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Abstract: Aims: Employing the technique of liquid chromatography-mass spectrometry (LC-
MS) in conjunction with artificial intelligence (Al) technology to predict and screen for anti-
rheumatoid arthritis (RA) active compounds in Xanthocerais lignum.

Background: Natural products have become an important source of new drug discovery. RA is a
chronic autoimmune disease characterized by joint inflammation and systemic inflammation.
Although there are many drugs available for the treatment of RA, they still have many side ef-
fects and limitations. Therefore, finding more effective and safer natural products for the treat-
ment of RA has become an important issue.

Methods: In this study, a collection of inhibitors targeting RA-related specific targets was gath-
ered. Machine learning models and deep learning models were constructed using these inhibitors.
The performance of the models was evaluated using a test set and ten-fold cross-validation, and
the most optimal model was selected for integration. A total of five commonly used machine
learning algorithms (logistic regression, k-nearest neighbors, support vector machines, random
forest, XGBoost) and one deep learning algorithm (GCN) were employed in this research. Sub-
sequently, a Xanthocerais lignum compound library was established through HPLC-Q-Exactive-
MS analysis and relevant literature. The integrated model was utilized to predict and screen for
anti-RA active compounds in Xanthocerais lignum.
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Results: The integrated model exhibited an AUC greater than 0.94 for all target datasets, demon-
strating improved stability and accuracy compared to individual models. This enhancement ena-
bles better activity prediction for unknown compounds. By employing the integrated model, the
activity of 69 identified compounds in Xanthocerais lignum was predicted. The results indicated
that isorhamnetin-3-O-glucoside, myricetin, rutinum, cinnamtannin B1, and dihydromyricetin
exhibited inhibitory effects on multiple targets. Furthermore, myricetin and dihydromyricetin
were found to have relatively higher relative abundances in Xanthocerais lignum, suggesting that
they may serve as the primary active components contributing to its anti-RA effects.

Conclusion: In this study, we utilized Al technology to learn from a large number of compounds
and predict the activity of natural products from Xanthocerais lignum on specific targets. By
combining Al technology and the LC-MS approach, rapid screening and prediction of the activi-
ty of natural products based on specific targets can be achieved, significantly enhancing the effi-
ciency of discovering new bioactive molecules from medicinal plants.

Keywords: Xanthocerais lignum, rheumatoid arthritis, artificial intelligence, machine learning, LC-MS, active natural prod-
ucts.

1. INTRODUCTION drugs commonly used in clinical practice for RA treatment
mainly include nonsteroidal anti-inflammatory drugs, dis-
ease-modifying antirheumatic drugs, glucocorticoids, and
biologics[2]. However, these drugs have limitations such as
serious adverse effects, slow onset of action, and high cost.
Traditional medicines, such as Chinese and Mongolian med-

icines, have a wide range of sources, diverse categories, and

RA is a chronic systemic autoimmune disease character-
ized by erosive, symmetrical polyarthritis. Its typical features
include synovial cell proliferation, synovitis, cartilage dam-
age, and periarticular bone destruction [1]. Currently, the
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minimal adverse effects. Many of their components have
biological activities such as anti-inflammatory and immune
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modulation. Therefore, exploring more effective and safer
natural products from traditional medicines has become a
research hotspot for RA treatment.

Xanthocerais lignum is the dried stem or branch of the
Xanthoceras sorbifolia Bunge. tree in the Sapindaceae fami-
ly. It is recorded in classical Mongolian and Tibetan phar-
macopoeias such as "Ren Yao Bai Jing Jian," "Wu Wu Meng
Yao Jian," "Jing Zhu Ben Cao," and "Meng Yao Zhi." It has
the effects of clearing heat, reducing swelling, and relieving
pain. Clinically, it is mainly used to treat RA [3-5]. Tradi-
tional efficacy and modern pharmacological research have
both shown that Xanthocerais lignum has great potential as
an anti-RA agent, but its active natural products that exert
anti-RA activity have yet to be elucidated, which limits its
further development and utilization. By gaining a compre-
hensive understanding of the active constituents of Xan-
thocerais lignum, it is possible to more effectively utilize
these natural products for the treatment of diseases such as
RA. In comparison to conventional chemically synthesized
drugs, natural products exhibit a wider range of biological
activities and fewer adverse effects, thus rendering them a
safer and more efficacious treatment option. These natural
products hold the potential to serve as novel drug targets,
offering new insights and directions for the development of
safer and more effective therapies for RA and other diseases.

Fibroblast-like synoviocytes (FLS) are a key component
of proliferating synovium, and their excessive proliferation,
impaired apoptosis, enhanced invasiveness and migration
abilities can promote FLS accumulation in joints, leading to
angiogenesis, inflammatory cytokine secretion, neovascular-
ization and cartilage degeneration, ultimately exacerbating
the progression of RA [6, 7]. Therefore, regulating FLS pro-
liferation, apoptosis, invasiveness, and migration processes
may be a promising RA treatment strategy. In our previous
study, we used network pharmacology to predict that Xan-
thocerais lignum may exert anti-RA effects by mediating the
PI3K/AKT signaling pathway. Therefore, in this study, we
opted to screen the active ingredients of targets related to
processes such as proliferation, apoptosis, invasion, and mi-
gration in the PI3K/AKT pathway.

The field of natural product pharmacology and active in-
gredient research has seen an increasingly widespread appli-
cation of artificial intelligence (Al) technology. Al is funda-
mentally a data-driven approach that can automatically learn
from large datasets and be used for predicting new data. Liquid
chromatography-mass spectrometry (LC-MS) is an efficient
analytical method that can be employed to rapidly identify the
natural products in plants. In this study, we utilized Al to learn
from a vast number of compounds and predict the activity of
natural products from Xanthocerais lignum against specific
targets. By combining Al with LC-MS, it is possible to rapidly
screen and predict the activity of natural products against specif-
ic targets, greatly enhancing the efficiency of discovering novel
bioactive natural products from medicinal plants.

2. MATERIALS AND METHODS
2.1. Data Preparation
After standardizing the names of each target using Uni-

prot (www.uniprot.org), relevant active molecules were re-
trieved from ChEMBL (www.ebi.ac.uk/chembl/) using the
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search terms "PI3K", "AKT," "Bcl2", "EGFR," "IGFIR",
"FAK" and "IRAKA4". The data was then cleansed using the
following criteria: (1) selection of compounds with experi-
mental activity types Kd, Ki, ICsy, ECsp; (2) removal of du-
plicate and compounds without experimental activity values
or SMILES; (3) conversion of all compound activity values
to nM units. After data cleansing, labels were added to the
data where experimental activity values < 1000 nM were
defined as active molecules (label: 1), while experimental
activity values > 1000 nM were labeled as non-active mole-
cules (label: 0). Random stratified sampling was used to di-
vide each target's dataset into training and testing sets in an
8:2 ratio. The training set is a group of data used to train the
model. By learning from the data in the training set, the ma-
chine learning algorithm can generate a model that can be
used to predict unknown data. The testing set is a group of
data used to evaluate the model. By applying the model to
the testing set data, the accuracy and effectiveness of the
model can be evaluated [8]. The details of the compounds in
each target data set are shown in Table S1-S7.

2.2. Machine Learning
2.2.1. Molecular Characterization

Using Rdkit [9], molecular structures were generated
based on the SMILES for each target's dataset. On this basis,
208 molecular descriptors [10], 1024 Morgan fingerprints
[11], and 167 MACCS keys [12] were generated, totaling
1399 molecular features, to characterize the molecules. Mo-
lecular descriptors are a method of representing molecules as
numerical features, typically using chemical structures and
related features such as hydrogen bond acceptor/donor num-
bers, ring types, molecular weight, efc. Morgan fingerprints
are a method of representing the position of molecules by
hashing the molecule graph and generating a fixed-length
numeric vector, where each number represents the presence
of a particular chemical environment in the molecule.
MACCS keys (Molecular ACCess System keys) are a meth-
od of representing key features of molecules, generating a
fixed-length binary fingerprint using a set of pre-defined 166
key features, such as coordination number, ring type, efc.
These molecular features can be used as input for machine
learning algorithms to predict the activity and efficacy of
molecules.

2.2.2. Machine Learning Model Construction

Before constructing the model, data preprocessing was
applied to improve the accuracy and stability of the model:
(1) removal of molecules with a molecular weight greater
than 1000; (2) removal of molecules containing missing
values; (3) normalization of molecular descriptors. After
data preprocessing, a machine learning model was con-
structed using 1399 molecular features as independent var-
iables (X) and molecular activity labels as dependent vari-
ables (Y). Five common machine learning algorithms were
used for each target dataset: logistic regression (LR), k-
nearest neighbor (KNN), support vector machine (SVM),
random forest (RF), and XGBoost. LR is a classification
technique that uses linear regression and the Sigmoid func-
tion. It is mainly used for binary classification problems.
The basic idea is to predict the result of a linear function
through linear regression, then map it to the Sigmoid func-
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Fig. (1). Construction of machine learning model. (A higher resolution / colour version of this figure is available in the electronic copy of the

article).

tion to obtain a probability value and determine the catego-
ry of the sample based on the probability value [13]. KNN
is an instance-based learning method commonly used for
classification and regression problems. The basic idea is
that if most of the k most similar samples (i.e., the closest
samples in feature space) belong to a certain category, then
this sample also belongs to that category [13]. SVM is a
binary classification model. The basic idea is to solve an
optimization problem to determine the decision boundary
(also known as the support vector) and divide the training
samples into two categories. This decision boundary is a
straight line or hyperplane that maximizes the distance (al-
so known as margin) between the two classes of samples.
The SVM model can find the decision boundary in a high-
dimensional space by using a kernel function, making it
very suitable for handling nonlinear problems [13]. RF is
an ensemble learning model based on decision trees. The
basic idea is to predict the target variable by randomly se-
lecting training samples and using decision trees and then
combining the results statistically to construct the final
prediction. When building an RF model, multiple decision
trees are constructed simultaneously and independently,
and data are trained using randomly selected methods.
Therefore, RF has high diversity and accuracy [13].
XGBoost is a gradient-boosting algorithm based on deci-
sion tree models, suitable for classification and regression
problems. Gradient boosting is an iterative algorithm that
calculates the error by analyzing the loss function of the
data at each iteration, then uses a gradient descent algo-
rithm to update the parameters of the decision tree model,
making the model better at offsetting errors in the next iter-
ation. This process is repeated multiple times, with each
iteration adding a decision tree model, and all decision tree
models are combined into an ensemble model [14]. The
schematic of machine learning model construction is
shown in Fig. (1).

During the training of the machine learning model, in ad-
dition to the parameters of the model, there are also some
hyperparameters that need to be determined, which can have
a significant impact on the performance of the model. The
grid search algorithm enumerates all possible combinations
of hyperparameters and trains and evaluates the model on

each combination to find the best-performing hyperparame-
ter combination for model construction [15].

2.2.3. Evaluation of Machine Learning Models

In model evaluation, the following methods are used: (1)
confusion matrix of the test set, which is used to evaluate the
prediction performance of classification models. Each row
represents the true class, and each column represents the
predicted class of the model. (2) ROC curve of the test set,
which is a graphical representation method for evaluating the
performance of classification models. Each point on the
graph represents the performance of the model at different
discrimination thresholds. The coordinate system of the
ROC curve consists of two axes, namely the true positive
rate (TPR) and the false positive rate (FPR). As the discrimi-
nation threshold of the classification model changes from
high to low, the change in TPR and FPR will form a curve.
An ideal ROC curve should be as close to the upper left cor-
ner as possible, i.e., the difference between TPR and FPR
should be as large as possible [8]. (3) multiple indicators of
the test set, including accuracy, represent the ratio of correct-
ly predicted data to the total data; precision represents the
proportion of truly positive data in the data predicted as posi-
tive by the classification model; recall represents the propor-
tion of truly positive data predicted by the classification
model to the actual positive data; F1 score is the harmonic
mean of precision and recall, combining the two indicators
to represent the prediction effect of the model; AUC: repre-
sents the area under the ROC curve, which is an indicator for
evaluating the performance of classification models. The
greater the value, the more accurate the prediction, Mat-
thew’s correlation coefficient (MCC): a binary evaluation
indicator used to evaluate the accuracy of classification
models. It considers both the accuracy and completeness of
the classification model. The value of MCC is between -1
and 1. The closer the value is to 1, the better the performance
of the classification model [16]; Kappa: a binary evaluation
indicator used to evaluate the accuracy of classification
models and the correlation between the accuracy of random
predictions. The value of Kappa is between 0 and 1. The
closer the value is to 1, the better the performance of the
classification model [17]. Brier score: is an indicator for
evaluating the quality of prediction results, used to evaluate
the accuracy of prediction results. The smaller the value of
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Fig. (2). Construction of deep learning model. (A higher resolution / colour version of this figure is available in the electronic copy of the

article).

the Brier score, the more accurate the prediction result [18].
(4) Accuracy, F1 score, and ROC curve of 10-fold cross-
validation. 10-fold cross-validation divides the training data
into ten parts. Each time, one part is selected as the valida-
tion data, and the remaining nine parts are used as the train-
ing data for model training. The entire process is repeated
ten times. Finally, the average of each validation result is
taken as the final validation result of the model. 10-fold
cross-validation can evaluate the generalization ability of the
model and avoid overfitting problems.

2.3. Deep Learning

A molecular graph is a method of representing molecules
through graphics, where atoms and bonds of the molecule
are represented as nodes and edges in the graph. For each
target dataset, DeepChem [19] generates molecular graphs
based on SMILES, which are then used to construct a Graph
Convolutional Network (GCN). GCN is a special type of
Convolutional Neural Network used for processing graphical
data such as molecular structures. The difference between
graph convolution and normal convolution is that graph con-
volution operates on the graph structure rather than the grid
structure [20]. The working principle of GCN is to extract
features from adjacent information of the graphical structure
by employing a specific graph convolution operation and to
continuously combine these features through multiple layers
of convolution operations to generate a representation for the
graph. The core part of the graph convolution operation is a
graph convolution kernel, which is used to compute the
weighted sum between the current node and its adjacent
nodes. The pooling layer after the convolution layer is a
downsampling technique that reduces the amount of data by
taking the maximum value within a local region. It is typical-
ly used to reduce the spatial dimension of the graph convolu-
tion features, decrease the number of parameters, and simpli-
fy calculations. The fully connected layer is a neural network
layer that is fully connected and adds a nonlinear transfor-
mation to the graph convolution features. It is usually used to
calculate the final classification results [21]. In the model
construction process, the Bayesian optimization algorithm is
used to optimize hyperparameters such as learning rate,

batch size, epoch, and regularization coefficient. The Bayes-
ian optimization algorithm makes prior distribution assump-
tions for the parameters to be optimized using probability
models and updates the model parameters based on the data
to achieve the goal of the optimal parameters [22]. After
training the model with the optimal hyperparameters, the
model performance is evaluated using the test set. The
schematic of deep learning model construction is shown in

Fig. (2).
2.4. Integrated Model

Based on the model evaluation results, two machine
learning models and the Graph Convolutional Neural Net-
work model are selected to construct an integrated model for
each target. The construction method of the integrated model
is a soft ensemble, which aims to combine the prediction
results of multiple models to generate the final prediction
result [23]. By averaging the weighted predictions of differ-
ent models, the advantages of each model can be combined
to reduce errors caused by using individual models alone,
i.e., to improve the stability and accuracy of the model and
reduce overfitting of the model. After constructing the inte-
grated model using the optimal weight combination, the mod-
el performance is evaluated in the same way as the GCN.

2.5. Identification of Chemical Components in Xan-
thocerais lignum based on HPLC-Q-Exactive-MS

Instruments used include Thermo Scientific UltiMate
3000 High-Performance Liquid Chromatography System, Q
Exactive '“hybrid quadrupole-Orbitrap mass spectrometer,
high-speed centrifuge, rotary evaporator system, analytical
balance and electronic balance. Reagents used include chro-
matographic methanol, chromatographic acetonitrile, chro-
matographic acetic acid, analytical grade anhydrous ethanol
and ultrapure water. The herbal medicine used is Xan-
thocerais lignum (dried stem or branch of the Xanthoceras
sorbifolia Bunge. tree in the Sapindaceae family).

2.5.1. Preparation of the Sample Solution

Crush the Xanthocerais lignum herb slices and weigh out
800 g of crude powder. Extract three times with 70% ethanol
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reflux, each time for 2 hours, filter, combine the filtrate, and
recover it until there is no alcohol taste, yielding 112.5 g of
extract. Precisely weigh 0.2532 g of the ethanol extract and
dissolve it in chromatographic methanol. Add it to a 25 mL
volumetric flask and centrifuge it for 15 minutes at 12000 r.
min™ before analyzing the supernatant. In the previous ex-
periment, we investigated the influence of different extract-
ing solvents (water, 50% methanol, 70% methanol, metha-
nol, 50% ethanol, 70% ethanol, ethanol) on the content of six
flavonoid  compounds  (catechin, epicatechin, (-)-
epigallocatechin, myricetin, dihydromyricetin, dihydroquer-
cetin) in Xanthocerais lignum. The results revealed that the
highest content of each component was observed when 70%
ethanol was used as the extracting solvent.

2.5.2. Chromatographic Conditions

Chromatographic column: Symmetry” Cg column (250
mm x 4.6 mm, 5.0 um); mobile phase: acetonitrile (A) ~
0.4% acetic acid water (B); elution gradient: 0 ~ 5 min, 5% ~
10% A ; 5~ 15 min, 10% ~ 12% A; 15 ~ 40 min, 12% ~ 20%
A; 40 ~ 50 min, 20% ~ 30% A; 50 ~ 55 min, 30% ~ 40% A;
55 ~ 70 min, 40% ~ 100% A; 70 ~ 75 min, 100% A; 75 ~ 90
min, 100% ~ 5% A; 90 ~ 100 min, 5% A; injection volume:
10uL; column temperature: 20 °C; flow rate: 1 mL.min™.

2.5.3. Mass Spectrometry Conditions

Use the ESI source positive/negative ion mode detection
for mass spectrometry. The detection parameters are as fol-
lows: ion source voltage of 4 kV (+)/3.2 kV (-); sheath gas
volume flow rate of 40 L.min™" (+)/35 L.min' (-); fragmenta-
tion voltage of 300 V; drying gas temperature of 350 °C;
saturated auxiliary gas volume flow rate of 2 L.min™'; spray
air pressure of 45 psig; high purity nitrogen gas is used as
atomizing gas; data acquisition range is 100 ~ 1100 m/z,
using full MS-ddMS2 scanning method.

2.5.4. Identification of Chemical Components

HPLC-Q-Exactive-MS technology is used to qualitatively
analyze the chemical components in Xanthocerais lignum etha-
nol extract. First, a chemical composition information table for
Xanthocerais lignum was constructed based on existing litera-
ture reports. Then, based on the relative molecular weight of
each chromatographic peak measured in reality and the accurate
relative molecular weight provided by theory, the molecular
formula corresponding to each chromatographic peak is prelim-
inarily identified. Search the constructed chemical information
table based on the molecular formula to find the target com-
pound that matches. Combine the primary and secondary mass
spectrometry fragmentation data of the target peak and compare
it with the relevant data in the literature, using the mass spec-
trometry fragmentation rules for this type of chemical composi-
tion provided in the literature to identify their chemical struc-
tures. For the chromatographic peaks that cannot be matched,
Compound Discoverer 3.2 and MassBank (www.massbank.jp)
databases are used for primary and secondary mass spectrome-
try information searching and matching.

2.6. Prediction of Xanthocerais lignum's Anti-RA Active
Ingredients

Based on LC-MS identification of compounds present in
Xanthocerais lignum, supplemented by a search through
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relevant literature, a compound library is constructed. The
SMILES for each compound are obtained from PubChem
(pubchem.ncbi.nlm.nih.gov). After characterizing and gener-
ating molecular graphs for each compound using the same
method as the respective datasets, an integrated model is
used for each target to predict the activity of the chemical
components in Xanthocerais lignum. Compounds with pre-
dicted probabilities greater than 0.5 are screened as poten-
tially effective anti-RA active ingredients present in Xan-
thocerais lignum.

3. RESULTS AND DISCUSSION

3.1. Dimensionality Reduction Analysis of Molecular
Characteristics

For each target dataset, 208 molecular descriptors, 1024
Morgan fingerprints, and 167 MACCS keys, totaling 1399
molecular features, were generated through RDkit to charac-
terize the molecules. Principal component analysis (PCA)
was performed on the 208 molecular descriptors to analyze
the distribution of active and inactive molecules in a two-
dimensional space. As shown in Fig. (3), active and inactive
molecules from the seven target datasets were mainly dis-
tributed in the range of PCI (-2 to 3) and PC2 (-1.5 to 2).
Except for the PI3K dataset, which exhibited a large overlap
in the distribution of active and inactive molecules, the other
target datasets showed significant differences in the distribu-
tion of active and inactive molecules. Molecular descriptors
mainly reflect the structure and properties of molecules, in-
dicating that there are significant differences in the structure
and properties of active and inactive molecules for each tar-
get.

PCA is a linear dimensionality reduction method and may
not fit well when dealing with nonlinear features. Therefore,
the nonlinear dimensionality reduction method t-distributed
stochastic neighbor embedding (t-SNE) was used to reduce
the 1024 Morgan fingerprints and 167 MACCS keys, totaling
1191 molecular fingerprints, to analyze the distribution of
active and inactive molecules in a two-dimensional space. As
shown in Fig. (4), the PI3K, AKT, and EGFR datasets were
mainly distributed in the range of t-SNEI and t-SNE2 (-100 to
100), while the IGF1R and IRAK4 datasets were mainly dis-
tributed in the range of t-SNE1 and t-SNE2 (-80 to 80), and
the Bcl2 and FAK datasets were mainly distributed in the
range of t-SNEI (-60 to 70) and t-SNE2 (-70 to 70), respec-
tively. Molecular fingerprints reflect the structural characteris-
tics of molecules, and the visualization results show that active
and inactive molecules in each target dataset have significant
differences in structure, consistent with the results of PCA
analysis. Machine learning models can learn these differential
features and accurately classify active and inactive molecules.
In addition, the visualization results show that each target da-
taset has chemical diversity in molecular structure, and mole-
cules with diverse structures can improve the generalization
ability of machine learning models and enhance model per-
formance.

To verify the rationality of the division of each target da-
taset, t-SNE analysis was performed on the training set and
test set to observe their distribution in a three-dimensional
space. As shown in Fig. (5), the distribution of the training
and test sets of each target in space is basically consistent,
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Fig. (5). t-SNE analysis results of training and testing molecules in each target dataset. (A higher resolution / colour version of this figure is

available in the electronic copy of the article).

Table 1.  Results of hyperparameter optimization for each model.
Model Hyperparameter PI3K AKT Bcel2 EGFR IGFIR FAK IRAK4
LR penalty L2 L2 L2 L2 L2 L2 L2
C 0.1 0.1 0.1 0.1 0.1 1 0.1
KNN neighbors 3 18 10 7 7 16 6
weights uniform distance distance distance distance distance distance
SVM kernel rbf rbf rbf rbf rbf rbf rbf
C 10 10 10 10 1 10 10
RF estimators 300 500 200 300 500 200 500
max depth 10 10 10 10 10 10 10
XGBoost learning rate 0.1 0.1 0.01 0.1 0.01 0.1 0.1
estimators 500 400 400 200 400 250 300
max depth 9 8 6 8 6 8 5
GCN learning rate 0.000385 0.000105 0.00130 0.00263 0.00352 9.08 0.000933
batch size 8 16 8 16 32 8 8
epoch 100 100 100 100 100 100 100
12 reg 0 1 0.1 0.1 0.1 1 0.1

indicating that the molecules in the training and test sets
have similarities in structure and properties, and the division
of each target dataset is reasonable.

3.2. Results of Hyperparameter Optimization for Models

In machine learning and deep learning, hyperparameters
refer to those parameters that need to be manually set by
humans rather than model parameters learned automatically
from training data. Different models have different hyperpa-
rameters that need to be set. In LR, the penalty is the type
of regularization term, including L1 regularization and L2
regularization, while C is the regularization hyperparame-
ter that controls the strength of regularization. In KNN, the
neighbors parameter represents the number of neighbors
selected, which is the number of k nearest neighbors used to
determine the classification label, and the weights parame-
ter is used to determine the weights of the neighbors. In
SVM, the kernel parameter is used to select the kernel func-

tion, which is used to map the data from the original space to
a higher-dimensional feature space for better data separation.
In RF, the estimator parameter represents the number
of decision trees used to construct the random forest, and
the max depth parameteris used to control the maximum
depth of decision trees. In contrast, XGBoost requires setting
the learning rate parameter in addition to the estimator pa-
rameter to control the weight of each weak learner in
the gradient-boosting process. In GCN, four main hyperpa-
rameters are set, namely learning rate, batch size, epoch,
and L2 regularization, which control the step size of each
parameter update in the model, the number of samples used
in each training, the iteration times of the model, and the
complexity of the model, respectively.

The optimal hyperparameters for each model are shown
in Table 1. It can be seen that some models do not need too
much adjustment of hyperparameters to achieve good model
performance, while others need multiple adjustments accord-
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ing to different datasets. This may be due to the fact that
different models have different complexity and bias/variance
characteristics. Models with lower complexity usually have
weaker fitting ability to data, such as LR and KNN models,
and hyperparameters have little influence on model perfor-
mance, so they do not need too much adjustment. On the
other hand, models with more complex structures can better
fit data but also require more hyperparameter adjustments,
such as XGBoost and GCN models. In addition, the size of
the dataset also affects the difficulty of hyperparameter ad-
justment. For smaller datasets, overfitting is more likely to
occur, which means that smaller hyperparameter val-
ues and stronger regularization are needed to control the
model's complexity. For larger datasets, models usually
need higher complexity to fully utilize the information in the
data.

3.3. Model Evaluation
3.3.1. Machine Learning Model Evaluation and Comparison

The various metrics on the test set can reflect the model's
performance to some extent comprehensively. As shown in
Table 2, different models perform differently on the same
target dataset, and the same model may perform differently
on different target datasets. Therefore, it is necessary to se-
lect models with good performance based on the evaluation
results and integrate them to achieve better overall perfor-
mance. SVM and XGBoost outperform other models in
terms of precision, F1 score, and AUC on the PI3K, AKT,
EGFR, and IRAK4 target datasets. Although RF has high
recall rates on the PI3K and AKT datasets, its precision and
accuracy are relatively low. LR and KNN have certain gaps
compared to SVM and XGBoost on all metrics. On the Bel2
and IGFIR target datasets, the performance of SVM, RF,
and XGBoost models is similar, and further determination is
required through 10-fold cross-validation. On the FAK target
dataset, RF and XGBoost outperform other models on all
metrics.

Evaluating the model performance solely based on
the test set may not reflect the model's generalization ability.
Therefore, 10-fold cross-validation is used to compare the
accuracy and F1 score of different models on different target
datasets, and the results are visualized using boxplots. The
median value is more representative of the general level than
the mean value, which is susceptible to outlier influence. As
shown in Fig. (6), SVM and XGBoost models outperform
other models in terms of accuracy and F1 score on the PI3K,
AKT, and EGFR target datasets. The results are consistent
with the test set results. For the IRAK4 target dataset, the
performance of the SVM model is better than that of other
models in terms of accuracy and F1 score, but its perfor-
mance on the test set is not as good as that of the XGBoost
model, which may be due to the unstable evaluation results
caused by different data splitting methods. On the Bcl2 and
IGF1R target datasets, the 10-fold cross-validation results of
all models are excellent, indicating that these models have
strong generalization ability on these two datasets and can
adapt well to new data to achieve good prediction results.
XGBoost performs best on the FAK target dataset, and the
accuracy of RF is slightly lower than that of SVM, but its F1
score is higher. F1 score comprehensively evaluates a mod-
el's precision and recall, which is less susceptible to the in-
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fluence of sample imbalance than accuracy, so the perfor-
mance of the RF model on the FAK target dataset may be
slightly better than that of the SVM model.

Furthermore, the performance of each model is evaluated
using the ROC curve through 10-fold cross-validation, and
the closer the average AUC value is to 1, the better the mod-
el's performance. ROC curves of different machine learning
models in 10-fold cross-validation are shown in Fig. (7).
Based on the AUC values, the best model is selected for
each target dataset. The selected models have AUC values
greater than 0.92 on the PI3K, AKT, Bcl2, EGFR, FAK, and
IRAK4 target datasets, indicating that they can classify un-
known compounds well. Finally, based on the test set results
and 10-fold cross-validation results, the models with good
performance are selected for each target dataset to build
an integrated model. SVM and XGBoost perform best on the
PI3K, AKT, EGFR, and IRAK4 datasets, while RF and
XGBoost perform best on the Bel2 and FAK datasets, and
RF and SVM perform best on the IGF1R dataset.

3.3.2. Evaluation of Deep Learning Models

GCN is a commonly used deep learning model that ex-
hibits excellent performance when processing graph data.
Through multiple layers of graph convolution operations,
GCN can gradually learn the feature representation of mo-
lecular graph nodes, thereby accurately classifying unknown
compounds. As shown in Table 2, the precision of GCN is
higher than that ofmachine learning models on vari-
ous target datasets, indicating that it can accurately judge
active molecules and is less likely to misjudge inactive mol-
ecules. However, precision cannot reflect the coverage of the
model for all active molecules, and usually, precision and
recall are mutually restrictive. Machine learning mod-
els have lower accuracy than GCN models but higher recall
and AUC scores. Therefore, in this study, we intend to estab-
lish an integrated model to combine the advantages of vari-
ous models and improve the model's generalization abil-
ity and stability.

3.4. Construction and Evaluation of Integrated Model

The integrated model can combine the advantages of
multiple basic models and has better model performance
than a single model. Based on the evaluation results of the
above models, we selected two machine learning models
with better performance and GCN models for each target
dataset to integrate. By traversing various model weight
combinations, we determined the best model weight, and the
results are as follows: PI3K: [GCN: SVM: XGBoost = 0.3:
0.4: 0.3]; AKT: [GCN: SVM: XGBoost = 0.3: 0.3: 0.4];
Bcl2: [GCN: RF: XGBoost = 0.2: 0.4: 0.4]; EGFR: [GCN:
SVM: XGBoost = 0.2: 0.3: 0.5]; IGF1R: [GCN: RF: SVM =
0.3: 0.4: 0.3]; FAK: [GCN: RF: XGBoost = 0.4: 0.2: 0.4];
IRAK4: [GCN: SVM: XGBoost =0.3: 0.3: 0.4].

Comparing the performance of GCN models and inte-
grated models through the confusion matrix, where
the horizontal axis represents the predicted label, the vertical
axis represents the true label, and the four indicators are true
negative, false positive, false negative, and true positive. As
shown in Fig. (8), the integrated model makes up for the low
recall of the GCN model while having higher accuracy. The
performance of the integrated model was evaluated using
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Table 2.  Results of testing sets for each target dataset.

Target Model Accuracy Precision Recall F1 AUC MCC Kappa BS

PI3K LR 0.874 0.901 0.935 0.918 0.935 0.649 0.647 0.126

KNN 0.884 0.925 0.921 0.923 0919 0.691 0.691 0.116

SVM 0.896 0.932 0.930 0.931 0.943 0.721 0.721 0.104

RF 0.867 0.868 0.971 0.917 0.934 0.618 0.594 0.133

XGB 0.883 0.921 0.924 0.922 0.943 0.684 0.684 0.117

GCN 0.871 0.935 0.890 0.912 0.931 0.672 0.669 0.129

Co-model 0.899 0.936 0.929 0.932 0.949 0.730 0.730 0.101

AKT LR 0.851 0.847 0.932 0.887 0.917 0.676 0.669 0.149

KNN 0.872 0.860 0.951 0.903 0.928 0.722 0.714 0.128

SVM 0.878 0.878 0.937 0.906 0.934 0.735 0.732 0.122

RF 0.837 0.816 0.959 0.881 0.926 0.649 0.628 0.163

XGB 0.876 0.876 0.935 0.905 0.943 0.730 0.727 0.124

GCN 0.870 0.884 0.914 0.899 0.930 0.719 0.719 0.130

Co-model 0.882 0.886 0.932 0.909 0.946 0.744 0.742 0.118

Bcl2 LR 0.935 0.957 0.957 0.957 0.980 0.827 0.827 0.065

KNN 0.931 0.951 0.957 0.954 0.974 0.814 0.814 0.069

SVM 0.942 0.961 0.961 0.961 0.974 0.844 0.844 0.058

RF 0.939 0.965 0.953 0.959 0.986 0.838 0.838 0.061

XGB 0.946 0.963 0.965 0.964 0.987 0.856 0.856 0.054

GCN 0.925 0.968 0.930 0.949 0.977 0.809 0.806 0.075

Co-model 0.946 0.967 0.961 0.964 0.986 0.857 0.857 0.054

EGFR LR 0.834 0.848 0.892 0.869 0.907 0.642 0.640 0.166

KNN 0.857 0.863 0.915 0.888 0.926 0.692 0.690 0.143

SVM 0.874 0.892 0.907 0.899 0.932 0.731 0.731 0.126

RF 0.829 0.828 0.914 0.869 0.916 0.630 0.624 0.171

XGB 0.867 0.878 0.911 0.894 0.939 0.714 0.713 0.133

GCN 0.843 0.858 0.896 0.876 0.913 0.662 0.661 0.157

Co-model 0.875 0.886 0.916 0.901 0.942 0.732 0.731 0.125

IGFIR LR 0.875 0.904 0.896 0.900 0.933 0.732 0.732 0.125

KNN 0.876 0.899 0.905 0.902 0.973 0.734 0.734 0.124

SVM 0.889 0.935 0.885 0.909 0.934 0.768 0.766 0.111

RF 0.878 0.910 0.894 0.902 0.940 0.739 0.739 0.122

XGB 0.873 0.902 0.896 0.899 0.935 0.729 0.729 0.127

GCN 0.865 0.938 0.841 0.887 0.929 0.727 0.721 0.135

Co-model 0.890 0.935 0.887 0.911 0.944 0.770 0.768 0.110

(Table 2) Contd...
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Target Model Accuracy Precision Recall F1 AUC MCC Kappa BS
FAK LR 0.858 0.872 0.892 0.882 0.930 0.703 0.702 0.142
KNN 0.844 0.839 0.914 0.875 0.925 0.673 0.669 0.156
SVM 0.863 0.880 0.892 0.886 0.940 0.714 0.714 0.137
RF 0.871 0.882 0.905 0.893 0.931 0.731 0.730 0.129
XGB 0.884 0.894 0.914 0.904 0.943 0.759 0.759 0.116
GCN 0.868 0.918 0.856 0.886 0.931 0.733 0.731 0.132
Co-model 0.895 0.907 0.919 0.913 0.944 0.782 0.781 0.105
IRAK4 LR 0.890 0.907 0.931 0.919 0.953 0.750 0.749 0.110
KNN 0.887 0.911 0.921 0.916 0.941 0.744 0.744 0.113
SVM 0.898 0.926 0.921 0.924 0.958 0.771 0.771 0.102
RF 0.889 0.913 0.921 0.917 0.958 0.748 0.748 0.111
XGB 0.901 0.934 0.917 0.925 0.964 0.780 0.780 0.099
GCN 0.895 0.938 0.902 0.920 0.946 0.769 0.768 0.105
Co-model 0.908 0.937 0.924 0.930 0.965 0.794 0.794 0.092
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Fig. (6). Violin plots of accuracy and F1 scores of different machine learning models in 10-fold cross-validation. (A higher resolution / colour
version of this figure is available in the electronic copy of the article).
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Fig. (7). ROC curves of different machine learning models in 10-fold cross-validation. (A higher resolution / colour version of this figure is

available in the electronic copy of the article).

the test set, and as shown in Table 2, the integrated model
has higher accuracy and precision than other machine learn-
ing models. Moreover, the AUC of the integrated model on
all target datasets is greater than 0.94, and the MCC, Kappa,
and Brier scores are also better than other models. In sum-
mary, the establishment of an integrated model through soft
integration is feasible. The stability and accuracy of the inte-
grated model have been greatly improved compared to
a single model, and it can better predict the activity of un-
known compounds.

3.5. Analysis Results of HPLC-Q-Exactive-MS

The sample was detected using negative ion mode, and a
good chromatographic separation and signal intensity were
observed in the total ions current (TIC) chart. LC-MS analy-
sis results showed that a total of 37 compounds were identi-
fied from the ethanol extract of Xanthocerais lignum, mainly
flavonoids. The TIC chart of the ethanol extract of Xan-
thocerais lignum under negative ion mode is shown in Fig.

(9), and detailed information on the identified chemical
components is shown in Table 3. Based on the component
identification information and the TIC chart, it can be seen
that (-)-epigallocatechin, epicatechin, dihydromyricetin and
myricetin have relatively high relative contents in Xan-
thocerais lignum, with retention times of 13.05 min, 22.87
min, 24.12 min, and 48.41 min, respectively.

3.6. Chemical Components of Xanthocerais Lignum

In the above study, we identified 37 compounds in Xan-
thocerais lignum using HPLC-Q-Exactive-MS and supple-
mented them with relevant literature to construct
a compound library of Xanthocerais lignum, which includes
a total of 69 compounds, including 27 flavonoids, 5 triterpe-
noids, 2 phenylpropanoids, 3 steroids, 8 phenols, 4 quinones,
10 organic acid compounds and 10 other compounds. The
supplementary chemical composition of Xanthocerais lig-
num is shown in Table 4. As the main chemical component
of Xanthocerais lignum, flavonoids can reduce inflammation
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Table 3. Chemical composition identification of Xanthocerais lignum by HPLC-Q-Exactive-MS.
RT hemical M d Val Theoretical
No. Chemica casured value coretica Fragmentation Compounds References
(min) Formula (m/z) Value (m/z)
161.04422, 101.02271,
. 97.02795, 89.02294,
1. 2.22 CeH 1,06 179.05486[M-H] 179.05611 D-glucose -
87.00726, 71.01231,
59.01013
163.05971, 119.03349,
2. 2.29 CeH 1406 181.07047[M-H] 181.07176 101.02290, 89.02283, dulcitol -
71.01228, 59.01228
101.02297, 89.02290, .
3. 2.32 CsH .05 151.05983[M-H] 151.06120 D-(+)-arabitol -
71.01234, 59.01234
174.99092, 132.05016, .
4. 2.41 CoH sN,O4 217.00098[M-H] 217.11938 serylleucine -
86.12391
179.05479, 161.04387,
. 119.03344, 113.02285,
5. 2.47 C,H04y 341.10773[M-H] 341.10893 a,0-trehalose -
101.02293, 89.02284,
71.01227, 59.01230
397.27887, 353.14572,
6. 5.55 CaoHs0 413.16617[M-H] 413.37888 207.08623, 158.98982, -sitosterol [24]
101.02293, 59.01233
7. 5.97 C;H4Os 169.01312[M-H] 169.01425 125.02294 gallic acid [25]
397.26346, 159.08020, 3-0-acetyl-16alpha-
8. 7.40 C1:Hs0Os 513.13757[M-HJ 513.35854 O-acetyl-16alpha- -
91.75667, 79.30959 hydroxytrametenolic acid
299.00562, 284.99008, isorh: tin-3-0-
9. 7.50 CuHnOn | 477.16089[M-HJ 477.10385 isorhamnetin-3-O -
242.96591, 198.97444 glucoside
10. 10.02 C;HO4 153.01808[M-H] 153.01933 109.02802 protocatechuic acid [24,25]
261.07675, 219.06531,
. 179.03368, 167.03358, . .
11. 13.05 CisH10; 305.06567[M-H] 305.06668 (-)-epigallocatechin [24, 26]
139.03859, 137.02303,
125.02293
245.08133, 206.05318,
12. 15.81 Ci5sH1406 289.07156[M-H] 289.07176 203.07050, 125.02300, catechin [25,27]
109.02809
) esculetin/6,7-
13. 18.16 CyHeO4 177.01816[M-H] 177.01933 133.02818, 105.03335 . . [24]
dihydroxycoumarin
407.07693, 289.07166,
14. 19.28 Cy7H30014 577.13550[M-H] 577.15628 245.08171, 161.02321, kaempferitrin -
137.02295, 125.02300
397.25290, 320.31161,
274.60251, 229.94392, icatechin-5-O-f-D-
15. | 21.20 CoH0, 451.13779[M-HJ 451.12458 epicatechin-5-0-f [24, 28]
212.84039, 176.54782, glucopyranaoside
159.06668, 153.77745

(Table 3) Contd...
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RT Chemical Measured Value Theoretical .
No Fragmentation Compounds References
(min) Formula (m/z) Value (m/z)
245.08134, 206.05290,
203.07045, 179.03381,
16. 22.98 Ci5sH1406 289.07089[M-H] 289.07176 151.03880, 137.02309, epicatechin [24, 25, 29]
125.02300, 109.02808,
97.02811
165.01799, 137.02293, . .
17. 23.05 CeH,007 193.01312[M-H] 193.03537 glucuronic acid -
121.02817
301.03491, 257.04495, {in-3-(2"
18. | 24.02 CiyHaOre 639.09863[M-H] 639.09916 215.03409, 193.01318, duercetin-3-2 = ;
caffeylglucuronide)
175.00232, 125.02290
193.01320, 178.99731,
19. 24.20 CsH 1,05 319.04474[M-H] 319.04594 175.00241, 165.01796, dihydromyricetin [24, 29]
125.02296
229.08650, 189.05489,
20. 30.24 Ci5sH1405 273.07678[M-H] 273.07685 187.07535, 166.02608, epiafzelechin [26]
123.04407
539.09937, 449.08884,
21. 33.12 C30H2401, 575.12006[M-H] 575.11950 423.07263, 327.05060, proanthocyanidin A2 [25,29]
163.00256, 125.02304
285.04053, 241.05025,
217.04988, 199.03909, . .
22. 37.59 C5H,,0, 303.05051[M-H] 303.05103 dihydroquercetin [24, 25]
177.01811, 153.01816,
125.02309
539.09747, 449.08704,
423.07138, 327.05225,
23. 39.39 Cs5HegoOs 575.12006[M-H] 575.43171 daucosterol [24]
285.04007, 137.02345,
125.02290
3,4-
24, 39.56 CsH;0, 167.03397[M-H] 167.03498 123.04377 dihydroxyphenylacetic -
acid
241.05063, 217.05078,
25. 39.91 Cy5H 605 285.04041[M-H] 285.04046 202.02705, 199.03935, kaempferol [24, 30]
175.03880
151.00229, 125.02303 57,345
26. 45.99 CisH,0; 303.05084[M-H] 303.05102 lrobas pentahydroxydihydrofla- [24]
’ vone
259.06094, 243.06607, .
27. 4731 Cy5H,,04 287.05588[M-H] 287.05611 dihydrokaempferol [24]
201.05469, 125.02309
178.99733, 151.00229, L
28. 48.53 C5H,0Os 317.02927[M-H] 317.03029 myricetin [24, 25, 29]
137.02304, 107.01238
151.00241, 135.04387, .
29. 54.69 Ci5sH12,06 287.05609[M-H] 287.05611 eriodictyol [24]
125.02351, 107.01264
178.99759, 152.00613,
30. 55.36 CisH,004 301.03534[M-H] 301.03538 151.00243, 121.02808, quercetin [24,25]
107.01266

(Table 3) Contd..
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No (2:1) il;iﬁilclzl Measn(llr:/(i)Value ’\l‘]::l?:e(;ilc/zzl; Fragmentation Compounds References
177.01814, 151.00241,
31 58.67 CisH,0s 271.06076[M-H] 271.06120 119.04889, 107.01248, naringenin [24, 25]
93.03317
229.14401, 211.13318, (152)-9,12,13-
32. 59.08 CisH3405 329.23331[M-HJ 329.23335 183.13814, 171.10132, trihydroxy-15- -
139.11191 octadecenoic acid
33. 59.21 Ci5H1006 285.04037[M-H] 285.04046 2?;0023‘;2), 1?(;602421‘1‘;2 luteolin -
34, 66.84 C16H3004 285.20728[M-H] 285.20713 267. 196f:é.9232132'120628’ hexadecanedioic acid -
3s. 68.33 CisH3,04 311.22272[M-H] 311.22278 293.21234, 249.22192 9-HpODE -
36 69:50 CrsH0; 297.24329M-H] 297.24352 27195‘;3933334017,18; 4173681030(; ocltii}::};:szz,fc-id i
29-hydroxy-3-
37. | 70.86 CaoHisOs 469.33221[M-HJ 469.33233 4?2‘80_(3) i:jo 3 (1)4711 l (5) ?gi : OXOtiru;f_l(l)?jif"dien' [29]
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Table 4. Supplementary chemical composition of Xanthocerais lignum.
No. Compounds Name References
Flavonoids
1. rutinum [27]
2. cinnamtannin B1 [32]
3. (2R,3R)-3,3',5,5',7-pentahydroxydihydroflavone [33]
4. epigallo-catechin-(45—8,2—O-7)-epicatechin [34]
5. 3-methoxy-2', 4', 5, 6', 7-pentahydroxyflavone [35]
6. 3,3",4',5,7-pentahydroxy-flavanone [25, 29]
7. gallocatechin [25,27]
8. myricitrin [25,27]
Triterpenoids
9. 3-oxotirucalla-7,24-dien-21-oic acid [34]
10. 24-methylenecycloartan-3-ol [34]
11. oleanolic acid [34]
Phenylpropanoids
12. ‘ xanthocerin ‘ [36]
Steroids
13. ‘ stigmasterol ‘ [37]
Phenols
14. 2-hydroxy-6-methylbenzoic acid [38]
15. isochlorogenic acid B [32]

(Table 4) Contd...
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No. Compounds Name References
16. methyl 3-hydroxy-4-methoxybenzoate [35]
17. methyl 3,4-dihydroxybenzoate [39]
18. 5,7-dihydroxychromone [38]
Quinones
19. chrysophanol [40]
20. physcion [40]
21. emodin [40]
22. 2,5-dimethoxy-p-benzoquinone [40]
Organic Acids
23. (9S,10R,11E,13R)-9,10,13-Trihydroxy-11-octadecenoic acid [24]
24. 3,4,5-trimethoxy benzoic acid [38]
25. nonadecanoic acid [37]
26. heneicosanoic acid [37]
27. tetracosanoic acid [37]
Other Chemical Components
28. 1,4,6,7,8-pentahydroxy-9-methyl-10-o0x0-5,6,7,8,9,10-hexahydro-benzocycloocten-5-ylester [35]
29. dibutyl phthalate [39]
30. 4-muurolene-3,10-diol [39]
31. 3,4-dimethylfuran [39]
32. xanthocerapene [32]
Table 5. Predicted results of anti-RA activity natural products in Xanthocerais lignum by integrated model.
Target Compounds (Prediction Probability: High to Low)
PI3K  |xanthocerin(25); myricitrin(15); myricetin(3); isorhamnetin-3-O-glucoside(16); quercetin-3-(2"-caffeylglucuronide)(18); epigallo-catechin-(45—
8,2— O-7)-epicatechin(12); S-Sitosterol(26); cinnamtannin B1(10); rutinum(8); 3-O-acetyl-16alpha-hydroxytrametenolic acid(23); 24-
methylenecycloartan-3-0l(21); 3-methoxy-2',4',5,6',7-pentahydroxyflavone(13); serylleucine(36); dihydromyricetin(6); stigmasterol(28); 4-
muurolene-3,10-diol(34); isochlorogenic acid B(30); procyanidin A-2(9); xanthocerasic acid(19); taxifolin(5); oleanolic acid(22); (2R,3R)-
3,3',5,5',7-pentahydroxydihydroflavone(11); 1,4,6,7,8-pentahydroxy-9-methyl-10-o0x0-5,6,7,8,9,10-hexahydro-benzocycloocten-5-ylester(33);
kaempferitrin(17); xanthocerapene(35); dihydrokaempferol(4); 3-oxotirucalla-7,24-dien-21-oic acid(20)
AKT isorhamnetin-3-O-glucoside(16); cinnamtannin B1(10); procyanidin A-2(9)
Bcel2 daucosterol(27); 3,3',4',5,7-pentahydroxy-flavanone(14); 3-O-acetyl-16alpha-hydroxytrametenolic acid(23)
EGFR | myricetin(3); myricitrin(15); quercetin(2); rutinum(8); isorhamnetin-3-O-glucoside(16); quercetin-3-(2"-caffeylglucuronide)(18); kaempferol(1);
epigallo-catechin-(45-8,2—0-7)-epicatechin(12); kaempferitrin(17); dihydromyricetin(6); 3-methoxy-2',4',5,6',7-pentahydroxyflavone(13);
cinnamtannin B1(10)
IGFIR myricetin(3); quercetin(2); gallic acid(31); protocatechuic acid(29); 3,4-dihydroxyphenylacetic acid(32); esculetin(24)
FAK epicatechin-5-0-f-D-glucopyranaoside(7); rutinum(8); isorhamnetin-3-O-glucoside(16)
IRAK4 isorhamnetin-3-O-glucoside(16); daucosterol(27)

by activating the antioxidant pathway, inhibiting cyclooxy-
genase, and regulating the expression of cytokines [31], and
maybe the main active component of Xanthocerais lignum in
exerting its anti-RA effect.

3.7. Integrated Model Prediction Results

The integrated models with different targets were used to
predict and screen the Xanthocerais lignum compound li-
brary. The predicted results can be found in Table 5, and the
structures of active ingredients can be seen in Fig. (10).

Among them, 27 active ingredients targeting PI3K were pre-
dicted, and it can be observed that most of these compounds
are flavonoids, which typically contain multiple hydroxyl
groups that can form hydrogen bonds with PI3K targets,
thereby inhibiting their activity. Additionally, many of these
compounds contain oxygen atoms at the C-3 and C-4 posi-
tions, which can interact with the subunits of the PI3K pro-
tein, thereby altering its conformation and inhibiting its ac-
tivity. Moreover, many of these compounds have been con-
firmed to have PI3K inhibitory activity, such as myricetin,
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Fig. (10). Anti-RA activity natural products in Xanthocerais lignum.

which can competitively bind to the ATP binding site of
the PI3K enzyme, thereby blocking its catalytic activity and
affecting the activation state of downstream Akt [41]. Three
active ingredients targeting AKT were predicted, all of
which are flavonoids. Cinnamtannin B1 and procyanidin A-2
have similar skeletal structures consisting of anisotropic
units that have good electron density and can form stable n-n
stacking structures, thereby interacting with the aromatic
amino acids on the protein surface and possibly playing a
critical role in the activation and inhibition process of the
AKT target. Three active ingredients targeting Bcl2 were
predicted. They all contain a cyclic lipid structure and multi-
ple hydroxyl groups. The cyclic lipid structure can pro-

4. R;=R,=R;=Rs=OH; R;=R¢=H

6. R;=R,=R;=R,=Rs=R¢=OH
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vide spatial ~ conformation for the molecule, while

the hydroxyl groups can interact with the amino acid resi-
dues through hydrogen bonding, ultimately affecting the
positioning and activity of the molecule on the Bcl2 target.
Twelve active ingredients targeting EGFR were predicted,
all of which are flavonoids. The two compounds with the
highest activity are myricetin and its 3-O-rhamnoside, and it
is speculated that compounds with this type of structure can
bind well to the EGFR target and exert an inhibitory effect.

Six active ingredients targeting IGFIR were predicted,
all of which contain a benzene ring or a benzopyran skele-
ton, and most of them contain hydroxyl groups. The-
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se structural features may be related to their inhibitory effect
on the IGFIR target, as hydroxyl groups can form hydrogen
bonds or hydrophobic interactions with the amino acid resi-
dues in the ligand binding site of IGFIR. In addition, the
benzene ring or benzopyran skeleton can form n-m stacking
with the aromatic ring in the ligand binding site of IGFIR
[42]. Three active ingredients targeting FAK and two active
ingredients targeting IRAK4 were predicted, and it can be
observed that they all have one or more sugar substitutions.
These sugar substitutions can increase the bioavailability of
the compound and may have an important impact on the
affinity of the compound with the target.

By performing frequency statistics on the integrated
model prediction results, it can be found that isorhamnetin-3-
O-glucoside, myricetin, rutinum, and cinnamtannin B1 have
inhibitory effects on three or more targets, while dihydromy-
ricetin, myricitrin, daucosterol, efc., have inhibitory ef-
fects on two targets. Moreover, myricetin and dihydromyri-
cetin have relatively high relative contents in Xanthocerais
lignum, so these components may be the main active ingre-
dients for its anti-RA effect.

The numbers in parentheses in Table 5 correspond to the
compound structure in Fig. (10).

CONCLUSION

This study successfully applied LC-MS and Al tech-
niques to  predict the anti-RA active components
in Xanthocerais lignum. We used various machine learning
algorithms and GCN to generate an integrated model and
evaluated its performance by comparing the confusion ma-
trices and relevant evaluation metrics on the test sets. The
results showed that the integrated model had bet-
ter predictive performance than individual models and exhib-
ited higher accuracy and precision on all target data sets.
Additionally, we conducted a dimensionality reduction anal-
ysis of molecular features to better understand the differ-
ences between active and inactive molecules. The results
showed that active and inactive molecules in each target data
set had significant differences in structure and properties.
The integrated model can learn these differential features to
accurately classify active and inactive molecules and predict
the anti-RA active components in Xanthocerais lignum.

Through activity screening of compounds in Xan-
thocerais lignum, we identified several compounds with po-
tential anti-RA activity, such as isorhamnetin-3-O-glucoside,
myricetin, rutinum, cinnamtannin B1, dihydromyricetin, efc.
These results provide a valuable reference for further re-
search on the anti-RA active ingredients in Xanthocerais
lignum. However, this study also has some limitations, such
as possible errors or missing data in the data preparation
process, and our model may be affected by factors such
as dataset size and molecular descriptor selection. Therefore,
future improvements in this method are needed to en-
hance predictive accuracy and reliability.

In summary, this study successfully applied LC-MS and
Al techniques to predict the anti-RA active components in
Xanthocerais lignum and provided valuable references for
further research on the pharmacology and active natural
products of Xanthocerais lignum. Our research results indi-
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cate that LC-MS and Al techniques have broad application
prospects in natural product pharmacology and structure-
activity relationship studies. In the future, we will further
explore the application of these techniques in other natural
products and continuously improve the method to provide
more powerful support for the discovery of new active mole-
cules in medicinal plants.
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