Skip to content
2000
Volume 7, Issue 3
  • ISSN: 2211-5447
  • E-ISSN: 2211-5455

Abstract

Background: In this work, we aimed to synthesize gold nanoparticles stabilized with Nacetyl- L-cysteine and study their catalytic activity towards the benzaldehyde oxidation as well as the formation of imines. Methods: N-acetyl-L-cysteine stabilized gold nanoparticles were prepared and the catalyst was characterized via spectroscopic techniques such as UV-VIS spectrophotometry and SERS. Gold nanoparticles dimensions were evaluated through DLS and SEM. After having the catalytic system set, the oxidation of benzaldehyde and the one-pot reaction for the synthesis of imines were proceeded. All the products were characterized via NMR spectroscopy. Results: Regarding the nanoparticles dimensions, a diameter of approximately 25 nm was achieved. Firstly, gold nanoparticles were effective towards the benzaldehyde oxidation, with a conversion of 97%. Furthermore, we investigated a one-pot formation of imines and it was noticed through NMR analysis a carboxylic acid as intermediate. Finally, a substrate scope with different aldehydes and amines was created and products were obtained with up 99%. Conclusion: N-acetyl-L-cysteine modified gold nanoparticles are effective support-free catalyst for the chemoselective aldehyde oxidation/amine coupling to imine under mild conditions. Aromatic aldehydes were consumed to form benzoic acids and went under an amine coupling reaction giving a wide range of imines. This consists the first example in which there is a support-free catalyst capable of synthesize imines from aldehydes through carboxylic acids with good to excellent yields.

Loading

Article metrics loading...

/content/journals/ccat/10.2174/2211544707666181023120026
2018-12-01
2025-09-04
Loading full text...

Full text loading...

/content/journals/ccat/10.2174/2211544707666181023120026
Loading

  • Article Type:
    Research Article
Keyword(s): benzaldehyde; benzoic acid; catalysis; Gold nanoparticles; imines; N-acetyl-L-cysteine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test