Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Introduction

Cardiac hypertrophy and fibrotic scarring are fundamental contributors to the progression of heart failure and are associated with poor clinical outcomes. Recent advancements in cardiovascular research have emphasized the central role of epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs, in regulating the gene expression changes underlying these pathological processes.

Methods

A comprehensive literature review was conducted using databases, including PubMed, Scopus, and Web of Science. Predefined keywords and inclusion/exclusion criteria were applied to select relevant studies focusing on epigenetic regulation in cardiac hypertrophy and fibrosis. Particular attention was given to studies involving DNA methyltransferases, TET enzymes, histone deacetylases, demethylases, chromatin remodeling complexes, and non-coding RNAs. Methodological transparency was ensured through a structured screening and data extraction process.

Results

The review highlights the dynamic regulation of cardiac gene expression by epigenetic factors. DNA methylation and demethylation influence fibroblast activation and extracellular matrix deposition. Histone-modifying enzymes reshape chromatin architecture, altering transcriptional accessibility. Chromatin remodeling complexes regulate nucleosome positioning during stress responses. Emerging insights into epigenetic memory and transgenerational epigenetic inheritance further reveal the heritable nature of disease susceptibility.

Discussion

These epigenetic perturbations collectively orchestrate the maladaptive gene expression patterns seen in cardiac hypertrophy and fibrosis. Understanding their roles provides a mechanistic basis for identifying biomarkers and therapeutic targets. The review also discusses recent omics-based technologies that aid in the characterization of epigenetic alterations, thereby expanding diagnostic and therapeutic horizons.

Conclusion

Epigenetic mechanisms are pivotal in the development and progression of cardiac hypertrophy and fibrosis. Advances in epigenomic profiling are facilitating the development of precise and targeted interventions. This review underscores the potential of epigenetic therapies and calls for intensified research efforts to translate these findings into clinical applications.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X354902250708134633
2025-07-14
2026-01-28
Loading full text...

Full text loading...

References

  1. FelsenfeldG. A brief history of epigenetics.Cold Spring Harb. Perspect. Biol.201461610.1101/cshperspect.a01820024384572
    [Google Scholar]
  2. BergerS.L. KouzaridesT. ShiekhattarR. ShilatifardA. An operational definition of epigenetics.Genes Dev.200923778178310.1101/gad.178760919339683
    [Google Scholar]
  3. ViréE. BrennerC. DeplusR. The Polycomb group protein EZH2 directly controls DNA methylation.Nature2006439707887187410.1038/nature0443116357870
    [Google Scholar]
  4. FragaM.F. BallestarE. Villar-GareaA. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.Nat. Genet.200537439140010.1038/ng153115765097
    [Google Scholar]
  5. CheungP. TannerK.G. CheungW.L. Sassone-CorsiP. DenuJ.M. AllisC.D. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation.Mol. Cell20005690591510.1016/S1097‑2765(00)80256‑710911985
    [Google Scholar]
  6. FujikiR. HashibaW. SekineH. GlcNAcylation of histone H2B facilitates its monoubiquitination.Nature2011480737855756010.1038/nature1065622121020
    [Google Scholar]
  7. ChandrasekharanM.B. HuangF. SunZ.W. Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability.Proc. Natl. Acad. Sci. USA200910639166861669110.1073/pnas.090786210619805358
    [Google Scholar]
  8. HendriksI.A. D’SouzaR.C. YangB. Verlaan-de VriesM. MannM. VertegaalA.C. Uncovering global SUMOylation signaling networks in a site-specific manner.Nat. Struct. Mol. Biol.2014211092793610.1038/nsmb.289025218447
    [Google Scholar]
  9. TangZ. ChenW.Y. ShimadaM. SET1 and p300 act synergistically, through coupled histone modifications, in transcriptional activation by p53.Cell2013154229731010.1016/j.cell.2013.06.02723870121
    [Google Scholar]
  10. MiyamotoS. KawamuraT. MorimotoT. Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo.Circulation2006113567969010.1161/CIRCULATIONAHA.105.58518216461841
    [Google Scholar]
  11. FuksF. HurdP.J. WolfD. NanX. BirdA.P. KouzaridesT. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation.J. Biol. Chem.200327864035404010.1074/jbc.M21025620012427740
    [Google Scholar]
  12. HangC.T. YangJ. HanP. Chromatin regulation by Brg1 underlies heart muscle development and disease.Nature20104667302626710.1038/nature0913020596014
    [Google Scholar]
  13. VaduganathanM. MensahG.A. TurcoJ.V. FusterV. RothG.A. The global burden of cardiovascular diseases and risk: A compass for future health.J. Am. Coll. Cardiol.202280252361237110.1016/j.jacc.2022.11.00536368511
    [Google Scholar]
  14. TsaoC.W. AdayA.W. AlmarzooqZ.I. Heart disease and stroke statistics-2022 update: A report from the American Heart Association.Circulation20221458e153e63910.1161/CIR.000000000000105235078371
    [Google Scholar]
  15. WebberM. JacksonS.P. MoonJ.C. CapturG. Myocardial fibrosis in heart failure: Anti-fibrotic therapies and the role of cardiovascular magnetic resonance in drug trials.Cardiol. Ther.20209236337610.1007/s40119‑020‑00199‑y32862327
    [Google Scholar]
  16. RogerV.L. Epidemiology of heart failure.Circ. Res.2013113664665910.1161/CIRCRESAHA.113.30026823989710
    [Google Scholar]
  17. SoudersC.A. BowersS.L.K. BaudinoT.A. Cardiac fibroblast: The renaissance cell.Circ. Res.2009105121164117610.1161/CIRCRESAHA.109.20980919959782
    [Google Scholar]
  18. MaronB.J. GardinJ.M. FlackJ.M. GiddingS.S. KurosakiT.T. BildD.E. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults.Circulation199592478578910.1161/01.CIR.92.4.7857641357
    [Google Scholar]
  19. MooreL.D. LeT. FanG. DNA methylation and its basic function.Neuropsychopharmacology2013381233810.1038/npp.2012.11222781841
    [Google Scholar]
  20. WuH. ZhangY. Reversing DNA methylation: Mechanisms, genomics, and biological functions.Cell20141561-2456810.1016/j.cell.2013.12.01924439369
    [Google Scholar]
  21. LiB.Z. HuangZ. CuiQ.Y. Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase.Cell Res.20112181172118110.1038/cr.2011.9221606950
    [Google Scholar]
  22. LeeE.S. KoH. KimC.H. Disease-microenvironment modulation by bare- or engineered-exosome for rheumatoid arthritis treatment.Biomater. Res.20232718110.1186/s40824‑023‑00418‑237635253
    [Google Scholar]
  23. JonesP.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond.Nat. Rev. Genet.201213748449210.1038/nrg323022641018
    [Google Scholar]
  24. FeinbergA.P. VogelsteinB. Hypomethylation distinguishes genes of some human cancers from their normal counterparts.Nature19833015895899210.1038/301089a06185846
    [Google Scholar]
  25. EstellerM. CpG island hypermethylation and tumor suppressor genes: A booming present, a brighter future.Oncogene200221355427544010.1038/sj.onc.120560012154405
    [Google Scholar]
  26. MovassaghM. ChoyM.K. GoddardM. BennettM.R. DownT.A. FooR.S.Y. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure.PLoS One201051e856410.1371/journal.pone.000856420084101
    [Google Scholar]
  27. MovassaghM. ChoyM.K. KnowlesD.A. Distinct epigenomic features in end-stage failing human hearts.Circulation2011124222411242210.1161/CIRCULATIONAHA.111.04007122025602
    [Google Scholar]
  28. HaasJ. FreseK.S. ParkY.J. Alterations in cardiac DNA methylation in human dilated cardiomyopathy.EMBO Mol. Med.20135341342910.1002/emmm.20120155323341106
    [Google Scholar]
  29. MederB. HaasJ. Sedaghat-HamedaniF. Epigenome-wide association study identifies cardiac gene patterning and a novel class of biomarkers for heart failure.Circulation2017136161528154410.1161/CIRCULATIONAHA.117.02735528838933
    [Google Scholar]
  30. GilsbachR. SchwadererM. PreisslS. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo.Nat. Commun.20189139110.1038/s41467‑017‑02762‑z29374152
    [Google Scholar]
  31. GlezevaN. MoranB. CollierP. Targeted DNA methylation profiling of human cardiac tissue reveals novel epigenetic traits and gene deregulation across different heart failure patient subtypes.Circ. Heart Fail.2019123e00576510.1161/CIRCHEARTFAILURE.118.00576530798618
    [Google Scholar]
  32. PepinM.E. HaC.M. CrossmanD.K. Genome-wide DNA methylation encodes cardiac transcriptional reprogramming in human ischemic heart failure.Lab. Invest.201999337138610.1038/s41374‑018‑0104‑x30089854
    [Google Scholar]
  33. LugerK. MäderA.W. RichmondR.K. SargentD.F. RichmondT.J. Crystal structure of the nucleosome core particle at 2.8 A resolution.Nature1997389664825126010.1038/384449305837
    [Google Scholar]
  34. ZhaoY. GarciaB.A. Comprehensive catalog of currently documented histone modifications.Cold Spring Harb. Perspect. Biol.201579a02506410.1101/cshperspect.a02506426330523
    [Google Scholar]
  35. BowmanG.D. PoirierM.G. Post-translational modifications of histones that influence nucleosome dynamics.Chem. Rev.201511562274229510.1021/cr500350x25424540
    [Google Scholar]
  36. ChenT. DentS.Y.R. Chromatin modifiers and remodellers: Regulators of cellular differentiation.Nat. Rev. Genet.20141529310610.1038/nrg360724366184
    [Google Scholar]
  37. BurridgeP.W. SharmaA. WuJ.C. Genetic and epigenetic regulation of human cardiac reprogramming and differentiation in regenerative medicine.Annu. Rev. Genet.201549146148410.1146/annurev‑genet‑112414‑05491126631515
    [Google Scholar]
  38. CavalliG. HeardE. Advances in epigenetics link genetics to the environment and disease.Nature2019571776648949910.1038/s41586‑019‑1411‑031341302
    [Google Scholar]
  39. SlackJ.M.W. Conrad Hal Waddington: The last Renaissance biologist?Nat. Rev. Genet.200231188989510.1038/nrg93312415319
    [Google Scholar]
  40. MiklosG.L. HealyM.J. PainP. HowellsA.J. RussellR.J. Molecular and genetic studies on the euchromatin-heterochromatin transition region of the X chromosome of Drosophila melanogaster. 1. A cloned entry point near to the uncoordinated (unc) locus.Chromosoma198489321822710.1007/BF002950036201325
    [Google Scholar]
  41. ZhaoL.Y. SongJ. LiuY. SongC.X. YiC. Mapping the epigenetic modifications of DNA and RNA.Protein Cell2020111179280810.1007/s13238‑020‑00733‑732440736
    [Google Scholar]
  42. LiuL. ZhangY. JiangD. Recent advances in the genomic profiling of bacterial epigenetic modifications.Biotechnol. J.2019141e180000110.1002/biot.20180000129878585
    [Google Scholar]
  43. LiW. ZhangX. LuX. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers.Cell Res.201727101243125710.1038/cr.2017.12128925386
    [Google Scholar]
  44. ChattertonZ. MorenosL. MechinaudF. Epigenetic deregulation in pediatric acute lymphoblastic leukemia.Epigenetics20149345946710.4161/epi.2758524394348
    [Google Scholar]
  45. MüllerS. BrownP.J. Epigenetic chemical probes.Clin. Pharmacol. Ther.201292668969310.1038/clpt.2012.15423093316
    [Google Scholar]
  46. WangS.R. SongY.Y. WeiL. Cucurbit [7] uril-driven host-guest chemistry for reversible intervention of 5-formylcytosine-targeted biochemical reactions.J. Am. Chem. Soc.201713946169031691210.1021/jacs.7b0963529091409
    [Google Scholar]
  47. SearleB. MüllerM. CarellT. KellettA. Third-generation sequencing of epigenetic DNA.Angew. Chem. Int. Ed. Engl.20236214e20221570410.1002/anie.20221570436524852
    [Google Scholar]
  48. WangH. WangH. WillnerI. WangF. High-performance biosensing based on autonomous enzyme-free DNA circuits.Top. Curr. Chem.202037812010.1007/s41061‑020‑0284‑x32016608
    [Google Scholar]
  49. LiH. HanM. WengX. ZhangY. LiJ. DNA-tetrahedral nanostructure-based entropy-driven amplifier for high-performance photoelectrochemical biosensing.ACS Nano20211511710171710.1021/acsnano.0c0937433439617
    [Google Scholar]
  50. RizzacasaB. AmatiF. RomeoF. NovelliG. MehtaJ.L. Epigenetic modification in coronary atherosclerosis: JACC review topic of the week.J. Am. Coll. Cardiol.201974101352136510.1016/j.jacc.2019.07.04331488273
    [Google Scholar]
  51. Alikhani-KoopaeiR. FouladkouF. FreyF.J. FreyB.M. Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression.J. Clin. Invest.200411481146115710.1172/JCI2164715489962
    [Google Scholar]
  52. KashiwagiK. NimuraK. UraK. KanedaY. DNA methyltransferase 3b preferentially associates with condensed chromatin.Nucleic Acids Res.201139387488810.1093/nar/gkq87020923784
    [Google Scholar]
  53. GuptaJ. KumarS. LiJ. Krishna Murthy KaruturiR. TikooK. Histone H3 lysine 4 monomethylation (H3K4me1) and H3 lysine 9 monomethylation (H3K9me1): Distribution and their association in regulating gene expression under hyperglycaemic/hyperinsulinemic conditions in 3T3 cells.Biochimie201294122656266410.1016/j.biochi.2012.08.01122951486
    [Google Scholar]
  54. HeijmansB.T. TobiE.W. SteinA.D. Persistent epigenetic differences associated with prenatal exposure to famine in humans.Proc. Natl. Acad. Sci. USA200810544170461704910.1073/pnas.080656010518955703
    [Google Scholar]
  55. WangG. WangB. YangP. Epigenetics in congenital heart disease.J. Am. Heart Assoc.2022117e02516310.1161/JAHA.121.02516335348004
    [Google Scholar]
  56. ZhangJ. MaX. WangH. MaD. HuangG. Elevated methylation of the RXRA promoter region may be responsible for its downregulated expression in the myocardium of patients with TOF.Pediatr. Res.201475558859410.1038/pr.2014.1724513686
    [Google Scholar]
  57. MittalA. GargR. BahlA. KhullarM. Molecular mechanisms and epigenetic regulation in diabetic cardiomyopathy.Front. Cardiovasc. Med.2021872553210.3389/fcvm.2021.72553234977165
    [Google Scholar]
  58. ChenY. DuJ. ZhaoY.T. Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice.Cardiovasc. Diabetol.20151419910.1186/s12933‑015‑0262‑826245924
    [Google Scholar]
  59. MolaeiG. CummingsR.F. SuT. Vector-host interactions governing epidemiology of West Nile virus in Southern California.Am. J. Trop. Med. Hyg.20108361269128210.4269/ajtmh.2010.10‑039221118934
    [Google Scholar]
  60. GaoP. XuT.T. LuJ. Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice.J. Mol. Med.201492434735710.1007/s00109‑013‑1111‑424352856
    [Google Scholar]
  61. XuS. PelisekJ. JinZ.G. Atherosclerosis is an epigenetic disease.Trends Endocrinol. Metab.2018291173974210.1016/j.tem.2018.04.00729753613
    [Google Scholar]
  62. WinkleM. El-DalyS.M. FabbriM. CalinG.A. Noncoding RNA therapeutics — Challenges and potential solutions.Nat. Rev. Drug Discov.202120862965110.1038/s41573‑021‑00219‑z34145432
    [Google Scholar]
  63. DhanoaJ.K. SethiR.S. VermaR. AroraJ.S. MukhopadhyayC.S. Long non-coding RNA: Its evolutionary relics and biological implications in mammals: A review.J. Anim. Sci. Technol.20186012510.1186/s40781‑018‑0183‑730386629
    [Google Scholar]
  64. DuevaR. AkopyanK. PederivaC. Neutralization of the positive charges on histone tails by RNA promotes an open chromatin structure.Cell Chem. Biol.2019261014361449.e510.1016/j.chembiol.2019.08.00231447351
    [Google Scholar]
  65. MicheliniF. PitchiayaS. VitelliV. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks.Nat. Cell Biol.201719121400141110.1038/ncb364329180822
    [Google Scholar]
  66. NiehrsC. LukeB. Regulatory R-loops as facilitators of gene expression and genome stability.Nat. Rev. Mol. Cell Biol.202021316717810.1038/s41580‑019‑0206‑332005969
    [Google Scholar]
  67. YamazakiT. SouquereS. ChujoT. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation.Mol. Cell201870610381053.e710.1016/j.molcel.2018.05.01929932899
    [Google Scholar]
  68. MorlandoM. FaticaA. Alteration of epigenetic regulation by long noncoding RNAs in cancer.Int. J. Mol. Sci.201819257010.3390/ijms1902057029443889
    [Google Scholar]
  69. BhanA. MandalS.S. LncRNA HOTAIR: A master regulator of chromatin dynamics and cancer.Biochim. Biophys. Acta20151856115116426208723
    [Google Scholar]
  70. XuY. YaoY. JiangX. SP1-induced upregulation of lncRNA SPRY4-IT1 exerts oncogenic properties by scaffolding EZH2/LSD1/DNMT1 and sponging miR-101-3p in cholangiocarcinoma.J. Exp. Clin. Cancer Res.20183718110.1186/s13046‑018‑0747‑x29642935
    [Google Scholar]
  71. RashidF. ShahA. ShanG. Long non-coding RNAs in the cytoplasm.Genomics Proteomics Bioinf2016142738010.1016/j.gpb.2016.03.00527163185
    [Google Scholar]
  72. FusterJ.J. MacLauchlanS. ZuriagaM.A. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice.Science2017355632784284710.1126/science.aag138128104796
    [Google Scholar]
  73. StrattonM.S. McKinseyT.A. Epigenetic regulation of cardiac fibrosis.J. Mol. Cell. Cardiol.20169220621310.1016/j.yjmcc.2016.02.01126876451
    [Google Scholar]
  74. TaoH. SongZ.Y. DingX.S. YangJ.J. ShiK.H. LiJ. Epigenetic signatures in cardiac fibrosis, special emphasis on DNA methylation and histone modification.Heart Fail. Rev.201823578979910.1007/s10741‑018‑9694‑z29607455
    [Google Scholar]
  75. AlgecirasL. PalancaA. MaestroD. RuizdelRio J, Villar AV. Epigenetic alterations of TGFβ and its main canonical signaling mediators in the context of cardiac fibrosis.J. Mol. Cell. Cardiol.2021159384710.1016/j.yjmcc.2021.06.00334119506
    [Google Scholar]
  76. GrimaldiV. De PascaleM.R. ZulloA. Evidence of epigenetic tags in cardiac fibrosis.J. Cardiol.201769240140810.1016/j.jjcc.2016.10.00427863907
    [Google Scholar]
  77. LyuX. HuM. PengJ. ZhangX. SandersY.Y. HDAC inhibitors as antifibrotic drugs in cardiac and pulmonary fibrosis.Ther. Adv. Chronic Dis.201910204062231986269710.1177/204062231986269731367296
    [Google Scholar]
  78. SinkkonenL. HugenschmidtT. BerningerP. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells.Nat. Struct. Mol. Biol.200815325926710.1038/nsmb.139118311153
    [Google Scholar]
  79. WuX. ZhangY. TET-mediated active DNA demethylation: Mechanism, function and beyond.Nat. Rev. Genet.201718951753410.1038/nrg.2017.3328555658
    [Google Scholar]
  80. AmbrosiC. ManzoM. BaubecT. Dynamics and context-dependent roles of methylation of DNA.J. Mol. Biol.2017429101459147510.1016/j.jmb.2017.02.00828214512
    [Google Scholar]
  81. LykoF. The DNA methyltransferase family: A versatile toolkit for epigenetic regulation.Nat. Rev. Genet.2018192819210.1038/nrg.2017.8029033456
    [Google Scholar]
  82. ValenciaA.M. KadochC. Chromatin regulatory mechanisms and therapeutic opportunities in cancer.Nat. Cell Biol.201921215216110.1038/s41556‑018‑0258‑130602726
    [Google Scholar]
  83. HanW. WangW. WangQ. MadurayK. HaoL. ZhongJ. A review on regulation of DNA methylation during post-myocardial infarction.Front. Pharmacol.202415126758510.3389/fphar.2024.126758538414735
    [Google Scholar]
  84. TaoH. ShiP. ZhaoX.D. XuanH.Y. GongW.H. DingX.S. DNMT1 deregulation of SOCS3 axis drives cardiac fibroblast activation in diabetic cardiac fibrosis.J. Cell. Physiol.202123653481349410.1002/jcp.3007832989761
    [Google Scholar]
  85. McGintyR.K. TanS. Nucleosome structure and function.Chem. Rev.201511562255227310.1021/cr500373h25495456
    [Google Scholar]
  86. SongF. ChenP. SunD. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units.Science2014344618237638010.1126/science.125141324763583
    [Google Scholar]
  87. YangJ. WangB. LiN. ZhouQ. ZhouW. ZhanZ. Salvia miltiorrhiza and Carthamus tinctorius extract prevents cardiac fibrosis and dysfunction after myocardial infarction by epigenetically inhibiting Smad3 expression.Evid. Based Complement. Alternat. Med.2019201911210.1155/2019/647913631275414
    [Google Scholar]
  88. YuL. YangG. WengX. Histone methyltransferase SET1 mediates angiotensin II-induced endothelin-1 transcription and cardiac hypertrophy in mice.Arterioscler. Thromb. Vasc. Biol.20153551207121710.1161/ATVBAHA.115.30523025814673
    [Google Scholar]
  89. BlinG. LiandM. MauduitC. Maternal exposure to high-fat diet induces long-term derepressive chromatin marks in the heart.Nutrients202012118131936461
    [Google Scholar]
  90. WohlfahrtT. RauberS. UebeS. PU.1 controls fibroblast polarization and tissue fibrosis.Nature2019566774434434910.1038/s41586‑019‑0896‑x30700907
    [Google Scholar]
  91. KrämerM. DeesC. HuangJ. Inhibition of H3K27 histone trimethylation activates fibroblasts and induces fibrosis.Ann. Rheum. Dis.201372461462010.1136/annrheumdis‑2012‑20161522915621
    [Google Scholar]
  92. JiangY. XiangC. ZhongF. Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis.Theranostics202111136137810.7150/thno.4636033391480
    [Google Scholar]
  93. QuinnJ.J. ChangH.Y. Unique features of long non-coding RNA biogenesis and function.Nat. Rev. Genet.2016171476210.1038/nrg.2015.1026666209
    [Google Scholar]
  94. WeiJ.W. HuangK. YangC. KangC.S. Non-coding RNAs as regulators in epigenetics (Review).Oncol. Rep.20173713910.3892/or.2016.523627841002
    [Google Scholar]
  95. LouZ. ZhouR. SuY. Minor and major circRNAs in virus and host genomes.J. Microbiol.202159332433110.1007/s12275‑021‑1021‑z33624269
    [Google Scholar]
  96. YangT. LongT. DuT. ChenY. DongY. HuangZ.P. Circle the cardiac remodeling with circRNAs.Front. Cardiovasc. Med.2021870258610.3389/fcvm.2021.70258634250050
    [Google Scholar]
  97. BahnJ.H. ZhangQ. LiF. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva.Clin. Chem.201561122123010.1373/clinchem.2014.23043325376581
    [Google Scholar]
  98. HansenT.B. KjemsJ. DamgaardC.K. Circular RNA and miR-7 in cancer.Cancer Res.201373185609561210.1158/0008‑5472.CAN‑13‑156824014594
    [Google Scholar]
  99. LiJ. YangJ. ZhouP. Circular RNAs in cancer: Novel insights into origins, properties, functions and implications.Am. J. Cancer Res.20155247248025973291
    [Google Scholar]
  100. ZhouZ. SunB. HuangS. ZhaoL. Roles of circular RNAs in immune regulation and autoimmune diseases.Cell Death Dis.201910750310.1038/s41419‑019‑1744‑531243263
    [Google Scholar]
  101. BayoumiA.S. AonumaT. TeohJ.P. TangY.L. KimI.M. Circular noncoding RNAs as potential therapies and circulating biomarkers for cardiovascular diseases.Yao Xue Xue Bao20183971100110910.1038/aps.2017.19629565037
    [Google Scholar]
  102. LiJ.J. WangW. WangX.Q. HeY. WangS.S. YanY.X. A novel strategy of identifying circRNA biomarkers in cardiovascular disease by meta-analysis.J. Cell. Physiol.201923412216012161210.1002/jcp.2881731115050
    [Google Scholar]
  103. ZhuS. Goldschmidt-ClermontP.J. DongC. Inactivation of monocarboxylate transporter MCT3 by DNA methylation in atherosclerosis.Circulation200511291353136110.1161/CIRCULATIONAHA.104.51902516116050
    [Google Scholar]
  104. KongY. TannousP. LuG. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy.Circulation2006113222579258810.1161/CIRCULATIONAHA.106.62546716735673
    [Google Scholar]
  105. RaynerK.J. EsauC.C. HussainF.N. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides.Nature2011478736940440710.1038/nature1048622012398
    [Google Scholar]
  106. AnandP. BrownJ.D. LinC.Y. BET bromodomains mediate transcriptional pause release in heart failure.Cell2013154356958210.1016/j.cell.2013.07.01323911322
    [Google Scholar]
  107. AzizS. YalanL. RazaM.A. LeminJ. AkramH.M.B. ZhaoW. GSK126 an inhibitor of epigenetic regulator EZH2 suppresses cardiac fibrosis by regulating the EZH2-PAX6-CXCL10 pathway.Biochem. Cell Biol.202310118710010.1139/bcb‑2022‑022436469862
    [Google Scholar]
  108. XiaoX. SenavirathnaL.K. GouX. HuangC. LiangY. LiuL. EZH2 enhances the differentiation of fibroblasts into myofibroblasts in idiopathic pulmonary fibrosis.Physiol. Rep.2016417e1291510.14814/phy2.1291527582065
    [Google Scholar]
  109. LeH.Q. HillM.A. KollakI. An EZH2‐dependent transcriptional complex promotes aberrant epithelial remodelling after injury.EMBO Rep.2021228e5278510.15252/embr.20215278534224201
    [Google Scholar]
  110. ZhangQ.J. TranT.A.T. WangM. Histone lysine dimethyl-demethylase KDM3A controls pathological cardiac hypertrophy and fibrosis.Nat. Commun.201891523010.1038/s41467‑018‑07173‑230531796
    [Google Scholar]
  111. RothS.Y. DenuJ.M. AllisC.D. Histone Acetyltransferases.Annu. Rev. Biochem.20017018112010.1146/annurev.biochem.70.1.8111395403
    [Google Scholar]
  112. JavaidN. ChoiS. Acetylation- and methylation-related epigenetic proteins in the context of their targets.Genes20178819610.3390/genes808019628783137
    [Google Scholar]
  113. Pessoa RodriguesC. AkhtarA. Differential H4K16ac levels ensure a balance between quiescence and activation in hematopoietic stem cells.Sci. Adv.2021732eabi598710.1126/sciadv.abi598734362741
    [Google Scholar]
  114. SahuR.K. SinghS. TomarR.S. The mechanisms of action of chromatin remodelers and implications in development and disease.Biochem. Pharmacol.202018011420010.1016/j.bcp.2020.11420032805211
    [Google Scholar]
  115. ZhaoS. AllisC.D. WangG.G. The language of chromatin modification in human cancers.Nat. Rev. Cancer202121741343010.1038/s41568‑021‑00357‑x34002060
    [Google Scholar]
  116. ClapierC.R. IwasaJ. CairnsB.R. PetersonC.L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes.Nat. Rev. Mol. Cell Biol.201718740742210.1038/nrm.2017.2628512350
    [Google Scholar]
  117. Magaña-AcostaM. Valadez-GrahamV. Chromatin remodelers in the 3D nuclear compartment.Front. Genet.20201160061510.3389/fgene.2020.60061533329746
    [Google Scholar]
  118. ClapierC.R. CairnsB.R. The biology of chromatin remodeling complexes.Annu. Rev. Biochem.200978127330410.1146/annurev.biochem.77.062706.15322319355820
    [Google Scholar]
  119. HanP. HangC.T. YangJ. ChangC.P. Chromatin remodeling in cardiovascular development and physiology.Circ. Res.2011108337839610.1161/CIRCRESAHA.110.22428721293009
    [Google Scholar]
  120. SinhaS. BiswasM. ChatterjeeS.S. KumarS. SenguptaA. Pbrm1 steers mesenchymal stromal cell osteolineage differentiation by integrating PBAF-dependent chromatin remodeling and BMP/TGF-β signaling.Cell Rep.202031410757010.1016/j.celrep.2020.10757032348751
    [Google Scholar]
  121. LiH. LanJ. HanC. Brg1 promotes liver fibrosis via activation of hepatic stellate cells.Exp. Cell Res.2018364219119710.1016/j.yexcr.2018.02.00329427621
    [Google Scholar]
  122. PengD. SiD. ZhangR. Deletion of SMARCA4 impairs alveolar epithelial type II cells proliferation and aggravates pulmonary fibrosis in mice.Genes Dis.20174420421410.1016/j.gendis.2017.10.00130258924
    [Google Scholar]
  123. ChenZ. ZhangY. Role of mammalian DNA methyltransferases in development.Annu. Rev. Biochem.202089113515810.1146/annurev‑biochem‑103019‑10281531815535
    [Google Scholar]
  124. HoffK. LemmeM. KahlertA.K. DNA methylation profiling allows for characterization of atrial and ventricular cardiac tissues and hiPSC-CMs.Clin. Epigenetics20191118910.1186/s13148‑019‑0679‑031186048
    [Google Scholar]
  125. WuW. WangS. LiuQ. AMPK facilitates intestinal long-chain fatty acid uptake by manipulating CD36 expression and translocation.FASEB J.20203444852486910.1096/fj.201901994R32048347
    [Google Scholar]
  126. ChenD. ZhangZ. ChenC. Deletion of Gtpbp3 in zebrafish revealed the hypertrophic cardiomyopathy manifested by aberrant mitochondrial tRNA metabolism.Nucleic Acids Res.201947105341535510.1093/nar/gkz21830916346
    [Google Scholar]
  127. DornL.E. LasmanL. ChenJ. The N6-Methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy.Circulation2019139453354510.1161/CIRCULATIONAHA.118.03614630586742
    [Google Scholar]
  128. MatsuiM. CoreyD.R. Non-coding RNAs as drug targets.Nat. Rev. Drug Discov.201716316717910.1038/nrd.2016.11727444227
    [Google Scholar]
  129. RoskoskiR. Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases.Pharmacol. Res.201611178480310.1016/j.phrs.2016.07.03827473820
    [Google Scholar]
  130. XiaoL. GuY. SunY. The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101.J. Cell. Physiol.20192348136801369210.1002/jcp.2804730605239
    [Google Scholar]
  131. SouidiA. NakamoriM. ZmojdzianM. JaglaT. RenaudY. JaglaK. Deregulations of miR-1 and its target Multiplexin promote dilated cardiomyopathy associated with myotonic dystrophy type 1.EMBO Rep.2023244e5661610.15252/embr.20225661636852954
    [Google Scholar]
  132. LuY. ZhangY. WangN. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation.Circulation20101222323782387
    [Google Scholar]
  133. LuD. ThumT. RNA-based diagnostic and therapeutic strategies for cardiovascular disease.Nat. Rev. Cardiol.2019161166167410.1038/s41569‑019‑0218‑x31186539
    [Google Scholar]
  134. XieX. Methylation of DNA and cardiac hypertrophy: The role of DNMT3B in the heart.J. Mol. Cell. Cardiol.2019132110
    [Google Scholar]
  135. LiX. FanH. SongX. DNA methylome and transcriptome profiling reveal key electrophysiology and immune dysregulation in hypertrophic cardiomyopathy.Epigenetics2023181219530710.1080/15592294.2023.219530737005704
    [Google Scholar]
  136. LaugierL. FradeA.F. FerreiraF.M. Whole-genome cardiac Methylation of DNA fingerprint and gene expression analysis provide new insights in the pathogenesis of chronic Chagas disease cardiomyopathy.Clin. Infect. Dis.20176571103111110.1093/cid/cix50628575239
    [Google Scholar]
  137. SabiaC. PicasciaA. GrimaldiV. AmarelliC. MaielloC. NapoliC. The epigenetic promise to improve prognosis of heart failure and heart transplantation.Transplant. Rev.201731424925610.1016/j.trre.2017.08.00428882368
    [Google Scholar]
  138. TarazónE. Pérez-CarrilloL. Giménez-EscamillaI. DNMT3B system dysregulation contributes to the hypomethylated state in ischemic human hearts.Biomedicines202210486610.3390/biomedicines1004086635453616
    [Google Scholar]
  139. MarianA.J. BraunwaldE. Hypertrophic cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis, and therapy.Circ. Res.2017121774977010.1161/CIRCRESAHA.117.31105928912181
    [Google Scholar]
  140. MarianA.J. Molecular genetic basis of hypertrophic cardiomyopathy.Circ. Res.2021128101533155310.1161/CIRCRESAHA.121.31834633983830
    [Google Scholar]
  141. RanjbarvaziriS. KooikerK.B. EllenbergerM. Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy.Circulation2021144211714173110.1161/CIRCULATIONAHA.121.05357534672721
    [Google Scholar]
  142. BeckerR.C. OwensA.P. SadayappanS. Tissue-level inflammation and ventricular remodeling in hypertrophic cardiomyopathy.J. Thromb. Thrombolysis202049217718310.1007/s11239‑019‑02026‑131898271
    [Google Scholar]
  143. MadsenA. HöppnerG. KrauseJ. An important role for DNMT3A-mediated methylation of DNA in cardiomyocyte metabolism and contractility.Circulation2020142161562157810.1161/CIRCULATIONAHA.119.04444432885664
    [Google Scholar]
  144. HaiderS. CordedduL. RobinsonE. The landscape of DNA repeat elements in human heart failure.Genome Biol.20121310R9010.1186/gb‑2012‑13‑10‑r9023034148
    [Google Scholar]
  145. RadhakrishnaU. AlbayrakS. Alpay-SavasanZ. Genome-Wide DNA methylation analysis and epigenetic variations associated with congenital aortic valve stenosis (AVS).PLoS One2016115e015401010.1371/journal.pone.015401027152866
    [Google Scholar]
  146. ChenS. JinQ. HouS. Identification of recurrent variants implicated in disease in bicuspid aortic valve patients through whole-exome sequencing.Hum. Genomics20221613610.1186/s40246‑022‑00405‑z36071494
    [Google Scholar]
  147. ZaidiS. ChoiM. WakimotoH. De novo mutations in histone-modifying genes in congenital heart disease.Nature2013498745322022310.1038/nature1214123665959
    [Google Scholar]
  148. LiJ. SuT. ZouC. Long non-coding RNA H19 regulates porcine satellite cell differentiation through miR-140-5p/SOX4 and DBN1.Front. Cell Dev. Biol.2020851872410.3389/fcell.2020.51872433324629
    [Google Scholar]
  149. ZhangJ. ChangJ.J. XuF. MicroRNA deregulation in right ventricular outflow tract myocardium in nonsyndromic tetralogy of fallot.Can. J. Cardiol.201329121695170310.1016/j.cjca.2013.07.00224140236
    [Google Scholar]
  150. MakarewichC.A. MunirA.Z. SchiattarellaG.G. The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy.eLife20187710.7554/eLife.3831930299255
    [Google Scholar]
  151. GorskiP.A. JangS.P. JeongD. Role of SIRT1 in modulating acetylation of the sarco-endoplasmic reticulum Ca2+-ATPase in heart failure.Circ. Res.20191249e63e8010.1161/CIRCRESAHA.118.31386530786847
    [Google Scholar]
  152. ZhaoW. WuX. WangZ. Epigenetic regulation of phosphodiesterase 4d in restrictive cardiomyopathy mice with cTnI mutations.Sci. China Life Sci.202063456357010.1007/s11427‑018‑9463‑930900165
    [Google Scholar]
  153. ZhaoW. LiuL. PanB. Epigenetic regulation of cardiac myofibril gene expression during heart development.Cardiovasc. Toxicol.201515320320910.1007/s12012‑014‑9278‑725296860
    [Google Scholar]
  154. PanB. QuanJ. LiuL. Epigallocatechin gallate reverses cTnI-low expression-induced age-related heart diastolic dysfunction through histone acetylation modification.J. Cell. Mol. Med.201721102481249010.1111/jcmm.1316928382690
    [Google Scholar]
  155. ZhuP. WangW. ZuoR. SunK. Mechanisms for establishment of the placental glucocorticoid barrier, a guard for life.Cell. Mol. Life Sci.2019761132610.1007/s00018‑018‑2918‑530225585
    [Google Scholar]
  156. BogdarinaI. WelhamS. KingP.J. BurnsS.P. ClarkA.J. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension.Circ. Res.2007100452052610.1161/01.RES.0000258855.60637.5817255528
    [Google Scholar]
  157. ChelladuraiP. BoucheratO. StenmarkK. Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy.Br. J. Pharmacol.20211781547110.1111/bph.1493231749139
    [Google Scholar]
  158. DikalovaA.E. PandeyA. XiaoL. Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress.Circ. Res.2020126443945210.1161/CIRCRESAHA.119.31576731852393
    [Google Scholar]
  159. GuoJ. WangZ. WuJ. Endothelial SIRT6 is vital to prevent hypertension and associated cardiorenal injury through targeting Nkx3.2-GATA5 signaling.Circ. Res.2019124101448146110.1161/CIRCRESAHA.118.31403230894089
    [Google Scholar]
  160. FengW. WangJ. YanX. ERK/Drp1-dependent mitochondrial fission contributes to HMGB1-induced autophagy in pulmonary arterial hypertension.Cell Prolif.2021546e1304810.1111/cpr.1304833948998
    [Google Scholar]
  161. ShenH. ZhangJ. WangC. MDM2-mediated ubiquitination of angiotensin-converting enzyme 2 contributes to the development of pulmonary arterial hypertension.Circulation2020142121190120410.1161/CIRCULATIONAHA.120.04819132755395
    [Google Scholar]
  162. Abdul-SalamV.B. RussomannoG. Chien-NienC. CLIC4/Arf6 pathway.Circ. Res.20191241526510.1161/CIRCRESAHA.118.31370530582444
    [Google Scholar]
  163. NewmanP.E. Can reduced folic acid and vitamin B12 levels cause deficient DNA methylation producing mutations which initiate atherosclerosis?Med. Hypotheses199953542142410.1054/mehy.1998.079410616044
    [Google Scholar]
  164. DevlinA.M. ArningE. BottiglieriT. FaraciF.M. RozenR. LentzS.R. Effect of Mthfr genotype on diet-induced hyperhomocysteinemia and vascular function in mice.Blood200410372624262910.1182/blood‑2003‑09‑307814630804
    [Google Scholar]
  165. BedenbenderK. BeinbornI. VollmeisterE. SchmeckB. p38 and casein kinase 2 mediate ribonuclease 1 repression in inflamed human endothelial cells via promoter remodeling through nucleosome remodeling and deacetylase complex.Front. Cell Dev. Biol.2020856360410.3389/fcell.2020.56360433178683
    [Google Scholar]
  166. JungS.B. KimC.S. NaqviA. Histone deacetylase 3 antagonizes aspirin-stimulated endothelial nitric oxide production by reversing aspirin-induced lysine acetylation of endothelial nitric oxide synthase.Circ. Res.2010107787788710.1161/CIRCRESAHA.110.22296820705923
    [Google Scholar]
  167. ZhouB. MargaritiA. ZengL. Splicing of histone deacetylase 7 modulates smooth muscle cell proliferation and neointima formation through nuclear β-catenin translocation.Arterioscler. Thromb. Vasc. Biol.201131112676268410.1161/ATVBAHA.111.23088821836063
    [Google Scholar]
  168. ZhangH.S. GavinM. DahiyaA. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF.Cell20001011798910.1016/S0092‑8674(00)80625‑X10778858
    [Google Scholar]
  169. FragaM.F. BallestarE. Villar-GareaA. Boix-ChornetM. EspadaJ. ScottaG. Epigenetic differences arise during the lifetime of monozygotic twins.Nat. Genet.200537439110.1038/ng153115765097
    [Google Scholar]
  170. EstellerM. Epigenetics in cancer.Nat. Rev. Genet.20078428610.1038/nrg200517339880
    [Google Scholar]
  171. KnudsonA.G. Hereditary cancer, oncogenes, and antioncogenes.J. Cancer Res. Clin. Oncol.1996122313510.1007/BF013669528601560
    [Google Scholar]
  172. ZardoG. TiirikainenM.I. HongC. MisraA. FeuersteinB.G. VolikS. Integrated genomic and epigenomic analyses pinpoint aberrant DNA methylation as a key mechanism in human glioblastoma.Nat. Genet.200232345310.1038/ng100712355068
    [Google Scholar]
  173. RednerR.L. WangJ. LiuJ.M. Chromatin remodeling and leukemia: New therapeutic paradigms.Blood199994241742810.1182/blood.V94.2.41710397708
    [Google Scholar]
  174. BhallaK.N. Epigenetic and chromatin targets in leukemia and lymphoma.J. Clin. Oncol.20052317397110.1200/JCO.2005.16.60015897549
    [Google Scholar]
  175. LiuT.X. BeckerM.W. JelinekJ. WuW.S. DengM. MikhalkevichN. Chromatin remodeling by epigenetic modifications in AML: Implications for therapy.Nat. Med.20071317810.1038/nm151217159988
    [Google Scholar]
  176. HorieT. BabaO. KuwabaraY. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice.J. Am. Heart Assoc.201216e00337610.1161/JAHA.112.00337623316322
    [Google Scholar]
  177. Suresh BabuS. ThandavarayanR.A. JoladarashiD. MicroRNA-126 overexpression rescues diabetes-induced impairment in efferocytosis of apoptotic cardiomyocytes.Sci. Rep.2016613620710.1038/srep3620727827458
    [Google Scholar]
  178. PetersF.S. ManintveldO.C. BetjesM.G.H. BaanC.C. BoerK. Clinical potential of DNA methylation in organ transplantation.J. Heart Lung Transplant.201635784385010.1016/j.healun.2016.02.00727085975
    [Google Scholar]
  179. VascoM. BenincasaG. FioritoC. Clinical epigenetics and acute/chronic rejection in solid organ transplantation: An update.Transplant. Rev.202135210060910.1016/j.trre.2021.10060933706201
    [Google Scholar]
  180. HeymansS. SchroenB. VerhesenW. Epigenetic remodeling in chronic pressure overload-induced heart failure.J. Mol. Cell. Cardiol.2019133203213
    [Google Scholar]
  181. PapaitR. GrecoC. SacconiA. Histone methylation dynamics in the heart after stress: Differential response of monomethylated, dimethylated, and trimethylated lysine 4 of histone H3.Circ. Res.20131121112931302
    [Google Scholar]
  182. HohlM. RemppisA. PautzA. Acetylation of histone and HDAC inhibition regulate the hypertrophic response in adult rat ventricular cardiomyocytes.J. Mol. Cell. Cardiol.201355283292
    [Google Scholar]
  183. HaberlandM. MontgomeryR.L. OlsonE.N. The many roles of histone deacetylases in development and physiology: Implications for disease and therapy.Nat. Rev. Genet.2009101324210.1038/nrg248519065135
    [Google Scholar]
  184. ThumT. GrossC. FiedlerJ. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts.Nature2008456722498098410.1038/nature0751119043405
    [Google Scholar]
  185. KumarswamyR. ThumT. Non-coding RNAs in cardiac remodeling and heart failure.Circ. Res.2013113667668910.1161/CIRCRESAHA.113.30022623989712
    [Google Scholar]
  186. van RooijE. SutherlandL.B. LiuN. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure.Proc. Natl. Acad. Sci. USA200610348182551826010.1073/pnas.060879110317108080
    [Google Scholar]
  187. MovassaghM. ChoyM.K. GoddardM. Differential Methylation of DNA correlates with differential expression of angiogenic factors in human heart failure.PLoS One201051e856410.1371/journal.pone.000856420084101
    [Google Scholar]
  188. GrecoC.M. CondorelliG. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure.Nat. Rev. Cardiol.201512848849710.1038/nrcardio.2015.7125962978
    [Google Scholar]
  189. BaccarelliA. RienstraM. BenjaminE.J. Cardiovascular epigenetics: Basic concepts and results from animal and human studies.Circ. Cardiovasc. Genet.20103656757310.1161/CIRCGENETICS.110.95874421156932
    [Google Scholar]
  190. ZhangY. BauersachsJ. LotherA. Epigenetic regulation in heart failure: The role of acetylation of histone and Methylation of DNA.Clin. Epigenetics201911113231492175
    [Google Scholar]
  191. Dal-PraS. Hedberg-BuenzA. CarthewJ. Epigenetic therapies for cardiac regeneration.Heart Fail. Rev.2019244537548
    [Google Scholar]
  192. BaylinS.B. JonesP.A. Epigenetic therapy: The journey from basic science to clinical medicine.Nat. Rev. Cancer201616676684
    [Google Scholar]
  193. EstellerM. Epigenetics in cancer.N. Engl. J. Med.2008358111148115910.1056/NEJMra07206718337604
    [Google Scholar]
  194. BarthA.S. KunerR. BunessA. Combined transcriptome and proteome analysis of cardiac hypertrophy in the rat.J. Mol. Cell. Cardiol.2006415874881
    [Google Scholar]
  195. DweckM.R. BoonN.A. NewbyD.E. The role of imaging in the management of ischaemic heart disease: An update.Heart201298231701171022942292
    [Google Scholar]
  196. EschertH. LüscherT.F. RuschitzkaF.T. Omics approaches in cardiovascular diseases - A current and future perspective.Cardiovasc. Res.20191151420122024
    [Google Scholar]
  197. MatkovichS.J. Van BoovenD.J. EschenbacherW.H. Epigenetic regulation of cardiac myocyte hypertrophy: Implications for heart failure.Curr. Opin. Cardiol.2014295503511
    [Google Scholar]
  198. MorrisonM. JaberA. FeinbergM.W. Epigenetics and atherosclerosis: Emerging mechanisms and experimental models.Curr. Atheroscler. Rep.2015174486
    [Google Scholar]
  199. KumarswamyR. BautersC. De GrooteP. Circulating miRNAs: From cell-cell communication to biomarkers of diseases.Lab. Invest.201494111312725418578
    [Google Scholar]
  200. DimmelerS. LeriA. Aging and disease as modifiers of efficacy of cell therapy.Circ. Res.2008102111319133010.1161/CIRCRESAHA.108.17594318535269
    [Google Scholar]
  201. MarbánE. A new lease on life for the infarcted heart: Stem cells to the rescue.J. Clin. Invest.2018128728552857
    [Google Scholar]
  202. TakeuchiJ.K. BruneauB.G. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors.Nature2009459724770871110.1038/nature0803919396158
    [Google Scholar]
  203. GilsbachR. PreisslS. GrüningB.A. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease.Nat. Commun.201451528810.1038/ncomms628825335909
    [Google Scholar]
  204. SchumacherD. KramannR. Multiomic spatial mapping of myocardial infarction and implications for personalized therapy.Arterioscler. Thromb. Vasc. Biol.202343219220210.1161/ATVBAHA.122.31833336579644
    [Google Scholar]
  205. CakirS.N. WhiteheadK.M. HendricksH.K.L. de Castro BrásL.E. Novel techniques targeting fibroblasts after ischemic heart injury.Cells202211340210.3390/cells1103040235159212
    [Google Scholar]
  206. PirasB.A. TianY. XuY. ThomasN.A. O’ConnorD.M. FrenchB.A. Systemic injection of AAV9 carrying a periostin promoter targets gene expression to a myofibroblast-like lineage in mouse hearts after reperfused myocardial infarction.Gene Ther.201623546947810.1038/gt.2016.2026926804
    [Google Scholar]
  207. AghajanianH. KimuraT. RurikJ.G. Targeting cardiac fibrosis with engineered T cells.Nature2019573777443043310.1038/s41586‑019‑1546‑z31511695
    [Google Scholar]
  208. TillmannsJ. HoffmannD. HabbabaY. Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction.J. Mol. Cell. Cardiol.20158719420310.1016/j.yjmcc.2015.08.01626319660
    [Google Scholar]
  209. LandryN.M. RattanS.G. FilomenoK.L. SKI activates the Hippo pathway via LIMD1 to inhibit cardiac fibroblast activation.Basic Res. Cardiol.202111612510.1007/s00395‑021‑00865‑933847835
    [Google Scholar]
  210. ZhangC. ZhangY. ZhuH. HuJ. XieZ. MiR-34a/miR-93 target c-Ski to modulate the proliferaton of rat cardiac fibroblasts and extracellular matrix deposition in vivo and in vitro.Cell. Signal.20184614515310.1016/j.cellsig.2018.03.00529551367
    [Google Scholar]
  211. WangF. ZhangJ. NiuG. Apigenin inhibits isoproterenol‐induced myocardial fibrosis and Smad pathway in mice by regulating oxidative stress and miR‐122‐5p/155‐5p expressions.Drug Dev. Res.20228341003101510.1002/ddr.2192835277868
    [Google Scholar]
  212. LeisegangM.S. ForkC. JosipovicI. Long noncoding RNA MANTIS facilitates endothelial angiogenic function.Circulation20171361657910.1161/CIRCULATIONAHA.116.02699128351900
    [Google Scholar]
  213. ZhaoB.S. RoundtreeI.A. HeC. Post-transcriptional gene regulation by mRNA modifications.Nat. Rev. Mol. Cell Biol.2017181314210.1038/nrm.2016.13227808276
    [Google Scholar]
  214. LiX. MuB. LiX. BieZ. circCELF1 inhibits myocardial fibrosis by regulating the expression of DKK2 through FTO/m(6)A and miR-636.J. Cardiovasc. Transl. Res.2022155998100910.1007/s12265‑022‑10209‑035132536
    [Google Scholar]
  215. de Oliveira CamargoR. Abual’anazB. RattanS.G. FilomenoK.L. DixonI.M.C. Novel factors that activate and deactivate cardiac fibroblasts: A new perspective for treatment of cardiac fibrosis.Wound Repair Regen.202129466767710.1111/wrr.1294734076932
    [Google Scholar]
  216. HillJ.A. When the CAR targets scar.N. Engl. J. Med.2019381252475247610.1056/NEJMcibr191258631851806
    [Google Scholar]
  217. RurikJ.G. TombáczI. YadegariA. CAR T cells produced in vivo to treat cardiac injury.Science20223756576919610.1126/science.abm059434990237
    [Google Scholar]
  218. PaolettiC. ChionoV. Bioengineering methods in microRNA-mediated direct reprogramming of fibroblasts into cardiomyocytes.Front. Cardiovasc. Med.2021875043810.3389/fcvm.2021.75043834760946
    [Google Scholar]
  219. PascaleE. CaiazzaC. PaladinoM. ParisiS. PassaroF. CaiazzoM. MicroRNA roles in cell reprogramming mechanisms.Cells202211694010.3390/cells1106094035326391
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X354902250708134633
Loading
/content/journals/ccr/10.2174/011573403X354902250708134633
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test