requiring large numbers of animals 
[225, 226]. In heart failure, large-animal models continue to 
be a mainstay for drug, cell, and gene therapy development 
as well as for surgical and minimally-invasive device devel-
opment and procedure testing [224]. 

Swine is a prototypical large-animal model in pre-clinical 
evaluation of novel cardiac cell-based and device therapies 
[225, 231]. Porcine models of AMI and CIHF  have the ad-
vantage of architecture and collateral circulation similar to 
humans, making it possible to predict and control infarct size 
and disease severity [225, 231]. Fundamental advantages of 
swine are a similar expression pattern of MHC isoforms and 
a similar reserve in heart rate and cardiac output compared to 
humans [203, 227]. 

Infarct size (IS; the AMI gold standard primary endpoint) 
and left ventricular geometry and function (wall thickness, 
WT; left ventricular dimensions and volumes; fractional 
shortening, FS; left ventricular ejection fraction, LVEF and 
remodeling indexes) are typical output measurements for in 
vivo studies of therapeutic interventions in small and large-
animal models of AMI and CIHF [232-234] and -along with 
mortality/survival - they correspond to the typical endpoints 
in clinical trials in humans, as well as to cardiac parameters 
in everyday clinical practice (Table 1).  

Overall, studies in small-animal models importantly con-
tribute to developing novel treatment strategies [203, 227] 
but large-animal models (in particular swine) have generally 
strong translational relevance to humans [223]. While small-
animal models allow initial ‘proof of concept’ experiments, 
large-animal models allow clinically relevant assessments of 
safety, efficacy and dosing in cell-based therapies prior to 
clinical trials, and are thus indispensable in transition ‘from 
bench to bedside’ [79, 232]. Pre-clinical evidence demon-
strates a consistent WJMSCs efficacy in small and large an-
imal models of AMI and CIHF (Table 4).   
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7. IMPROVEMENTS IN LV SIZE AND FUNCTION 
CORRELATE WITH CLINICAL OUTCOMES IN 
HUMAN PATIENTS: RELEVANT ENDPOINTS IN 
EVALUATION OF CELL-BASED STRATEGIES IN 
ANIMAL MODELS OF AMI AND CIHF 

Recent analysis of data from 10 randomized clinical trials 
in AMI demonstrated that infarct size, evaluated by magnetic 
resonance or SPECT within 1 month after primary PCI, is 
strongly associated with all-cause mortality and hospitaliza-
tion for heart failure within 1 year. Infarct size is, therefore, 
an important endpoint in clinical trials as a prognostic pa-
rameter [3], and infarct size reduction as is a key therapeutic 
aim in AMI. 

In patients with LV dysfunction or heart failure after 
AMI, low LVEF is a ubiquitous risk marker associated with 
death [233]. A large-scale study of patients with stable heart 
failure followed up for 3-years demonstrated, among those 
with LVEF ≤45%, a near-linear reduction in mortality across 
successively higher LVEF groups (mortality of 51.7% with 
LVEF <15% vs. 25.6% with LVEF 36% to 45%, p<0.0001); 
an association relevant after multivariable adjustment [234]. 
Studies of ß-adrenolytic therapy in heart failure demonstrat-
ed that reduction in  LV adverse remodelling is associated 
with improved long-term outcomes including survival [235] 
but the therapeutic effect magnitude may be dependent on 
myocardial viability [236].  Echocardiographic data from the 
Valsartan Heart Failure Trial showed that patients with 
worse LVEDD and EF are at highest risk for an adverse 
event yet appear to gain the most anti-remodeling effect and 
clinical benefit with treatment [237]. 

Recent meta-analysis of 30 mortality trials of 25 
drug/device therapies (n = 69,766 patients; median follow-
up 17 months) and 88 of LV remodeling trials of these ther-
apies (n = 19,921 patients; median follow-up 6 months) in 
patients with LV dysfunction demonstrated that short-term 
trial-level therapeutic effects of a drug or device on LV re-
modeling are associated with longer-term effects on mortali-
ty [238]. In a contemporary registry of patients with heart 
failure with reduced LVEF, all-cause death or heart failure 
hospitalization occurred in 12% in the LVEF improvement 
group versus 25% in the group without an LVEF improve-
ment (adjusted hazard ratio 0.50, 95% confidence interval 
0.41-0.61) [239]. 

Overall, analyses of clinical data demonstrate that reduc-
tion in LV remodeling and improvement in LVEF are asso-
ciated with reduction in mortality and adverse heart failure-
related outcomes compared to patients with sustained LV 
systolic dysfunction [240].  

This positions (1) infarct size reduction, (2) attenuation 
of LV remodeling and (3) LVEF improvement - along with 
increased survival (reduced mortality) - as relevant endpoints 
in pre-clinical and clinical studies of cell-based therapeutic 
strategies in ischemic heart disease.    

8. THERAPEUTIC EFFICACY OF WJMSCs IN ANI-
MAL MODELS OF ACUTE AND CHRONIC MYO-
CARDIAL INJURY  

A number of WJMSCs studies have been performed in 
small (rodents, rabbit) and large-animal models (swine) of 

AMI and CIHF [104, 126, 136-139, 151]. Details from those 
studies are provided in Table 4, whereas summarized data 
are provided below. Overall, in both small- and large mam-
malian models, there is considerable pre-clinical evidence 
for enhanced myocardial repair and reduced left ventricular 
remodeling with human WJMSCs used to counteract acute 
and chronic myocardial ischemic damage. 

8.1. Acute Myocardial Injury  

Studies in animal models of AMI have consistently found 
improvement in left ventricular function with WJMSCs 
transplantation (Table 4). First, Yannarelli et al. [138] evalu-
ated left ventricular contractility in a mouse model of AMI 
comparing placebo administration (phosphate-buffered sa-
line, PBS), bone marrow mesenchymal stem cells and 
WJMSCs, administered by intravenous or peri-infarct intra-
myocardial injections. Transthoracic echocardiography was 
performed by a blinded observer at baseline and 14 days 
after treatment. Left ventricular fractional shortening (LVFS) 
was significantly better in animals receiving peri-infarct cell 
transplantation compared with the placebo group (p<0.05). 
Importantly, the improvement was greater in mice adminis-
tered with WJMSCs than in those receiving bone marrow 
mesenchymal stem cells. In contrast, the groups receiving 
cell treatment by intravenous injections showed no benefit 
from cell-therapy occurred, indicating that the intravenous 
delivery may be suboptimal [138]. 
Another study in a mouse AMI model compared peri-infarct 
injections of human WJMSCs with placebo (bovine serum 
albumin in PBS) injections [137]. Cardiac function was as-
sessed by echocardiographic examination at baseline and 14 
days after cell transplantation. WJMSCs-treated animals 
showed improved left ventricular ejection fraction (LVEF) 
and LVFS. There was also inhibition of remodeling, ex-
pressed by a reduction in left ventricular end-diastolic di-
ameter (LVEDD) and end-systolic diameter (LVESD) 
(p<0.05 for all) [137].  

Gaafar et al. [125] tested WJMSCs efficacy in a rat mod-
el of AMI.  Four groups of animals were compared, includ-
ing (1) control (non-manipulated) rats, (2) healthy rats in-
jected with human WJMSCs, (3) AMI-induced rats, and (4) 
WJMSCs-treated rats on the third day after AMI induction. 
Cardiac function (LVEF) and LV dimensions were evaluated 
by echocardiography at baseline and 2 weeks after treatment. 
LVEF, LVEDV, and LVESV were significantly better in the 
WJMSCs-treated AMI group compared to the AMI group 
receiving no WJMSCs treatment (p<0.05). In addition, after 
6 weeks, the survival rate in the AMI group that received 
WJMSCs was significantly improved in comparison to the 
control AMI group [125]. Overall, data from the study 
showed a benefit with human WJMSCs administration mani-
fested by improvement in left-ventricular function and atten-
uation of left ventricle remodeling (Table 4).  

Latifpour et al. [241] evaluated WJMSCs efficacy in 
stimulating myocardial repair and regeneration in a rabbit 
model of permanent surgical left anterior descending (LAD) 
permanent ligation. Animals were divided into five groups: 
intact group, control group (the AMI model), PBS group 
(placebo administration in the AMI model), WJMSCs group 
(5 x 106 cells), and 5-Azacytidine-conditioned WJMSCs 
group (5 x 106 cells). Human WJMSCs were injected  
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Table 4. WJMSCs stimulation of myocardial repair and regeneration: evidence in animal models. 

- Animal Experimental 
Protocol WJMSCs Dose Delivery Timing Delivery  

Method 

Cardiac  
Function 

Evaluation 
WJMSCs Effect Comment 

AMI 

AMI 

 

Small- 
animal 
models 

 

Mice 

[138] 

6 groups  
(n=6 each): 

 

Placebo*  im. 

WJMSCs im. 

BM-MSCs im. 

 

Placebo* iv. 

WJMSCs iv. 

BM-MSCs iv. 

0.5 x 106  cells 
 

(human  
WJMSCs) 

15 minutes after 
LAD ligation 

 

 

Peri-infarct (i.m.) 

vs 

Intravenous (i.v.) 

 

ECHO 
 

- B/L (ie., 
before MI 
induction) 

 

- 2 weeks after 
cell  

transplantation 

 

Peri-infarct WJMSCs 
injections  

effective vs. Placebo 

 

↑ FS  by 40 % 
WJMSCs vs. Place-

bo* (p<0.01) 

 

WJMSCs>BMSCs 

 

 

↑ number capillaries 
in WJMSCs-treated 

i.v. therapy ineffective 
(both WJMSCs and 

BM-MSCs) 

 

 

WJMSCs expression 
of α-cardiac actin,  
cardiac troponin T,  

α-myosin heavy chain 

 

WJMSCs detectable 
for ≥ 2 weeks 

Mice 
[137] 

WJMSCs (n=5) 
vs 

Placebo** 
(n=10) 

vs 

Nonmanipulated 
control group 

(n=10) 

0.2 x 106 cells 

 

(human  
WJMSCs) 

Following 

LAD ligation 

 

Peri-infarct (i.m.) 
injections 

 

ECHO 

 

7 days after 
AMI 

 

14 days after 
AMI 

 

 

14 days after AMI 
peri-infarct WJMSCs 
injections effective 

vs. Placebo 

 

↑ EF 

↑ FS 

↓ LVEDD 

↓ LVESD 

↑ WT 

↓ LV dilation (%) 

 

(p<0.05 for all) 

 

New capillary-like 
structures in   

WJMSCs-treated 

- 

Rat 

[125] 

WJMSCs 
(n=15) i.v. 3 
days after MI 

vs 

Group after MI 
(n=15) without 

treatment 

vs 

WJMSCs 
(n=15) i.v. (no 
MI induction) 

vs 

Control  
nonmanipulated 

(n=15) 

5 x 106 cells 

 

(human  
WJMSCs) 

3 days after  
AMI induction 

 

i.v. 

 
ECHO 

WJMSCs injections 
vs. AMI without 

treatment: 

 

↑ LVEF by absolute 
9% 

↓ LVEDV 

↓ LVESV 

 

(p<0.05 for all) 

 

 

↑ Number capillaries 
in WJMSCs-treated 

 

↑ survival  
with WJMSCs 

 

WJMSCs differentia-
tion into cardiomyo-
cyte-like cells: cTnT, 

α-smooth muscle 
actin, myosin heavy 

chain (+)ve 

 

WJMSCs  
detectablefor ≥ 6 

weeks 

(Table 4) Contd… 
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- Animal Experimental 
Protocol WJMSCs Dose Delivery Timing Delivery  

Method 

Cardiac  
Function 

Evaluation 
WJMSCs Effect Comment 

- 
Rabbit 
[241] 

Intact group 
(n = 7) 

vs 

AMI controls  
(n = 7) (AMI) 

vs 

AMI + PBS  
(n = 7) 

vs 

AMI +  
WJMSCs  

(n = 7) 

vs 

AMI + 5-AZT - 
conditioned 

WJMSCs group 
(n = 7) 

5 x 106 cells 

 

(human  
WJMSCs) 

After 1 h of  
LAD ligation 

(permanent LAD 
ligation) 

Subepicardial 
(i.m.) 

ECHO 

5 and 30 days  
after AMI 

5 days after AMI: 

no significant  
differences between 

study groups 
(PBS/WJMSCs/ 

5-AZT-conditioned 
WJMSCs) 

 

30 days after AMI: 
WJMSCs/5-AZT-

conditioned WJMSCs 
groups vs PBS  

(Placebo) and MI 
groups 

↑ EF by absolute 8% 

↑ FS by absolute 11% 

↓ LVEDD by 20% 

↓ LVESD by 20% 

 

(p<0.05 for all) 

 

↓ Scar tissue with 
WJMSCs/5-AZT-

conditioned WJMSCs 

similar effect of  
non-conditioned 

vs. 5-AZT conditioned 
WJMSCs 

 

 

 

Troponin-I (+)ve 

and F-actin (+)ve 

proliferating cells 

 

New gap junctions 
expressed in WJMSCs 

and 5-AZT-
conditioned WJMSCs 

groups 

AMI/ 
Post-AMI 

 

Large- 
animal 
models 

 

 

Mini-swine 
[151] 

3 groups: 

 

WJMSCs high 
dose (n=4) 

 

vs. 

 

WJMSCs low 
dose (n=4) 

 

vs. 

 

Placebo* 

High dose: 
2x 1.5 x 106 

cells/kg 

 

Low dose:  
2x 0.5 x106 

cells/kg 

 

(porcine  
WJMSCs) 

120 min after 
LAD ligation 

and 4 weeks after 
MI 

 

i.v. 
 

ECHO: 

before MI 
induction 

vs. 

acute MI after 
surgery 

vs. 

at 1 vs. 4 vs. 8 
weeks after MI 

 

SPECT/PET 

1 vs. 4 vs. 8 
weeks after MI 

 

8 weeks after MI: 
↑ FS WJMSCs high 
dose vs. PBS group 

(p<0.05) 

 

↑LVEF - WJMSCs 
high and low dose vs. 

PBS 

 

↑ LV wall motion - 
WJMSCs high and 
low dose vs. PBS 

 

↓ LV nonviable myo-
cardium area after MI 
- WJMSCs high and 

low dose vs. PBS 
(p<0.01) 

 

↓ Infarct area - 
WJMSCs high and 
low dose vs. PBS 

(p<0.01) 

 

↓ LV fibrosis area - 
WJMSCs high and 
low dose vs. PBS 

(p<0.01) 

↓ inflammation: 
↓ TNF-α in infarct 
area: WJMSCs low 

dose vs. PBS (p<0.05) 

 

↓ IL-6 in the border 
area: WJMSCs low 

dose vs. PBS (p<0.05) 

 

↑angiogenesis:  
↑VEGF in the border 
area: WJMSCs high 

dose vs. PBS (p<0.05) 

 

↑PECAM-1 in the 
infarct and border 

area:  
WJMSCs low dose vs. 

PBS (p<0.05) 

 

↑ Cx43 expression:   
WJMSCs high dose 

vs. low-dose of  
WJMSCs and PBS 

(p<0.05) 

 
(Table 4) Contd… 
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- Animal Experimental 
Protocol WJMSCs Dose Delivery Timing Delivery  

Method 

Cardiac  
Function 

Evaluation 
WJMSCs Effect Comment 

AMI/ 
Post-AMI 

Large  
animal 
models 

Mini-swine 
[104] 

3 groups  
(n=6 each) 

 
WJMSCs 

 
vs. 

 
Placebo* 

 
vs. 

 
Control (no 
treatment) 

40 x 106 cells 
 

(human  
WJMSCs) 

Right after  
LAD ligation 

Peri-infarct (i.m.) 
(10 injections) 

 

ECHO 
 

Before AMI 
induction 

vs. 
acute AMI 

vs. 
at 6 weeks 
post-AMI 

 

6 weeks after MI: 
EF (%) ↑ WJMSCs 
vs placebo/control 

(p<0.001) 
 

↓ Infarct area 
↑ ∆ WT (%) 

with WJMSCs vs 
placebo/control 

(p<0.001) 
 

↑ Myocardial perfusion
↓ Apoptosis 
↓ Fibrosis 

with WJMSCs 

 
resident cardiac stem 
cells recruitment with 

WJMSCs 
 

at 6 weeks new cTnT, 
vWB, c-kit positive 

cells, presence 
 

CIHF 

Post-AMI 
 

Small- 
animal 
model 

 
 

Rat 
[136] 

2 groups 
 

WJMSCs 
(n=12) 

 
vs. 

 
Placebo* 
(n=11) 

 

5 x 106  cells 
 

(human  
WJMSCs) 

2 weeks after 
 LAD ligation 

Peri-infarct  
injections 

 

ECHO 
 

Before  
transplantation 
(2 weeks after 

MI) 
 

vs. 
2 weeks after 
cell transplan-

tation 
 

4 weeks after 
cell transplan-

tation 
 

After 2 weeks: 
↑ LVEF by absolute 
10% with WJMSCs 

 

↓ LVEDD 
with WJMSCs vs P 

 

↓ LVESD 
with WJMSCs vs P 

(p<0.05 for all) 
 

↑ WT 
↑ Capillary density 

↑ Number of 
 arterioles 

 

with WJMSCs vs P  

(p<0.05 for all) 

WJMSCs present for 
at least 4 weeks 

 
(cTnT, vWF, smooth 

muscle actin  
expression) 

 
WJMSCs benefit seen 

at 2 weeks and sus-
tained at 4 weeks 

Post-AMI 
 

Large- 
animal 
model 

 

Swine 
[139] 

2 groups 
 

WJMSCs 
 

vs. 
 

Placebo*** 
 

30x106 cells i.c. 
2x 30x106 cells 

iv 
 

(human  
WJMSCs) 

4 weeks after MI 
(ameroid  

constrictor on 
LCx) 

 
5th and 6th week 

after surgery 

ic. infusion 
 
 
 

iv. infusion 

ECHO 
 

Baseline - the 
day before cell 
transplantation 

(4 weeks 
 after MI) 

 
vs. 

4 weeks after 
WJMScs trans-

plantation 
(8 weeks 
 after MI) 

 

↑ EF  by absolute 
11% WJMSCs vs 

placebo 
(p < 0.05) 

 

↑ Thickening fraction 
in the infarcted LV 

wall  by absolute 5% 
WJMSCs vs placebo 

(p < 0.01) 
 

Inhibitoin of LV 
adverse remodelling: 
LVEDV and LVESV 

unchanged with 
WJMSCs 

vs. 
↑ LVEDV and ↑ 

LVESV 
(p < 0.05) with  

Placebo 
 

↑ Capillary density  
in WJMSCs-treated 
vs placebo (p<0.01) 

↓ Apoptosis  
(p<0.001) 

 
↓ Fibrosis 
(p<0.01)  

with WJMSCs 
 

Note: Placebo*- PBS -phosphate-buffered saline, Placebo** - bovine serum albumine in PBS, Placebo***- saline. Abbreviations: AMI - acute myocardial infarction, MI - myocar-
dial infarction, WJMSCs - Wharton’s jelly mesenchymal stem cells, 5-AZT - 5-Azacytidine; BM-MSCs - bone marrow mesenchymal stem cells,  B/L - baseline, ECHO - transthorac-
ic echocardiography, EF - ejection fraction, FS - fractional shortening, LVEF - left ventricle ejection fraction, LVEDD - left ventricle end-diastolic diameter, LVESD - left ventricle 
end-systolic diameter, LVEDV - left ventricle end-diastolic volume, LVESV - left ventricle end-systolic volume, LVW - left ventricle wall,  WT - wall thickening, vWF - von Wil-
lebrand factor, cTnT - cardiac troponin T, PBS- phosphate buffered saline, BSA - bovine serum albumin, DIM - Diabetic ischemic mice, ROS- reactive oxygen species, LCx - left 
circumflex coronary artery, i.v. intravenous, i.m. intramuscular, i.c. intracardiac, VEGF- vascular endothelial growth factor, PECAM-1 - platelet/endothelial cell adhesion molecule 1 
(CD-31), Cx43 - Connexin 43 - the major gap junction protein expressed in the heart, P=placebo.  
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subepicardially 1 hour after AMI. Cardiac function was 
evaluated at 5 and 30 days after AMI. The authors showed a 
significantly greater improvement in left ventricular ejection 
fraction, fractional shortening and reduced scar tissue for-
mation 30 days after AMI induction in animals treated with 
WJMSCs and 5-Azacytidine-preconditioned WJMSCs com-
pared to those in the placebo-controlled group (p<0.05) 
[241]. 

The study by Lim et al. [151] tested allogenic (porcine) 
WJMSCs in porcine models of AMI. Mini-pigs, after surgi-
cal left anterior descending (LAD) artery ligation, were di-
vided into three study groups: placebo (PBS), low dose (0.5 
x 106 cells/kg), and high dose (1.5 x 106 cells/kg). Allogenic 
WJMSCs were delivered intravenously twice after AMI: 120 
minutes and 4 weeks after LAD ligation. Cardiac function 
was assessed by echocardiography before, during, and after 
surgery and at 1, 4 and 8 weeks after infarct induction. These 
groups also underwent 99mTc sestamibi myocardial perfusion 
single photon emission computed tomography (SPECT) and 
18F-fluorodeoxyglucose (FDG) cardiac positron emission 
tomography (PET)/computed tomography (CT) at 1 week, 4 
weeks, and 8 weeks after infarct induction. Transthoracic 
echocardiography demonstrated significantly improved 
LVFS at week 8 in the high-dose WJMSCs group compared 
to the PBS group (p<0.05) and a tendency for increased 
LVEF at 4 and 8 weeks in both low- and high-dose groups 
compared to PBS group. Moreover, M-mode images of 2D 
parasternal long-axis echocardiography showed improve-
ment in left ventricular wall motion in both WJMSCs-treated 
groups at week 8 after AMI. SPECT and PET demonstrated 
a reduction of LV nonviable myocardium area in both the 
high- and low-dose WJMSCs groups compared to the place-
bo-treated animals (p<0.01). WJMSCs inhibited left ventric-
ular adverse remodeling, as reflected by a marked reduction 
in fibrosis and reduced extracellular matrix deposition in the 
total myocardial area. Assessment of protein and gene ex-
pression levels showed a reduction of inflammation, reflect-
ed by decrease in inflammatory biomarkers (TNF-α and In-
terleukin-6). Connexin 43 expression in remote areas was 
greater with WJMSCs high dose in comparison to low-dose 
and PBS groups (p<0.05). Furthermore, the WJMSCs-
treated animals demonstrated promotion of angiogenesis, as 
demonstrated by enhanced pro-angiogenic factors (VEGF 
and platelet/endothelial cell adhesion molecule 1) in the my-
ocardial infarct and border area [151]. 

Zhang et al. [104] tested WJMSCs effects in a porcine 
model of AMI. Human WJMSCs, delivered via peri-infarct 
injections,  were compared to placebo (PBS) after left anteri-
or descending artery ligation. The study also involved a con-
trol group of AMI without cell or placebo injections. Cardiac 
function was assessed by echocardiography immediately 
after myocardial infarction and 6 weeks after therapy. WJM-
SCs administration to the infarct zone enhanced regional 
contractility of the infarcted area and improved global left 
ventricular function expressed as LVEF (p<0.001). Infarct-
elicited deterioration in LV wall thickening was smaller in 
the WJMSCs-transplanted group compared with the PBS 
group (p<0.001) and smaller than in the group that received 
no cells and no placebo (p<0.001). Histologic evaluation of 
cardiac tissue specimens indicated WJMSCs-mediated en-

hancement of viable myocardium by inhibition of fibrosis 
and apoptosis in the infarct border zone (Table 4) [104]. 

8.2. Chronic Ischemic Myocardial Injury   

In a rat model of chronic ischemic myocardial injury, Wu 
et al. [136] compared WJMSCs with placebo (PBS) admin-
istration via peri-infarct injections. Cardiac function was 
assessed by echocardiography 2- and 4 weeks after treat-
ment. At 2 weeks, the WJMSCs-treated group showed im-
provement in LVEF, whereas LVEF decreased in the place-
bo-treated control group (p<0.05). Left-ventricular diameters 
(both end-systolic and end-diastolic) were significantly 
smaller in WJMSCs-treated animals (p<0.05), consistent 
with effective inhibition of adverse remodeling. Moreover, 
myocardial thickening was also better in the cell-
administered group (p<0.05). Importantly, the improvement 
was sustained 4 weeks after WJMSCs transplantation [136]. 

Liu et al. [139] tested the effect of human WJMSCs in a 
porcine model of chronic myocardial ischemia. Intracoronary 
cell administration of 30 x 106 WJMSCs, followed by two 
additional intravenous infusions in the following 2 weeks, 
significantly improved LVEF compared to the placebo group 
(i.c. saline administration). WJMSCs-treated animals also 
showed better thickening of the infarcted wall, improved 
perfusion, and inhibition of left ventricular remodeling. Con-
sistent with the functional data, histological evaluation 
showed reduced fibrosis and apoptosis in the WJMSCs-
treated animals [139]. Note that the endpoints in animal stud-
ies of WJMSCs therapeutic efficacy in AMI and CIHF  
(Table 4; LV contractility and size, attenuation of LV ad-
verse remodeling, survival/mortality) are consistent with the 
endpoints in human studies driving contemporary clinical 
practice (Table 1). 

9. WJMSCS EFFECTS IN NON-CARDIAC TISSUES: 
MINIMIZING ISCHEMIC DAMAGE AND ENHANC-
ING RECOVERY 

Detailed characterization of the therapeutic potential of 
WJMSCs in enhancing the recovery of ischemic non-cardiac 
tissues is beyond the scope of this review. Nevertheless, it 
should be noted that studies in non-cardiac tissues are con-
sistent with the WJMSCs stimulation of myocardial repair.  

WJMSCs were demonstrated to alleviate the damage and 
promote tissue salvage in animal models of critical limb is-
chemia that poses an important medical and societal problem 
[242, 243].  In a mouse model of critical hind-limb ischemia 
(induced by femoral artery ligation). Shen et al. [132] com-
pared three groups of animals (n=8 each): (1) ischemic mice, 
(2) diabetic ischemic mice treated with placebo (saline injec-
tions), and (3) diabetic ischemic mice treated with endotheli-
al progenitor cells derived from human WJMSCs. WJMSCs 
cells (1 x 106) were injected intramuscularly into the thigh 
muscle along the course of femoral artery within the surgery 
after artery ligation. Limb function assessment was per-
formed using laser Doppler imaging at baseline and at 3 and 
7 days after treatment. WJMSCs injections improved the 
ischemic to non-ischemic limb blood flow ratio by more than 
2-fold. There was also a functional score improvement 
(Westvik method) in comparison to the saline-injected dia-
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betic ischemic mice (p<0.05). Histologic evaluation demon-
strated a nearly 4-fold increase in the number of mi-
crovessels and a reduction in apoptotic cells in the WJMSCs 
versus saline injection groups (p<0.05) [132]. In a more re-
cent study, Musiał-Wysocka and colleagues [24] compared 
the effect of human WJMSCs (1 × 106) administered through 
subcutaneous injection with placebo (PBS) injection and a 
sham procedure in a mouse model of hind-limb ischemia. 
Animals treated with WJMSCs showed a reduction in 
fibrosis and a higher number of proliferating cells. At 21 
days, blood flow significantly increased in the WJMSCs-
treated group compared with controls (sham and PBS 
groups). Furthermore, the functional condition of the is-
chemic hind limbs was improved in the WJMSCs-treated 
group compared to the control groups [70].  

A recent pilot study in humans demonstrated safety, fea-
sibility, and a suggestion of efficacy of combined intra-
arterial and intramuscular delivery of WJMSCs in patients 
with no-option critical limb ischemia [243]. 

CONCLUSIONS 

Ischaemic heart disease remains the leading cause of 
death worldwide [1, 2, 42-48]. CIHF, involving a set of sig-
nificant events over the lifetime further aggravated by pa-
tient´s comorbidities, represents a major unresolved health 
problem [231]. The mortality rate of CIHF remains high, 
with about 50% of patients dying within 5 years after the 
initial diagnosis, which exceeds most types of cancer [203]. 
The multifaceted and complex nature of human ischemic 
heart disease is difficult to recapitulate in animal models 
[232] but studies in animal models of human disease by ena-
bling the ‘bench-to-bedside’ transition of novel therapies  are 
indispensable in advancing human studies. Small-animal 
models are pivotal in developing novel therapies but may be 
unable to fully recapitulate the human disease [231]. Large-
animal models (in particular swine) have generally strong 
translational relevance to humans and pave the way for the 
evaluation of new therapies in humans [79, 223, 225]. 

WJMSCs, fetal stem cells residing in the umbilical cord 
matrix (Fig. 1) represent a unique type of mesenchymal stem 
cells. In the absence of tumorigenicity, which is a significant 
concern with embryonic stem cells or induced pluripotent 
stem cells, WJMSCs exhibit key stem cell features resulting 
from their fetal origin [101]. WJMSCs are not only multipo-
tent, but they also express several pluripotency markers and 
cardiomyocyte-specific markers [69, 112]. WJMSCs' low 
immunogenicity, taken together with their strong anti-
inflammatory, and immunomodulatory properties, are im-
portant advantages in the context of allogenic cell transfers 
(Figs. 2 and 3). WJMSCs can be standardized as an ad-
vanced therapy medicinal product and produced in large 
quantities without ethical concerns. Today, there is con-
sistent evidence from cell/tissue studies  (Figs. 3A, B) and 
from studies in animal models of AMI and CIHF (Table 4) 
that WJMSCs can promote myocardial repair and regenera-
tion through several biologically relevant mechanisms that 
include paracrine actions and cell-to-cell communication. 
WJMSCs possess the biological potential to address the sig-
nificant unmet needs of first-generation cell-based therapeu-

tic approaches. The key advantages of WJMSCs include 
potency, genetic stability, safety, availability in large quanti-
ties, and feasibility of standardizing the cell product [54]. 
Importantly, WJMSCs can be tracked in vivo in animals and 
humans [244] using methods previously established for 
hematopoietic and mesenchymal bone marrow cells [245]. 
There is emerging evidence that myocardial uptake of trans-
coronary-delivered WJMSCs may be several-fold greater 
than that seen with bone marrow-derived hematopoietic or 
mesenchymal stem cells [244]. WJMSCs can be combined 
with other innovative approaches, such as the use of engi-
neered/enhanced cells, cocktails of different cell types, and 
use of cell-derived exosomes/secretome or preparations of 
cells and scaffolds (injectable hydrogels, natural products, 
cardiac-like patches, piezoelectric biomaterials). There is 
also potential to use WJMSCs as a vector to deliver gene 
therapies to the zones of myocardial ischemic injury [158, 
244, 246-255], as well as to counteract aging-related cardio-
vascular deterioration [256].  

Furthermore, cell-based therapeutic strategies employing 
WJMSCs are suitable to be combined with structural me-
chanical interventions such as innovative transcatheter left 
ventriculoplasty [252]. 

Recent data from both small- and large-animal models of 
AMI and CIHF have consistently demonstrated a reduction 
in infarct size, an increase in cardiac contractility, and im-
proved survival (Table 4) [104, 125, 136-139, 151, 241], 
paving the way for WJMSCs ATMP clinical trials [116, 
257]. The CIRCULATE-AMI pilot study indicated that 
WJMSCs transcoronary infusion in large AMI in humans is 
feasible, safe, and may be associated with a sustained LVEF 
improvement [258]. Randomized, placebo-controlled, dou-
ble-blind clinical trials of standardized WJMSCs in AMI 
(NCT03404063) and CIHF (NCT03418233), employing 
innovative transcoronary cell transfer [259, 260] and precise 
evaluation of global and regional myocardial contractility 
and remodeling [244] will provide appropriately powered 
human data. 
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