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Abstract: Aims: Employing the technique of liquid chromatography-mass spectrometry (LC-
MS) in conjunction with artificial intelligence (AI) technology to predict and screen for anti-
rheumatoid arthritis (RA) active compounds in Xanthocerais lignum.  

Background: Natural products have become an important source of new drug discovery. RA is a 
chronic autoimmune disease characterized by joint inflammation and systemic inflammation. 
Although there are many drugs available for the treatment of RA, they still have many side ef-
fects and limitations. Therefore, finding more effective and safer natural products for the treat-
ment of RA has become an important issue.  

Methods: In this study, a collection of inhibitors targeting RA-related specific targets was gath-
ered. Machine learning models and deep learning models were constructed using these inhibitors. 
The performance of the models was evaluated using a test set and ten-fold cross-validation, and 
the most optimal model was selected for integration. A total of five commonly used machine 
learning algorithms (logistic regression, k-nearest neighbors, support vector machines, random 
forest, XGBoost) and one deep learning algorithm (GCN) were employed in this research. Sub-
sequently, a Xanthocerais lignum compound library was established through HPLC-Q-Exactive-
MS analysis and relevant literature. The integrated model was utilized to predict and screen for 
anti-RA active compounds in Xanthocerais lignum.  

Results: The integrated model exhibited an AUC greater than 0.94 for all target datasets, demon-
strating improved stability and accuracy compared to individual models. This enhancement ena-
bles better activity prediction for unknown compounds. By employing the integrated model, the 
activity of 69 identified compounds in Xanthocerais lignum was predicted. The results indicated 
that isorhamnetin-3-O-glucoside, myricetin, rutinum, cinnamtannin B1, and dihydromyricetin 
exhibited inhibitory effects on multiple targets. Furthermore, myricetin and dihydromyricetin 
were found to have relatively higher relative abundances in Xanthocerais lignum, suggesting that 
they may serve as the primary active components contributing to its anti-RA effects.  

Conclusion: In this study, we utilized AI technology to learn from a large number of compounds 
and predict the activity of natural products from Xanthocerais lignum on specific targets. By 
combining AI technology and the LC-MS approach, rapid screening and prediction of the activi-
ty of natural products based on specific targets can be achieved, significantly enhancing the effi-
ciency of discovering new bioactive molecules from medicinal plants. 
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1. INTRODUCTION

RA is a chronic systemic autoimmune disease character-
ized by erosive, symmetrical polyarthritis. Its typical features 
include synovial cell proliferation, synovitis, cartilage dam-
age, and periarticular bone destruction [1]. Currently, the 
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drugs commonly used in clinical practice for RA treatment 
mainly include nonsteroidal anti-inflammatory drugs, dis-
ease-modifying antirheumatic drugs, glucocorticoids, and 
biologics[2]. However, these drugs have limitations such as 
serious adverse effects, slow onset of action, and high cost. 
Traditional medicines, such as Chinese and Mongolian med-
icines, have a wide range of sources, diverse categories, and 
minimal adverse effects. Many of their components have 
biological activities such as anti-inflammatory and immune 
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modulation. Therefore, exploring more effective and safer 
natural products from traditional medicines has become a 
research hotspot for RA treatment. 

Xanthocerais lignum is the dried stem or branch of the 
Xanthoceras sorbifolia Bunge. tree in the Sapindaceae fami-
ly. It is recorded in classical Mongolian and Tibetan phar-
macopoeias such as "Ren Yao Bai Jing Jian," "Wu Wu Meng 
Yao Jian," "Jing Zhu Ben Cao," and "Meng Yao Zhi." It has 
the effects of clearing heat, reducing swelling, and relieving 
pain. Clinically, it is mainly used to treat RA [3-5]. Tradi-
tional efficacy and modern pharmacological research have 
both shown that Xanthocerais lignum has great potential as 
an anti-RA agent, but its active natural products that exert 
anti-RA activity have yet to be elucidated, which limits its 
further development and utilization. By gaining a compre-
hensive understanding of the active constituents of Xan-
thocerais lignum, it is possible to more effectively utilize 
these natural products for the treatment of diseases such as 
RA. In comparison to conventional chemically synthesized 
drugs, natural products exhibit a wider range of biological 
activities and fewer adverse effects, thus rendering them a 
safer and more efficacious treatment option. These natural 
products hold the potential to serve as novel drug targets, 
offering new insights and directions for the development of 
safer and more effective therapies for RA and other diseases. 

Fibroblast-like synoviocytes (FLS) are a key component 
of proliferating synovium, and their excessive proliferation, 
impaired apoptosis, enhanced invasiveness and migration 
abilities can promote FLS accumulation in joints, leading to 
angiogenesis, inflammatory cytokine secretion, neovascular-
ization and cartilage degeneration, ultimately exacerbating 
the progression of RA [6, 7]. Therefore, regulating FLS pro-
liferation, apoptosis, invasiveness, and migration processes 
may be a promising RA treatment strategy. In our previous 
study, we used network pharmacology to predict that Xan-
thocerais lignum may exert anti-RA effects by mediating the 
PI3K/AKT signaling pathway. Therefore, in this study, we 
opted to screen the active ingredients of targets related to 
processes such as proliferation, apoptosis, invasion, and mi-
gration in the PI3K/AKT pathway. 

The field of natural product pharmacology and active in-
gredient research has seen an increasingly widespread appli-
cation of artificial intelligence (AI) technology. AI is funda-
mentally a data-driven approach that can automatically learn 
from large datasets and be used for predicting new data. Liquid 
chromatography-mass spectrometry (LC-MS) is an efficient 
analytical method that can be employed to rapidly identify the 
natural products in plants. In this study, we utilized AI to learn 
from a vast number of compounds and predict the activity of 
natural products from Xanthocerais lignum against specific 
targets. By combining AI with LC-MS, it is possible to rapidly 
screen and predict the activity of natural products against specif-
ic targets, greatly enhancing the efficiency of discovering novel 
bioactive natural products from medicinal plants. 

2. MATERIALS AND METHODS 
2.1. Data Preparation 

After standardizing the names of each target using Uni-
prot (www.uniprot.org), relevant active molecules were re-
trieved from ChEMBL (www.ebi.ac.uk/chembl/) using the 

search terms "PI3K", "AKT," "Bcl2", "EGFR," "IGF1R", 
"FAK" and "IRAK4". The data was then cleansed using the 
following criteria: (1) selection of compounds with experi-
mental activity types Kd, Ki, IC50, EC50; (2) removal of du-
plicate and compounds without experimental activity values 
or SMILES; (3) conversion of all compound activity values 
to nM units. After data cleansing, labels were added to the 
data where experimental activity values ≤ 1000 nM were 
defined as active molecules (label: 1), while experimental 
activity values > 1000 nM were labeled as non-active mole-
cules (label: 0). Random stratified sampling was used to di-
vide each target's dataset into training and testing sets in an 
8:2 ratio. The training set is a group of data used to train the 
model. By learning from the data in the training set, the ma-
chine learning algorithm can generate a model that can be 
used to predict unknown data. The testing set is a group of 
data used to evaluate the model. By applying the model to 
the testing set data, the accuracy and effectiveness of the 
model can be evaluated [8]. The details of the compounds in 
each target data set are shown in Table S1-S7. 

2.2. Machine Learning 

2.2.1. Molecular Characterization 

Using Rdkit [9], molecular structures were generated 
based on the SMILES for each target's dataset. On this basis, 
208 molecular descriptors [10], 1024 Morgan fingerprints 
[11], and 167 MACCS keys [12] were generated, totaling 
1399 molecular features, to characterize the molecules. Mo-
lecular descriptors are a method of representing molecules as 
numerical features, typically using chemical structures and 
related features such as hydrogen bond acceptor/donor num-
bers, ring types, molecular weight, etc. Morgan fingerprints 
are a method of representing the position of molecules by 
hashing the molecule graph and generating a fixed-length 
numeric vector, where each number represents the presence 
of a particular chemical environment in the molecule. 
MACCS keys (Molecular ACCess System keys) are a meth-
od of representing key features of molecules, generating a 
fixed-length binary fingerprint using a set of pre-defined 166 
key features, such as coordination number, ring type, etc. 
These molecular features can be used as input for machine 
learning algorithms to predict the activity and efficacy of 
molecules. 
2.2.2. Machine Learning Model Construction 

Before constructing the model, data preprocessing was 
applied to improve the accuracy and stability of the model: 
(1) removal of molecules with a molecular weight greater 
than 1000; (2) removal of molecules containing missing 
values; (3) normalization of molecular descriptors. After 
data preprocessing, a machine learning model was con-
structed using 1399 molecular features as independent var-
iables (X) and molecular activity labels as dependent vari-
ables (Y). Five common machine learning algorithms were 
used for each target dataset: logistic regression (LR), k-
nearest neighbor (KNN), support vector machine (SVM), 
random forest (RF), and XGBoost. LR is a classification 
technique that uses linear regression and the Sigmoid func-
tion. It is mainly used for binary classification problems. 
The basic idea is to predict the result of a linear function 
through linear regression, then map it to the Sigmoid func-
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tion to obtain a probability value and determine the catego-
ry of the sample based on the probability value [13]. KNN 
is an instance-based learning method commonly used for 
classification and regression problems. The basic idea is 
that if most of the k most similar samples (i.e., the closest 
samples in feature space) belong to a certain category, then 
this sample also belongs to that category [13]. SVM is a 
binary classification model. The basic idea is to solve an 
optimization problem to determine the decision boundary 
(also known as the support vector) and divide the training 
samples into two categories. This decision boundary is a 
straight line or hyperplane that maximizes the distance (al-
so known as margin) between the two classes of samples. 
The SVM model can find the decision boundary in a high-
dimensional space by using a kernel function, making it 
very suitable for handling nonlinear problems [13]. RF is 
an ensemble learning model based on decision trees. The 
basic idea is to predict the target variable by randomly se-
lecting training samples and using decision trees and then 
combining the results statistically to construct the final 
prediction. When building an RF model, multiple decision 
trees are constructed simultaneously and independently, 
and data are trained using randomly selected methods. 
Therefore, RF has high diversity and accuracy [13]. 
XGBoost is a gradient-boosting algorithm based on deci-
sion tree models, suitable for classification and regression 
problems. Gradient boosting is an iterative algorithm that 
calculates the error by analyzing the loss function of the 
data at each iteration, then uses a gradient descent algo-
rithm to update the parameters of the decision tree model, 
making the model better at offsetting errors in the next iter-
ation. This process is repeated multiple times, with each 
iteration adding a decision tree model, and all decision tree 
models are combined into an ensemble model [14]. The 
schematic of machine learning model construction is 
shown in Fig. (1). 

During the training of the machine learning model, in ad-
dition to the parameters of the model, there are also some 
hyperparameters that need to be determined, which can have 
a significant impact on the performance of the model. The 
grid search algorithm enumerates all possible combinations 
of hyperparameters and trains and evaluates the model on 

each combination to find the best-performing hyperparame-
ter combination for model construction [15]. 
2.2.3. Evaluation of Machine Learning Models 

In model evaluation, the following methods are used: (1) 
confusion matrix of the test set, which is used to evaluate the 
prediction performance of classification models. Each row 
represents the true class, and each column represents the 
predicted class of the model. (2) ROC curve of the test set, 
which is a graphical representation method for evaluating the 
performance of classification models. Each point on the 
graph represents the performance of the model at different 
discrimination thresholds. The coordinate system of the 
ROC curve consists of two axes, namely the true positive 
rate (TPR) and the false positive rate (FPR). As the discrimi-
nation threshold of the classification model changes from 
high to low, the change in TPR and FPR will form a curve. 
An ideal ROC curve should be as close to the upper left cor-
ner as possible, i.e., the difference between TPR and FPR 
should be as large as possible [8]. (3) multiple indicators of 
the test set, including accuracy, represent the ratio of correct-
ly predicted data to the total data; precision represents the 
proportion of truly positive data in the data predicted as posi-
tive by the classification model; recall represents the propor-
tion of truly positive data predicted by the classification 
model to the actual positive data; F1 score is the harmonic 
mean of precision and recall, combining the two indicators 
to represent the prediction effect of the model; AUC: repre-
sents the area under the ROC curve, which is an indicator for 
evaluating the performance of classification models. The 
greater the value, the more accurate the prediction; Mat-
thew’s correlation coefficient (MCC): a binary evaluation 
indicator used to evaluate the accuracy of classification 
models. It considers both the accuracy and completeness of 
the classification model. The value of MCC is between -1 
and 1. The closer the value is to 1, the better the performance 
of the classification model [16]; Kappa: a binary evaluation 
indicator used to evaluate the accuracy of classification 
models and the correlation between the accuracy of random 
predictions. The value of Kappa is between 0 and 1. The 
closer the value is to 1, the better the performance of the 
classification model [17]. Brier score: is an indicator for 
evaluating the quality of prediction results, used to evaluate 
the accuracy of prediction results. The smaller the value of 

 
Fig. (1). Construction of machine learning model. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article).  
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the Brier score, the more accurate the prediction result [18]. 
(4) Accuracy, F1 score, and ROC curve of 10-fold cross-
validation. 10-fold cross-validation divides the training data 
into ten parts. Each time, one part is selected as the valida-
tion data, and the remaining nine parts are used as the train-
ing data for model training. The entire process is repeated 
ten times. Finally, the average of each validation result is 
taken as the final validation result of the model. 10-fold 
cross-validation can evaluate the generalization ability of the 
model and avoid overfitting problems. 

2.3. Deep Learning 

A molecular graph is a method of representing molecules 
through graphics, where atoms and bonds of the molecule 
are represented as nodes and edges in the graph. For each 
target dataset, DeepChem [19] generates molecular graphs 
based on SMILES, which are then used to construct a Graph 
Convolutional Network (GCN). GCN is a special type of 
Convolutional Neural Network used for processing graphical 
data such as molecular structures. The difference between 
graph convolution and normal convolution is that graph con-
volution operates on the graph structure rather than the grid 
structure [20]. The working principle of GCN is to extract 
features from adjacent information of the graphical structure 
by employing a specific graph convolution operation and to 
continuously combine these features through multiple layers 
of convolution operations to generate a representation for the 
graph. The core part of the graph convolution operation is a 
graph convolution kernel, which is used to compute the 
weighted sum between the current node and its adjacent 
nodes. The pooling layer after the convolution layer is a 
downsampling technique that reduces the amount of data by 
taking the maximum value within a local region. It is typical-
ly used to reduce the spatial dimension of the graph convolu-
tion features, decrease the number of parameters, and simpli-
fy calculations. The fully connected layer is a neural network 
layer that is fully connected and adds a nonlinear transfor-
mation to the graph convolution features. It is usually used to 
calculate the final classification results [21]. In the model 
construction process, the Bayesian optimization algorithm is 
used to optimize hyperparameters such as learning rate, 

batch size, epoch, and regularization coefficient. The Bayes-
ian optimization algorithm makes prior distribution assump-
tions for the parameters to be optimized using probability 
models and updates the model parameters based on the data 
to achieve the goal of the optimal parameters [22]. After 
training the model with the optimal hyperparameters, the 
model performance is evaluated using the test set. The 
schematic of deep learning model construction is shown in 
Fig. (2). 

2.4. Integrated Model 

Based on the model evaluation results, two machine 
learning models and the Graph Convolutional Neural Net-
work model are selected to construct an integrated model for 
each target. The construction method of the integrated model 
is a soft ensemble, which aims to combine the prediction 
results of multiple models to generate the final prediction 
result [23]. By averaging the weighted predictions of differ-
ent models, the advantages of each model can be combined 
to reduce errors caused by using individual models alone, 
i.e., to improve the stability and accuracy of the model and 
reduce overfitting of the model. After constructing the inte-
grated model using the optimal weight combination, the mod-
el performance is evaluated in the same way as the GCN. 

2.5. Identification of Chemical Components in Xan-
thocerais lignum based on HPLC-Q-Exactive-MS 

Instruments used include Thermo Scientific UltiMate 
3000 High-Performance Liquid Chromatography System, Q 
Exactive TMhybrid quadrupole-Orbitrap mass spectrometer, 
high-speed centrifuge, rotary evaporator system, analytical 
balance and electronic balance. Reagents used include chro-
matographic methanol, chromatographic acetonitrile, chro-
matographic acetic acid, analytical grade anhydrous ethanol 
and ultrapure water. The herbal medicine used is Xan-
thocerais lignum (dried stem or branch of the Xanthoceras 
sorbifolia Bunge. tree in the Sapindaceae family). 
2.5.1. Preparation of the Sample Solution 

Crush the Xanthocerais lignum herb slices and weigh out 
800 g of crude powder. Extract three times with 70% ethanol 

 
Fig. (2). Construction of deep learning model. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 
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reflux, each time for 2 hours, filter, combine the filtrate, and 
recover it until there is no alcohol taste, yielding 112.5 g of 
extract. Precisely weigh 0.2532 g of the ethanol extract and 
dissolve it in chromatographic methanol. Add it to a 25 mL 
volumetric flask and centrifuge it for 15 minutes at 12000 r. 
min-1 before analyzing the supernatant. In the previous ex-
periment, we investigated the influence of different extract-
ing solvents (water, 50% methanol, 70% methanol, metha-
nol, 50% ethanol, 70% ethanol, ethanol) on the content of six 
flavonoid compounds (catechin, epicatechin, (-)-
epigallocatechin, myricetin, dihydromyricetin, dihydroquer-
cetin) in Xanthocerais lignum. The results revealed that the 
highest content of each component was observed when 70% 
ethanol was used as the extracting solvent. 
2.5.2. Chromatographic Conditions 

Chromatographic column: Symmetry® C18 column (250 
mm × 4.6 mm, 5.0 μm); mobile phase: acetonitrile (A) ~ 
0.4% acetic acid water (B); elution gradient: 0 ~ 5 min, 5% ~ 
10% A ; 5 ~ 15 min, 10% ~ 12% A; 15 ~ 40 min, 12% ~ 20% 
A; 40 ~ 50 min, 20% ~ 30% A; 50 ~ 55 min, 30% ~ 40% A; 
55 ~ 70 min, 40% ~ 100% A; 70 ~ 75 min, 100% A; 75 ~ 90 
min, 100% ~ 5% A; 90 ~ 100 min, 5% A; injection volume: 
10µL; column temperature: 20 °C; flow rate: 1 mL.min-1. 
2.5.3. Mass Spectrometry Conditions 

Use the ESI source positive/negative ion mode detection 
for mass spectrometry. The detection parameters are as fol-
lows: ion source voltage of 4 kV (+)/3.2 kV (-); sheath gas 
volume flow rate of 40 L.min-1 (+)/35 L.min-1 (-); fragmenta-
tion voltage of 300 V; drying gas temperature of 350 ℃; 
saturated auxiliary gas volume flow rate of 2 L.min-1; spray 
air pressure of 45 psig; high purity nitrogen gas is used as 
atomizing gas; data acquisition range is 100 ~ 1100 m/z, 
using full MS-ddMS2 scanning method. 
2.5.4. Identification of Chemical Components 

HPLC-Q-Exactive-MS technology is used to qualitatively 
analyze the chemical components in Xanthocerais lignum etha-
nol extract. First, a chemical composition information table for 
Xanthocerais lignum was constructed based on existing litera-
ture reports. Then, based on the relative molecular weight of 
each chromatographic peak measured in reality and the accurate 
relative molecular weight provided by theory, the molecular 
formula corresponding to each chromatographic peak is prelim-
inarily identified. Search the constructed chemical information 
table based on the molecular formula to find the target com-
pound that matches. Combine the primary and secondary mass 
spectrometry fragmentation data of the target peak and compare 
it with the relevant data in the literature, using the mass spec-
trometry fragmentation rules for this type of chemical composi-
tion provided in the literature to identify their chemical struc-
tures. For the chromatographic peaks that cannot be matched, 
Compound Discoverer 3.2 and MassBank (www.massbank.jp) 
databases are used for primary and secondary mass spectrome-
try information searching and matching. 

2.6. Prediction of Xanthocerais lignum's Anti-RA Active 
Ingredients 

Based on LC-MS identification of compounds present in 
Xanthocerais lignum, supplemented by a search through 

relevant literature, a compound library is constructed. The 
SMILES for each compound are obtained from PubChem 
(pubchem.ncbi.nlm.nih.gov). After characterizing and gener-
ating molecular graphs for each compound using the same 
method as the respective datasets, an integrated model is 
used for each target to predict the activity of the chemical 
components in Xanthocerais lignum. Compounds with pre-
dicted probabilities greater than 0.5 are screened as poten-
tially effective anti-RA active ingredients present in Xan-
thocerais lignum. 

3. RESULTS AND DISCUSSION 

3.1. Dimensionality Reduction Analysis of Molecular 
Characteristics 

For each target dataset, 208 molecular descriptors, 1024 
Morgan fingerprints, and 167 MACCS keys, totaling 1399 
molecular features, were generated through RDkit to charac-
terize the molecules. Principal component analysis (PCA) 
was performed on the 208 molecular descriptors to analyze 
the distribution of active and inactive molecules in a two-
dimensional space. As shown in Fig. (3), active and inactive 
molecules from the seven target datasets were mainly dis-
tributed in the range of PC1 (-2 to 3) and PC2 (-1.5 to 2). 
Except for the PI3K dataset, which exhibited a large overlap 
in the distribution of active and inactive molecules, the other 
target datasets showed significant differences in the distribu-
tion of active and inactive molecules. Molecular descriptors 
mainly reflect the structure and properties of molecules, in-
dicating that there are significant differences in the structure 
and properties of active and inactive molecules for each tar-
get. 

PCA is a linear dimensionality reduction method and may 
not fit well when dealing with nonlinear features. Therefore, 
the nonlinear dimensionality reduction method t-distributed 
stochastic neighbor embedding (t-SNE) was used to reduce 
the 1024 Morgan fingerprints and 167 MACCS keys, totaling 
1191 molecular fingerprints, to analyze the distribution of 
active and inactive molecules in a two-dimensional space. As 
shown in Fig. (4), the PI3K, AKT, and EGFR datasets were 
mainly distributed in the range of t-SNE1 and t-SNE2 (-100 to 
100), while the IGF1R and IRAK4 datasets were mainly dis-
tributed in the range of t-SNE1 and t-SNE2 (-80 to 80), and 
the Bcl2 and FAK datasets were mainly distributed in the 
range of t-SNE1 (-60 to 70) and t-SNE2 (-70 to 70), respec-
tively. Molecular fingerprints reflect the structural characteris-
tics of molecules, and the visualization results show that active 
and inactive molecules in each target dataset have significant 
differences in structure, consistent with the results of PCA 
analysis. Machine learning models can learn these differential 
features and accurately classify active and inactive molecules. 
In addition, the visualization results show that each target da-
taset has chemical diversity in molecular structure, and mole-
cules with diverse structures can improve the generalization 
ability of machine learning models and enhance model per-
formance. 

To verify the rationality of the division of each target da-
taset, t-SNE analysis was performed on the training set and 
test set to observe their distribution in a three-dimensional 
space. As shown in Fig. (5), the distribution of the training 
and test sets of each target in space is basically consistent, 
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Fig. (3). PCA Analysis results of active and non-active molecules in each target dataset. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

 
Fig. (4). Contd… 
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Fig. (4). t-SNE analysis results of active and non-active molecules in each target dataset. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

 

 
Fig. (5). Contd… 
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Fig. (5). t-SNE analysis results of training and testing molecules in each target dataset. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

Table 1. Results of hyperparameter optimization for each model. 

Model Hyperparameter PI3K AKT Bcl2 EGFR IGF1R FAK IRAK4 

LR penalty L2 L2 L2 L2 L2 L2 L2 

C 0.1 0.1 0.1 0.1 0.1 1 0.1 

KNN neighbors 3 18 10 7 7 16 6 

weights uniform distance distance distance distance distance distance 

SVM kernel rbf rbf rbf rbf rbf rbf rbf 

C 10 10 10 10 1 10 10 

RF estimators 300 500 200 300 500 200 500 

max depth 10 10 10 10 10 10 10 

XGBoost learning rate 0.1 0.1 0.01 0.1 0.01 0.1 0.1 

estimators 500 400 400 200 400 250 300 

max depth 9 8 6 8 6 8 5 

GCN learning rate 0.000385 0.000105 0.00130 0.00263 0.00352 9.08 0.000933 

batch size 8 16 8 16 32 8 8 

epoch 100 100 100 100 100 100 100 

l2 reg 0 1 0.1 0.1 0.1 1 0.1 
 
indicating that the molecules in the training and test sets 
have similarities in structure and properties, and the division 
of each target dataset is reasonable. 

3.2. Results of Hyperparameter Optimization for Models 

In machine learning and deep learning, hyperparameters 
refer to those parameters that need to be manually set by 
humans rather than model parameters learned automatically 
from training data. Different models have different hyperpa-
rameters that need to be set. In LR, the penalty is the type 
of regularization term, including L1 regularization and L2 
regularization, while C is the regularization hyperparame-
ter that controls the strength of regularization. In KNN, the 
neighbors parameter represents the number of neighbors 
selected, which is the number of k nearest neighbors used to 
determine the classification label, and the weights parame-
ter is used to determine the weights of the neighbors. In 
SVM, the kernel parameter is used to select the kernel func-

tion, which is used to map the data from the original space to 
a higher-dimensional feature space for better data separation. 
In RF, the estimator parameter represents the number 
of decision trees used to construct the random forest, and 
the max depth parameter is used to control the maximum 
depth of decision trees. In contrast, XGBoost requires setting 
the learning rate parameter in addition to the estimator pa-
rameter to control the weight of each weak learner in 
the gradient-boosting process. In GCN, four main hyperpa-
rameters are set, namely learning rate, batch size, epoch, 
and L2 regularization, which control the step size of each 
parameter update in the model, the number of samples used 
in each training, the iteration times of the model, and the 
complexity of the model, respectively. 

The optimal hyperparameters for each model are shown 
in Table 1. It can be seen that some models do not need too 
much adjustment of hyperparameters to achieve good model 
performance, while others need multiple adjustments accord-
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ing to different datasets. This may be due to the fact that 
different models have different complexity and bias/variance 
characteristics. Models with lower complexity usually have 
weaker fitting ability to data, such as LR and KNN models, 
and hyperparameters have little influence on model perfor-
mance, so they do not need too much adjustment. On the 
other hand, models with more complex structures can better 
fit data but also require more hyperparameter adjustments, 
such as XGBoost and GCN models. In addition, the size of 
the dataset also affects the difficulty of hyperparameter ad-
justment. For smaller datasets, overfitting is more likely to 
occur, which means that smaller hyperparameter val-
ues and stronger regularization are needed to control the 
model's complexity. For larger datasets, models usually 
need higher complexity to fully utilize the information in the 
data. 

3.3. Model Evaluation 
3.3.1. Machine Learning Model Evaluation and Comparison 

The various metrics on the test set can reflect the model's 
performance to some extent comprehensively. As shown in 
Table 2, different models perform differently on the same 
target dataset, and the same model may perform differently 
on different target datasets. Therefore, it is necessary to se-
lect models with good performance based on the evaluation 
results and integrate them to achieve better overall perfor-
mance. SVM and XGBoost outperform other models in 
terms of precision, F1 score, and AUC on the PI3K, AKT, 
EGFR, and IRAK4 target datasets. Although RF has high 
recall rates on the PI3K and AKT datasets, its precision and 
accuracy are relatively low. LR and KNN have certain gaps 
compared to SVM and XGBoost on all metrics. On the Bcl2 
and IGF1R target datasets, the performance of SVM, RF, 
and XGBoost models is similar, and further determination is 
required through 10-fold cross-validation. On the FAK target 
dataset, RF and XGBoost outperform other models on all 
metrics. 

Evaluating the model performance solely based on 
the test set may not reflect the model's generalization ability. 
Therefore, 10-fold cross-validation is used to compare the 
accuracy and F1 score of different models on different target 
datasets, and the results are visualized using boxplots. The 
median value is more representative of the general level than 
the mean value, which is susceptible to outlier influence. As 
shown in Fig. (6), SVM and XGBoost models outperform 
other models in terms of accuracy and F1 score on the PI3K, 
AKT, and EGFR target datasets. The results are consistent 
with the test set results. For the IRAK4 target dataset, the 
performance of the SVM model is better than that of other 
models in terms of accuracy and F1 score, but its perfor-
mance on the test set is not as good as that of the XGBoost 
model, which may be due to the unstable evaluation results 
caused by different data splitting methods. On the Bcl2 and 
IGF1R target datasets, the 10-fold cross-validation results of 
all models are excellent, indicating that these models have 
strong generalization ability on these two datasets and can 
adapt well to new data to achieve good prediction results. 
XGBoost performs best on the FAK target dataset, and the 
accuracy of RF is slightly lower than that of SVM, but its F1 
score is higher. F1 score comprehensively evaluates a mod-
el's precision and recall, which is less susceptible to the in-

fluence of sample imbalance than accuracy, so the perfor-
mance of the RF model on the FAK target dataset may be 
slightly better than that of the SVM model. 

Furthermore, the performance of each model is evaluated 
using the ROC curve through 10-fold cross-validation, and 
the closer the average AUC value is to 1, the better the mod-
el's performance. ROC curves of different machine learning 
models in 10-fold cross-validation are shown in Fig. (7). 
Based on the AUC values, the best model is selected for 
each target dataset. The selected models have AUC values 
greater than 0.92 on the PI3K, AKT, Bcl2, EGFR, FAK, and 
IRAK4 target datasets, indicating that they can classify un-
known compounds well. Finally, based on the test set results 
and 10-fold cross-validation results, the models with good 
performance are selected for each target dataset to build 
an integrated model. SVM and XGBoost perform best on the 
PI3K, AKT, EGFR, and IRAK4 datasets, while RF and 
XGBoost perform best on the Bcl2 and FAK datasets, and 
RF and SVM perform best on the IGF1R dataset. 
3.3.2. Evaluation of Deep Learning Models 

GCN is a commonly used deep learning model that ex-
hibits excellent performance when processing graph data. 
Through multiple layers of graph convolution operations, 
GCN can gradually learn the feature representation of mo-
lecular graph nodes, thereby accurately classifying unknown 
compounds. As shown in Table 2, the precision of GCN is 
higher than that of machine learning models on vari-
ous target datasets, indicating that it can accurately judge 
active molecules and is less likely to misjudge inactive mol-
ecules. However, precision cannot reflect the coverage of the 
model for all active molecules, and usually, precision and 
recall are mutually restrictive. Machine learning mod-
els have lower accuracy than GCN models but higher recall 
and AUC scores. Therefore, in this study, we intend to estab-
lish an integrated model to combine the advantages of vari-
ous models and improve the model's generalization abil-
ity and stability. 

3.4. Construction and Evaluation of Integrated Model 
The integrated model can combine the advantages of 

multiple basic models and has better model performance 
than a single model. Based on the evaluation results of the 
above models, we selected two machine learning models 
with better performance and GCN models for each target 
dataset to integrate. By traversing various model weight 
combinations, we determined the best model weight, and the 
results are as follows: PI3K: [GCN: SVM: XGBoost = 0.3: 
0.4: 0.3]; AKT: [GCN: SVM: XGBoost = 0.3: 0.3: 0.4]; 
Bcl2: [GCN: RF: XGBoost = 0.2: 0.4: 0.4]; EGFR: [GCN: 
SVM: XGBoost = 0.2: 0.3: 0.5]; IGF1R: [GCN: RF: SVM = 
0.3: 0.4: 0.3]; FAK: [GCN: RF: XGBoost = 0.4: 0.2: 0.4]; 
IRAK4: [GCN: SVM: XGBoost = 0.3: 0.3: 0.4]. 

Comparing the performance of GCN models and inte-
grated models through the confusion matrix, where 
the horizontal axis represents the predicted label, the vertical 
axis represents the true label, and the four indicators are true 
negative, false positive, false negative, and true positive. As 
shown in Fig. (8), the integrated model makes up for the low 
recall of the GCN model while having higher accuracy. The 
performance of the integrated model was evaluated using 
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Table 2. Results of testing sets for each target dataset. 

Target Model Accuracy Precision Recall F1 AUC MCC Kappa BS 

PI3K LR 0.874 0.901 0.935 0.918 0.935 0.649 0.647 0.126 

KNN 0.884 0.925 0.921 0.923 0.919 0.691 0.691 0.116 

SVM 0.896 0.932 0.930 0.931 0.943 0.721 0.721 0.104 

RF 0.867 0.868 0.971 0.917 0.934 0.618 0.594 0.133 

XGB 0.883 0.921 0.924 0.922 0.943 0.684 0.684 0.117 

GCN 0.871 0.935 0.890 0.912 0.931 0.672 0.669 0.129 

Co-model 0.899 0.936 0.929 0.932 0.949 0.730 0.730 0.101 

AKT LR 0.851 0.847 0.932 0.887 0.917 0.676 0.669 0.149 

KNN 0.872 0.860 0.951 0.903 0.928 0.722 0.714 0.128 

SVM 0.878 0.878 0.937 0.906 0.934 0.735 0.732 0.122 

RF 0.837 0.816 0.959 0.881 0.926 0.649 0.628 0.163 

XGB 0.876 0.876 0.935 0.905 0.943 0.730 0.727 0.124 

GCN 0.870 0.884 0.914 0.899 0.930 0.719 0.719 0.130 

Co-model 0.882 0.886 0.932 0.909 0.946 0.744 0.742 0.118 

Bcl2 LR 0.935 0.957 0.957 0.957 0.980 0.827 0.827 0.065 

KNN 0.931 0.951 0.957 0.954 0.974 0.814 0.814 0.069 

SVM 0.942 0.961 0.961 0.961 0.974 0.844 0.844 0.058 

RF 0.939 0.965 0.953 0.959 0.986 0.838 0.838 0.061 

XGB 0.946 0.963 0.965 0.964 0.987 0.856 0.856 0.054 

GCN 0.925 0.968 0.930 0.949 0.977 0.809 0.806 0.075 

Co-model 0.946 0.967 0.961 0.964 0.986 0.857 0.857 0.054 

EGFR LR 0.834 0.848 0.892 0.869 0.907 0.642 0.640 0.166 

KNN 0.857 0.863 0.915 0.888 0.926 0.692 0.690 0.143 

SVM 0.874 0.892 0.907 0.899 0.932 0.731 0.731 0.126 

RF 0.829 0.828 0.914 0.869 0.916 0.630 0.624 0.171 

XGB 0.867 0.878 0.911 0.894 0.939 0.714 0.713 0.133 

GCN 0.843 0.858 0.896 0.876 0.913 0.662 0.661 0.157 

Co-model 0.875 0.886 0.916 0.901 0.942 0.732 0.731 0.125 

IGF1R LR 0.875 0.904 0.896 0.900 0.933 0.732 0.732 0.125 

KNN 0.876 0.899 0.905 0.902 0.973 0.734 0.734 0.124 

SVM 0.889 0.935 0.885 0.909 0.934 0.768 0.766 0.111 

RF 0.878 0.910 0.894 0.902 0.940 0.739 0.739 0.122 

XGB 0.873 0.902 0.896 0.899 0.935 0.729 0.729 0.127 

GCN 0.865 0.938 0.841 0.887 0.929 0.727 0.721 0.135 

Co-model 0.890 0.935 0.887 0.911 0.944 0.770 0.768 0.110 

(Table 2) Contd… 
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Target Model Accuracy Precision Recall F1 AUC MCC Kappa BS 

FAK LR 0.858 0.872 0.892 0.882 0.930 0.703 0.702 0.142 

KNN 0.844 0.839 0.914 0.875 0.925 0.673 0.669 0.156 

SVM 0.863 0.880 0.892 0.886 0.940 0.714 0.714 0.137 

RF 0.871 0.882 0.905 0.893 0.931 0.731 0.730 0.129 

XGB 0.884 0.894 0.914 0.904 0.943 0.759 0.759 0.116 

GCN 0.868 0.918 0.856 0.886 0.931 0.733 0.731 0.132 

Co-model 0.895 0.907 0.919 0.913 0.944 0.782 0.781 0.105 

IRAK4 LR 0.890 0.907 0.931 0.919 0.953 0.750 0.749 0.110 

KNN 0.887 0.911 0.921 0.916 0.941 0.744 0.744 0.113 

SVM 0.898 0.926 0.921 0.924 0.958 0.771 0.771 0.102 

RF 0.889 0.913 0.921 0.917 0.958 0.748 0.748 0.111 

XGB 0.901 0.934 0.917 0.925 0.964 0.780 0.780 0.099 

GCN 0.895 0.938 0.902 0.920 0.946 0.769 0.768 0.105 

Co-model 0.908 0.937 0.924 0.930 0.965 0.794 0.794 0.092 

 

 
Fig. (6). Violin plots of accuracy and F1 scores of different machine learning models in 10-fold cross-validation. (A higher resolution / colour 
version of this figure is available in the electronic copy of the article). 
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Fig. (7). ROC curves of different machine learning models in 10-fold cross-validation. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 
 
the test set, and as shown in Table 2, the integrated model 
has higher accuracy and precision than other machine learn-
ing models. Moreover, the AUC of the integrated model on 
all target datasets is greater than 0.94, and the MCC, Kappa, 
and Brier scores are also better than other models. In sum-
mary, the establishment of an integrated model through soft 
integration is feasible. The stability and accuracy of the inte-
grated model have been greatly improved compared to 
a single model, and it can better predict the activity of un-
known compounds. 

3.5. Analysis Results of HPLC-Q-Exactive-MS 
The sample was detected using negative ion mode, and a 

good chromatographic separation and signal intensity were 
observed in the total ions current (TIC) chart. LC-MS analy-
sis results showed that a total of 37 compounds were identi-
fied from the ethanol extract of Xanthocerais lignum, mainly 
flavonoids. The TIC chart of the ethanol extract of Xan-
thocerais lignum under negative ion mode is shown in Fig. 

(9), and detailed information on the identified chemical 
components is shown in Table 3. Based on the component 
identification information and the TIC chart, it can be seen 
that (-)-epigallocatechin, epicatechin, dihydromyricetin and 
myricetin have relatively high relative contents in Xan-
thocerais lignum, with retention times of 13.05 min, 22.87 
min, 24.12 min, and 48.41 min, respectively. 

3.6. Chemical Components of Xanthocerais Lignum 
In the above study, we identified 37 compounds in Xan-

thocerais lignum using HPLC-Q-Exactive-MS and supple-
mented them with relevant literature to construct 
a compound library of Xanthocerais lignum, which includes 
a total of 69 compounds, including 27 flavonoids, 5 triterpe-
noids, 2 phenylpropanoids, 3 steroids, 8 phenols, 4 quinones, 
10 organic acid compounds and 10 other compounds. The 
supplementary chemical composition of Xanthocerais lig-
num is shown in Table 4. As the main chemical component 
of Xanthocerais lignum, flavonoids can reduce inflammation 
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Fig. (8). Confusion matrices of GCN and co-model in each target dataset. (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 

 
Fig. (9). TIC of HPLC-Q-Exactive-MS analysis of xanthocerais lignum. (A higher resolution / colour version of this figure is available in the 
electronic copy of the article). 
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Table 3. Chemical composition identification of Xanthocerais lignum by HPLC-Q-Exactive-MS. 

No. 
RT 

(min) 
Chemical 
Formula 

Measured Value 
(m/z) 

Theoretical 
Value (m/z) 

Fragmentation Compounds References 

1. 2.22 C6H12O6 179.05486[M-H]- 179.05611 

161.04422，101.02271，
97.02795，89.02294，
87.00726，71.01231，

59.01013 

D-glucose - 

2. 2.29 C6H14O6 181.07047[M-H]- 181.07176 
163.05971，119.03349，
101.02290，89.02283，

71.01228，59.01228 
dulcitol - 

3. 2.32 C5H12O5 151.05983[M-H]- 151.06120 
101.02297，89.02290，

71.01234，59.01234 
D-(+)-arabitol - 

4. 2.41 C9H18N2O4 217.00098[M-H]- 217.11938 
174.99092，132.05016，

86.12391 
serylleucine - 

5. 2.47 C12H22O11 341.10773[M-H]- 341.10893 

179.05479，161.04387，
119.03344，113.02285，
101.02293，89.02284，

71.01227，59.01230 

α,α-trehalose - 

6. 5.55 C29H50O 413.16617[M-H]- 413.37888 
397.27887，353.14572，
207.08623，158.98982，

101.02293，59.01233 
β-sitosterol [24] 

7. 5.97 C7H6O5 169.01312[M-H]- 169.01425 125.02294 gallic acid [25] 

8. 7.40 C32H50O5 513.13757[M-H]- 513.35854 
397.26346，159.08020，

91.75667，79.30959 
3-O-acetyl-16alpha-

hydroxytrametenolic acid 
- 

9. 7.50 C22H22O12 477.16089[M-H]- 477.10385 
299.00562，284.99008，

242.96591，198.97444 
isorhamnetin-3-O-

glucoside 
- 

10. 10.02 C7H6O4 153.01808[M-H]- 153.01933 109.02802 protocatechuic acid [24, 25] 

11. 13.05 C15H14O7 305.06567[M-H]- 305.06668 

261.07675，219.06531，
179.03368，167.03358，
139.03859，137.02303，

125.02293 

(-)-epigallocatechin [24, 26] 

12. 15.81 C15H14O6 289.07156[M-H]- 289.07176 
245.08133，206.05318，
203.07050，125.02300，

109.02809 
catechin [25, 27] 

13. 18.16 C9H6O4 177.01816[M-H]- 177.01933 133.02818，105.03335 
esculetin/6,7-

dihydroxycoumarin 
[24] 

14. 19.28 C27H30O14 577.13550[M-H]- 577.15628 
407.07693，289.07166，
245.08171，161.02321，

137.02295，125.02300 
kaempferitrin - 

15. 21.20 C21H24O11 451.13779[M-H]- 451.12458 

397.25290，320.31161，
274.60251，229.94392，
212.84039，176.54782，

159.06668，153.77745 

epicatechin-5-O-β-D-
glucopyranaoside 

[24, 28] 

(Table 3) Contd… 
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No 
RT 

(min) 
Chemical 
Formula 

Measured Value 
(m/z) 

Theoretical 
Value (m/z) 

Fragmentation Compounds References 

16. 22.98 C15H14O6 289.07089[M-H]- 289.07176 

245.08134，206.05290，
203.07045，179.03381，
151.03880，137.02309，
125.02300，109.02808，

97.02811 

epicatechin [24, 25, 29] 

17. 23.05 C6H10O7 193.01312[M-H]- 193.03537 
165.01799，137.02293，

121.02817 
glucuronic acid - 

18. 24.02 C30H24O16 639.09863[M-H]- 639.09916 
301.03491，257.04495，
215.03409，193.01318，

175.00232，125.02290 

quercetin-3-(2''-
caffeylglucuronide) 

- 

19. 24.20 C15H12O8 319.04474[M-H]- 319.04594 
193.01320，178.99731，
175.00241，165.01796，

125.02296 
dihydromyricetin [24, 29] 

20. 30.24 C15H14O5 273.07678[M-H]- 273.07685 
229.08650，189.05489，
187.07535，166.02608，

123.04407 
epiafzelechin [26] 

21. 33.12 C30H24O12 575.12006[M-H]- 575.11950 
539.09937，449.08884，
423.07263，327.05060，

163.00256，125.02304 
proanthocyanidin A2 [25, 29] 

22. 37.59 C15H12O7 303.05051[M-H]- 303.05103 

285.04053，241.05025，
217.04988，199.03909，
177.01811，153.01816，

125.02309 

dihydroquercetin [24, 25] 

23. 39.39 C35H60O6 575.12006[M-H]- 575.43171 

539.09747，449.08704，
423.07138，327.05225，
285.04007，137.02345，

125.02290 

daucosterol [24] 

24. 39.56 C8H8O4 167.03397[M-H]- 167.03498 123.04377 
3,4-

dihydroxyphenylacetic 
acid 

- 

25. 39.91 C15H10O6 285.04041[M-H]- 285.04046 
241.05063，217.05078，
202.02705，199.03935，

175.03880 
kaempferol [24, 30] 

26. 45.99 C15H12O7 303.05084[M-H]- 303.05102 
151.00229，125.02303，

107.01243 

5,7,3',4',5'-
pentahydroxydihydrofla-

vone 
[24] 

27. 47.31 C15H12O6 287.05588[M-H]- 287.05611 
259.06094，243.06607，

201.05469，125.02309 
dihydrokaempferol [24] 

28. 48.53 C15H10O8 317.02927[M-H]- 317.03029 
178.99733，151.00229，

137.02304，107.01238 
myricetin [24, 25, 29] 

29. 54.69 C15H12O6 287.05609[M-H]- 287.05611 
151.00241，135.04387，

125.02351，107.01264 
eriodictyol [24] 

30. 55.36 C15H10O7 301.03534[M-H]- 301.03538 
178.99759，152.00613，
151.00243，121.02808，

107.01266 
quercetin [24, 25] 

(Table 3) Contd… 
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No 
RT 

(min) 
Chemical 
Formula 

Measured Value 
(m/z) 

Theoretical 
Value (m/z) 

Fragmentation Compounds References 

31. 58.67 C15H12O5 271.06076[M-H]- 271.06120 
177.01814，151.00241，
119.04889，107.01248，

93.03317 
naringenin [24, 25] 

32. 59.08 C18H34O5 329.23331[M-H]- 329.23335 
229.14401，211.13318，
183.13814，171.10132，

139.11191 

(15Z)-9,12,13-
trihydroxy-15-

octadecenoic acid 
- 

33. 59.21 C15H10O6 285.04037[M-H]- 285.04046 
201.02451，151.00247，

130.23360，106.44122 
luteolin - 

34. 66.84 C16H30O4 285.20728[M-H]- 285.20713 
267.19684，223.20628，

158.93121 
hexadecanedioic acid - 

35. 68.33 C18H32O4 311.22272[M-H]- 311.22278 293.21234，249.22192 9-HpODE - 

36. 69.50 C18H34O3 297.24329[M-H]- 297.24352 
279.23334，183.13800，

158.93307，91.76136 
12-hydroxy-9-

octadecenoic acid 
- 

37. 70.86 C30H46O4 469.33221[M-H]- 469.33233 
436.03864，397.15903，

158.92770，141.01570 

29-hydroxy-3-
oxotirucalla-7,24-dien-

21-oic ac-
id/Xanthocerasic acid 

[29] 

Table 4. Supplementary chemical composition of Xanthocerais lignum. 

No. Compounds Name References 

Flavonoids 

1. rutinum [27] 

2. cinnamtannin B1 [32] 

3. (2R,3R)-3,3',5,5',7-pentahydroxydihydroflavone [33] 

4. epigallo-catechin-(4β→8,2β→O-7)-epicatechin [34] 

5. 3-methoxy-2', 4', 5, 6', 7-pentahydroxyflavone [35] 

6. 3,3′,4′,5,7-pentahydroxy-flavanone [25, 29] 

7. gallocatechin [25, 27] 

8. myricitrin [25, 27] 

Triterpenoids 

9. 3-oxotirucalla-7,24-dien-21-oic acid [34] 

10. 24-methylenecycloartan-3-ol [34] 

11. oleanolic acid [34] 

Phenylpropanoids 

12. xanthocerin [36] 

Steroids 

13. stigmasterol [37] 

Phenols 

14. 2-hydroxy-6-methylbenzoic acid [38] 

15. isochlorogenic acid B [32] 

(Table 4) Contd… 
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No. Compounds Name References 

16. methyl 3-hydroxy-4-methoxybenzoate [35] 

17. methyl 3,4-dihydroxybenzoate [39] 

18. 5,7-dihydroxychromone [38] 

Quinones 

19. chrysophanol [40] 

20. physcion [40] 

21. emodin [40] 

22. 2,5-dimethoxy-p-benzoquinone [40] 

Organic Acids 

23. (9S,10R,11E,13R)-9,10,13-Trihydroxy-11-octadecenoic acid [24] 

24. 3,4,5-trimethoxy benzoic acid [38] 

25. nonadecanoic acid [37] 

26. heneicosanoic acid [37] 

27. tetracosanoic acid [37] 

Other Chemical Components 

28. 1,4,6,7,8-pentahydroxy-9-methyl-10-oxo-5,6,7,8,9,10-hexahydro-benzocycloocten-5-ylester [35] 

29. dibutyl phthalate [39] 

30. 4-muurolene-3,10-diol [39] 

31. 3,4-dimethylfuran [39] 

32. xanthocerapene [32] 
 
Table 5. Predicted results of anti-RA activity natural products in Xanthocerais lignum by integrated model. 

Target Compounds (Prediction Probability: High to Low) 

PI3K xanthocerin(25); myricitrin(15); myricetin(3); isorhamnetin-3-O-glucoside(16); quercetin-3-(2''-caffeylglucuronide)(18); epigallo-catechin-(4β→
8,2β→O-7)-epicatechin(12); β-Sitosterol(26); cinnamtannin B1(10); rutinum(8); 3-O-acetyl-16alpha-hydroxytrametenolic acid(23); 24-

methylenecycloartan-3-ol(21); 3-methoxy-2',4',5,6',7-pentahydroxyflavone(13); serylleucine(36); dihydromyricetin(6); stigmasterol(28); 4-
muurolene-3,10-diol(34); isochlorogenic acid B(30); procyanidin A-2(9); xanthocerasic acid(19); taxifolin(5); oleanolic acid(22); (2R,3R)-

3,3',5,5',7-pentahydroxydihydroflavone(11); 1,4,6,7,8-pentahydroxy-9-methyl-10-oxo-5,6,7,8,9,10-hexahydro-benzocycloocten-5-ylester(33); 
kaempferitrin(17); xanthocerapene(35); dihydrokaempferol(4); 3-oxotirucalla-7,24-dien-21-oic acid(20) 

AKT isorhamnetin-3-O-glucoside(16); cinnamtannin B1(10); procyanidin A-2(9) 

Bcl2 daucosterol(27); 3,3',4',5,7-pentahydroxy-flavanone(14); 3-O-acetyl-16alpha-hydroxytrametenolic acid(23) 

EGFR myricetin(3); myricitrin(15); quercetin(2); rutinum(8); isorhamnetin-3-O-glucoside(16); quercetin-3-(2''-caffeylglucuronide)(18); kaempferol(1); 
epigallo-catechin-(4β→8,2β→O-7)-epicatechin(12); kaempferitrin(17); dihydromyricetin(6); 3-methoxy-2',4',5,6',7-pentahydroxyflavone(13); 

cinnamtannin B1(10) 

IGF1R myricetin(3); quercetin(2); gallic acid(31); protocatechuic acid(29); 3,4-dihydroxyphenylacetic acid(32); esculetin(24) 

FAK epicatechin-5-O-β-D-glucopyranaoside(7); rutinum(8); isorhamnetin-3-O-glucoside(16) 

IRAK4 isorhamnetin-3-O-glucoside(16); daucosterol(27) 
 
by activating the antioxidant pathway, inhibiting cyclooxy-
genase, and regulating the expression of cytokines [31], and 
maybe the main active component of Xanthocerais lignum in 
exerting its anti-RA effect. 

3.7. Integrated Model Prediction Results 
The integrated models with different targets were used to 

predict and screen the Xanthocerais lignum compound li-
brary. The predicted results can be found in Table 5, and the 
structures of active ingredients can be seen in Fig. (10). 

Among them, 27 active ingredients targeting PI3K were pre-
dicted, and it can be observed that most of these compounds 
are flavonoids, which typically contain multiple hydroxyl 
groups that can form hydrogen bonds with PI3K targets, 
thereby inhibiting their activity. Additionally, many of these 
compounds contain oxygen atoms at the C-3 and C-4 posi-
tions, which can interact with the subunits of the PI3K pro-
tein, thereby altering its conformation and inhibiting its ac-
tivity. Moreover, many of these compounds have been con-
firmed to have PI3K inhibitory activity, such as myricetin, 
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which can competitively bind to the ATP binding site of 
the PI3K enzyme, thereby blocking its catalytic activity and 
affecting the activation state of downstream Akt [41]. Three 
active ingredients targeting AKT were predicted, all of 
which are flavonoids. Cinnamtannin B1 and procyanidin A-2 
have similar skeletal structures consisting of anisotropic 
units that have good electron density and can form stable π-π 
stacking structures, thereby interacting with the aromatic 
amino acids on the protein surface and possibly playing a 
critical role in the activation and inhibition process of the 
AKT target. Three active ingredients targeting Bcl2 were 
predicted. They all contain a cyclic lipid structure and multi-
ple hydroxyl groups. The cyclic lipid structure can pro-

vide spatial conformation for the molecule, while 
the hydroxyl groups can interact with the amino acid resi-
dues through hydrogen bonding, ultimately affecting the 
positioning and activity of the molecule on the Bcl2 target. 
Twelve active ingredients targeting EGFR were predicted, 
all of which are flavonoids. The two compounds with the 
highest activity are myricetin and its 3-O-rhamnoside, and it 
is speculated that compounds with this type of structure can 
bind well to the EGFR target and exert an inhibitory effect. 

Six active ingredients targeting IGF1R were predicted, 
all of which contain a benzene ring or a benzopyran skele-
ton, and most of them contain hydroxyl groups. The-

 
Fig. (10). Anti-RA activity natural products in Xanthocerais lignum. 



Anti-rheumatoid Arthritis Natural Products of Xanthocerais Combinatorial Chemistry & High Throughput Screening, 2025, Vol. 28, No. 4     645 

se structural features may be related to their inhibitory effect 
on the IGF1R target, as hydroxyl groups can form hydrogen 
bonds or hydrophobic interactions with the amino acid resi-
dues in the ligand binding site of IGF1R. In addition, the 
benzene ring or benzopyran skeleton can form π-π stacking 
with the aromatic ring in the ligand binding site of IGF1R 
[42]. Three active ingredients targeting FAK and two active 
ingredients targeting IRAK4 were predicted, and it can be 
observed that they all have one or more sugar substitutions. 
These sugar substitutions can increase the bioavailability of 
the compound and may have an important impact on the 
affinity of the compound with the target. 

By performing frequency statistics on the integrated 
model prediction results, it can be found that isorhamnetin-3-
O-glucoside, myricetin, rutinum, and cinnamtannin B1 have 
inhibitory effects on three or more targets, while dihydromy-
ricetin, myricitrin, daucosterol, etc., have inhibitory ef-
fects on two targets. Moreover, myricetin and dihydromyri-
cetin have relatively high relative contents in Xanthocerais 
lignum, so these components may be the main active ingre-
dients for its anti-RA effect. 

The numbers in parentheses in Table 5 correspond to the 
compound structure in Fig. (10). 

CONCLUSION 

This study successfully applied LC-MS and AI tech-
niques to predict the anti-RA active components 
in Xanthocerais lignum. We used various machine learning 
algorithms and GCN to generate an integrated model and 
evaluated its performance by comparing the confusion ma-
trices and relevant evaluation metrics on the test sets. The 
results showed that the integrated model had bet-
ter predictive performance than individual models and exhib-
ited higher accuracy and precision on all target data sets. 
Additionally, we conducted a dimensionality reduction anal-
ysis of molecular features to better understand the differ-
ences between active and inactive molecules. The results 
showed that active and inactive molecules in each target data 
set had significant differences in structure and properties. 
The integrated model can learn these differential features to 
accurately classify active and inactive molecules and predict 
the anti-RA active components in Xanthocerais lignum. 

Through activity screening of compounds in Xan-
thocerais lignum, we identified several compounds with po-
tential anti-RA activity, such as isorhamnetin-3-O-glucoside, 
myricetin, rutinum, cinnamtannin B1, dihydromyricetin, etc. 
These results provide a valuable reference for further re-
search on the anti-RA active ingredients in Xanthocerais 
lignum. However, this study also has some limitations, such 
as possible errors or missing data in the data preparation 
process, and our model may be affected by factors such 
as dataset size and molecular descriptor selection. Therefore, 
future improvements in this method are needed to en-
hance predictive accuracy and reliability. 

In summary, this study successfully applied LC-MS and 
AI techniques to predict the anti-RA active components in 
Xanthocerais lignum and provided valuable references for 
further research on the pharmacology and active natural 
products of Xanthocerais lignum. Our research results indi-

cate that LC-MS and AI techniques have broad application 
prospects in natural product pharmacology and structure-
activity relationship studies. In the future, we will further 
explore the application of these techniques in other natural 
products and continuously improve the method to provide 
more powerful support for the discovery of new active mole-
cules in medicinal plants. 
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