Abstract
The EGFR, a major receptor tyrosine kinase in the HER family, controls cell growth and division via its extracellular and intracellular tyrosine kinase domains. Ligand binding and receptor dimerization stimulate downstream pathways such as KRAS-BRAF-MEK-ERK, which are critical for cell proliferation, survival, and angiogenesis. Dysregulation of EGFR is linked to cancer development by encouraging uncontrolled cell proliferation, resistance to apoptosis, and metastases. Anti-EGFR medicines, including monoclonal antibodies (e.g., cetuximab) that prevent ligand binding and tyrosine kinase inhibitors (e.g., gefitinib), suppress abnormal EGFR signaling to slow cancer growth. Their usefulness is, however, constrained by issues, such as drug resistance, off-target effects, and limited potency in specific tumors. By using nanoparticles, including liposomes, polymeric nanoparticles, and quantum dots, for accurate drug administration, decreased systemic toxicity, and circumvention of resistance mechanisms, nanotechnology-based techniques have been developed to improve EGFR-targeted therapy. Functionalized nanoparticles improve effectiveness and make combo treatments possible by permitting regulated drug release and active targeting. These developments hold promise for addressing present constraints and offering individualized treatment choices. Comprehending EGFR signaling and using nanotechnology continue to be essential for creating more potent, focused cancer treatments.
© 2025 Bentham Science Publishers
Article metrics loading...
/content/journals/ccand/10.2174/012212697X377694250715132428
2025-01-01
2025-10-09
-
/content/journals/ccand/10.2174/012212697X377694250715132428
dcterms_title,dcterms_subject,pub_keyword
-contentType:Contributor -contentType:Concept -contentType:Institution
10
5
Full text loading...
[Citing articles]
[Web of Science]
[Medline]
References
-
BurgessA.W.
Regulation of signaling from the epidermal growth factor family.
J. Phys. Chem. B20221263974757485
10.1021/acs.jpcb.2c0415636169380
[Google Scholar]
-
UlfoL.
CostantiniP.E.
Di GiosiaM.
DanielliA.
CalvaresiM.
EGFR-targeted photodynamic therapy.
Pharmaceutics2022142241
10.3390/pharmaceutics1402024135213974
[Google Scholar]
-
PoorasamyJ.
GargD.
BhartiJ.
Overexpression of ErbB-1 (EGFR) protein in eutopic endometrium of infertile women with severe ovarian endometriosis during the ‘implantation window’ of menstrual cycle.
Reprod. Med.202234280296
10.3390/reprodmed3040022
[Google Scholar]
-
SankarapandianV.
RajendranR.L.
MirukaC.O.
A review on tyrosine kinase inhibitors for targeted breast cancer therapy.
Pathol. Res. Pract.2024263155607
10.1016/j.prp.2024.15560739326367
[Google Scholar]
-
ShettyS.R.
Recent advances on epidermal growth factor receptor as a molecular target for breast cancer therapeutics.
Anticancer. Agents Med. Chem.2021211417831792
10.2174/1871520621666201222143213
[Google Scholar]
-
LiY.
MaoT.
WangJ.
Toward the next generation EGFR inhibitors: An overview of osimertinib resistance mediated by EGFR mutations in non-small cell lung cancer.
Cell Commun. Signal.202321171
10.1186/s12964‑023‑01082‑837041601
[Google Scholar]
-
PourmadadiM.
MohammadzadehV.
Sadat MohammadiZ.
Advances in erlotinib delivery systems: Addressing challenges and exploring opportunities in EGFR-targeted cancer therapies.
Inorg. Chem. Commun.2024161112114
10.1016/j.inoche.2024.112114
[Google Scholar]
-
ZhangJ.
LiY.
GuoS.
ZhangW.
FangB.
WangS.
Moving beyond traditional therapies: The role of nanomedicines in lung cancer.
Front. Pharmacol.2024151363346
10.3389/fphar.2024.136334638389925
[Google Scholar]
-
NwankwoE.I.
Innovative drug delivery methods for combating antimicrobial resistance.
Inter Med Sci Res J20244817
10.51594/imsrj.v4i8.1454
[Google Scholar]
-
ElumalaiK.
SrinivasanS.
ShanmugamA.
Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment.
Biomed Technol20245109122
10.1016/j.bmt.2023.09.001
[Google Scholar]
-
RoszkowskiS.
DurczynskaZ.
Advantages and limitations of nanostructures for biomedical applications.
Adv. Clin. Exp. Med.2025343447456
10.17219/acem/18684638860712
[Google Scholar]
-
JoshiP.
VermaK.
Kumar SemwalD.
DwivediJ.
SharmaS.
Mechanism insights of curcumin and its analogues in cancer: An update.
Phytother. Res.2023371254355463
10.1002/ptr.798337649266
[Google Scholar]
-
MenonS.
Dynamical modeling of the core gene network and mutation in transitional cell carcinoma.J. Emerg. Technol. Innov. Res.2023101218
[Google Scholar]
-
GattaA.
Novel anti-glioblastoma therapeutic vaccines based on optimal stimulation of tumor specific CD4+ T helper cells.Anno Accademico202417
[Google Scholar]
-
RahmanM.A.
IslamF.
HasanM.
Monoclonal antibody: A cell specific immunotherapy to treat cancer.
Int. J. Basic Clin. Pharmacol.2023122290302
10.18203/2319‑2003.ijbcp20230404
[Google Scholar]
-
YanY.
Frontiers in oncology.In: Targeted cancer therapies, from small molecules to antibodies.Lausanne, SwitzerlandFrontiers2023272
[Google Scholar]
-
CaswellD.R.
GuiP.
MayekarM.K.
The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance.
Nat. Genet.20245616073
10.1038/s41588‑023‑01592‑838049664
[Google Scholar]
-
HanR.
LuC.
HuC.
Brigatinib, a newly discovered AXL inhibitor, suppresses AXL-mediated acquired resistance to osimertinib in EGFR-mutated non-small cell lung cancer.
Acta Pharmacol. Sin.202445612641275
10.1038/s41401‑024‑01237‑438438582
[Google Scholar]
-
KumarP.
ManglaB.
JavedS.
Gefitinib: An updated review of its role in the cancer management, its nanotechnological interventions, recent patents and clinical trials.
Rec Pat Anticancer Drug Discov2023184448469
10.2174/157489281866622102616494036305149
[Google Scholar]
-
WangC.
ZhangY.
ZhangT.
Epidermal growth factor receptor dual-target inhibitors as a novel therapy for cancer: A review.
Int. J. Biol. Macromol.2023253Pt 7127440
10.1016/j.ijbiomac.2023.12744037839594
[Google Scholar]
-
ShahbazM.
ImranM.
AlsagabyS.A.
Anticancer, antioxidant, ameliorative and therapeutic properties of kaempferol.
Int. J. Food Prop.202326111401166
10.1080/10942912.2023.2205040
[Google Scholar]
-
DickersonH.
DiabA.
Al MusaimiO.
Epidermal growth factor receptor tyrosine kinase inhibitors in cancer: Current use and future prospects.
Int. J. Mol. Sci.2024251810008
10.3390/ijms25181000839337496
[Google Scholar]
-
Gonzalez-SanchezE.
VaqueroJ.
Caballero-DiazD.
The hepatocyte epidermal growth factor receptor (EGFR) pathway regulates the cellular interactome within the liver fibrotic niche.
J. Pathol.20242634-5482495
10.1002/path.629938872438
[Google Scholar]
-
MurataniS.
IchikawaS.
EramiK.
ItoS.
Oxidative stress‐mediated epidermal growth factor receptor activation by cigarette smoke or heated tobacco aerosol in human primary bronchial epithelial cells from multiple donors.
J. Appl. Toxicol.202343913471357
10.1002/jat.446936946243
[Google Scholar]
-
MuluhT.A.
LuX.
ZhangY.
Combined immunotherapy and targeted therapies for cancer treatment: Recent advances and future perspectives.
Curr. Cancer Drug Targets2023234251264
10.2174/156800962366622102010460336278447
[Google Scholar]
-
WujcikD.
EGFR as a target: Rationale for therapy.
In: Seminars in oncology nursing.Amsterdam, NetherlandsElsevier
200610.1016/j.soncn.2006.01.010
[Google Scholar]
-
GłuszakP.
Xerosis as the toxicity of novel anti-cancer therapies—pathophysiology and management.
Forum Dermatol20239250
10.5603/FD.a2023.0004
[Google Scholar]
-
TrenkerR.
DiwanjiD.
BinghamT.
VerbaK.A.
JuraN.
Structural dynamics of the active HER4 and HER2/HER4 complexes is finely tuned by different growth factors and glycosylation.
eLife202412RP92873
10.7554/eLife.9287338498590
[Google Scholar]
-
IyerR.S.
NeedhamS.R.
GaldadasI.
Drug-resistant EGFR mutations promote lung cancer by stabilizing interfaces in ligand-free kinase-active EGFR oligomers.
Nat. Commun.20241512130
10.1038/s41467‑024‑46284‑x38503739
[Google Scholar]
-
KotE.F.
GoncharukS.A.
FrancoM.L.
Structural basis for the transmembrane signaling and antidepressant-induced activation of the receptor tyrosine kinase TrkB.
Nat. Commun.20241519316
10.1038/s41467‑024‑53710‑739472452
[Google Scholar]
-
AnwarS.
YokotaT.
Navigating the complex landscape of fibrodysplasia ossificans progressiva: From current paradigms to therapeutic frontiers.
Genes (Basel)202314122162
10.3390/genes1412216238136984
[Google Scholar]
-
RaoP.P.
ZhaoY.
HuangR.
Check for updates chapter 2.Computat
Mod Drugs Again Alzheimer’s Dis 202320351
[Google Scholar]
-
SherE.F.
DNA Pole Inhibition in Triple-Negative Breast Cancer (TNBC) Leads to Robust Tumor Control and NF-kB-Mediated Inflammation.New YorkNew York University2024
[Google Scholar]
-
AlbagoushS.
ZubairM.
LimaiemF.
Tissue Evaluation for HER2 Tumor Marker.Treasure Island, FloridaStatPearls2024
[Google Scholar]
-
ManglaB.
MittalP.
KumarP.
AggarwalG.
Multifaceted role of erlotinib in various cancer: Nanotechnology intervention, patent landscape, and advancements in clinical trials.
Med. Oncol.2024417173
10.1007/s12032‑024‑02414‑538864966
[Google Scholar]
-
MarquesA.C.
Antibody-functionalized nanoparticles for targeted drug delivery in cancer therapy.
In: handbook of cancer and
immunology. Cham: Springer 2023143
10.1007/978‑3‑030‑80962‑1_297‑1
[Google Scholar]
-
ZhaoH.
LiY.
ChenJ.
Environmental stimulus-responsive mesoporous silica nanoparticles as anticancer drug delivery platforms.
Colloids Surf. B Biointerfaces2024234113758
10.1016/j.colsurfb.2024.11375838241892
[Google Scholar]
-
ChengR.
SantosH.A.
Smart nanoparticle‐based platforms for regulating tumor microenvironment and cancer immunotherapy.
Adv. Healthc. Mater.20231282202063
10.1002/adhm.20220206336479842
[Google Scholar]
-
DuanC.
YuM.
XuJ.
LiB.Y.
ZhaoY.
KankalaR.K.
Overcoming cancer multi-drug resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges.
Biomed. Pharmacother.2023162114643
10.1016/j.biopha.2023.11464337031496
[Google Scholar]
-
GargP.
MalhotraJ.
KulkarniP.
HorneD.
SalgiaR.
SinghalS.S.
Emerging therapeutic strategies to overcome drug resistance in cancer cells.
Cancers202416132478
10.3390/cancers1613247839001539
[Google Scholar]
-
HuangP.
WangC.
DengH.
ZhouY.
ChenX.
Surface engineering of nanoparticles toward cancer theranostics.
Acc. Chem. Res.2023561317661779
10.1021/acs.accounts.3c0012237314368
[Google Scholar]
-
TanK.F.
In LLA, Vijayaraj Kumar P. Surface functionalization of gold nanoparticles for targeting the tumor microenvironment to improve antitumor efficiency.
ACS Appl. Bio Mater.20236829442981
10.1021/acsabm.3c0020237435615
[Google Scholar]
-
SrirangaT.
Controlled Drug Delivery System: A Comprehensive Review on Existing and Novel Technologies.Mod Res Pharma Sci20249923
[Google Scholar]
-
EwiiU.E.
Novel drug delivery systems: Insight into self-powered and nano-enabled drug delivery systems.ChinaNano TransMed2024100042
[Google Scholar]
-
AskarizadehM.
EsfandiariN.
HonarvarB.
SajadianS.A.
Azdarpour A. Kinetic modeling to explain the release of medicine from drug delivery systems.
ChemBioEng Rev.202310610061049
10.1002/cben.202300027
[Google Scholar]
-
KhalbasA.H.
AlbayatiT.M.
AliN.S.
SalihI.K.
Drug loading methods and kinetic release models using of mesoporous silica nanoparticles as a drug delivery system: A review.
S. Afr. J. Chem. Eng.202450261280
10.1016/j.sajce.2024.08.013
[Google Scholar]
-
GautamS.
LakhanpalI.
SonowalL.
GoyalN.
Recent advances in targeted drug delivery using metal-organic frameworks: Toxicity and release kinetics.
Next Nanotech20233-4100027
10.1016/j.nxnano.2023.100027
[Google Scholar]
-
BurandeA.S.
EGFR targeted paclitaxel and piperine co-loaded liposomes for the treatment of triple negative breast cancer.AAPS PharmSciTech202021112
[Google Scholar]
-
EloyJ.O.
RuizA.
de LimaF.T.
EGFR-targeted immuno] liposomes efficiently deliver docetaxel to prostate cancer cells.
Colloids Surf. B Biointerfaces2020194111185
10.1016/j.colsurfb.2020.11118532574928
[Google Scholar]
-
GuH.
ShiR.
XuC.
EGFR-targeted liposomes combined with Ginsenoside Rh2 inhibit triple-negative breast cancer growth and metastasis.
Bioconjug. Chem.202334611571165
10.1021/acs.bioconjchem.3c0020737235785
[Google Scholar]
-
JiaD
YangY
YuanF
Increasing the antitumor efficacy
of doxorubicin liposomes with coupling an anti-EGFR affibody
in EGFR-expressing tumor models.
Int J Pharm 2020586119541
10.1016/j.ijpharm.2020.11954132544521
[Google Scholar]
-
SoleimaniA.
MirzaviF.
Nikoofal-SahlabadiS.
CD73 downregulation by EGFR-targeted liposomal CD73 siRNA potentiates antitumor effect of liposomal doxorubicin in 4T1 tumor-bearing mice.
Sci. Rep.202212110423
10.1038/s41598‑022‑14392‑735729230
[Google Scholar]
-
KumariL.
EhsanI.
MondalA.
Cetuximab-conjugated PLGA nanoparticles as a prospective targeting therapeutics for non-small cell lung cancer.
J. Drug Target.2023315521536
10.1080/1061186X.2023.219935037010248
[Google Scholar]
-
EmamiF.
DuwaR.
BanstolaA.
WooS.M.
KwonT.K.
YookS.
Dual receptor specific nanoparticles targeting EGFR and PD-L1 for enhanced delivery of docetaxel in cancer therapy.
Biomed. Pharmacother.2023165115023
10.1016/j.biopha.2023.11502337329708
[Google Scholar]
-
BhattacharyaS.
Anti-EGFR-mAb and 5-fluorouracil conjugated polymeric nanoparticles for colorectal cancer.
Recent Patents Anticancer Drug Discov.202116184100
10.2174/22123970MTEyvNTYd333349222
[Google Scholar]
-
DuwaR.
BanstolaA.
EmamiF.
JeongJ-H.
LeeS.
YookS.
Cetuximab conjugated temozolomide-loaded poly (lactic-co-glycolic acid) nanoparticles for targeted nanomedicine in EGFR overexpressing cancer cells.
J. Drug Deliv. Sci. Technol.202060101928
10.1016/j.jddst.2020.101928
[Google Scholar]
-
RevillaG.
Al QtaishN.
CaruanaP.
Lenvatinib-loaded poly(lactic-co-glycolic acid) nanoparticles with epidermal growth factor receptor antibody conjugation as a preclinical approach to therapeutically improve thyroid cancer with aggressive behavior.
Biomolecules202313111647
10.3390/biom1311164738002329
[Google Scholar]
-
YuA.Y.H.
FuR-H.
HsuS.
Epidermal growth factor receptors siRNA-conjugated collagen modified gold nanoparticles for targeted imaging and therapy of lung cancer.
Mater. Today Adv.202112100191
10.1016/j.mtadv.2021.100191
[Google Scholar]
-
AnisuzzmanM.
KomallaV.
TarkistaniM.A.M.
KayserV.
Anti-tumor activity of novel nimotuzumab-functionalized gold nanoparticles as a potential immunotherapeutic agent against skin and lung cancers.
J. Funct. Biomater.2023148407
10.3390/jfb1408040737623652
[Google Scholar]
-
HuangS.
HuangG.
The utilization of quantum dot labeling as a burgeoning technique in the field of biological imaging.
RSC Advances202414292088420897
10.1039/D4RA04402A38957578
[Google Scholar]
-
QiL.
LiuS.
PingJ.
Recent advances in fluorescent nanoparticles for stimulated emission depletion imaging.
Biosensors2024147314
10.3390/bios1407031439056590
[Google Scholar]
-
ChoiM.J.
LeeY.K.
ChoiK.C.
Tumor-targeted erythrocyte membrane nanoparticles for theranostics of triple-negative breast cancer.
Pharmaceutics2023152350
10.3390/pharmaceutics1502035036839675
[Google Scholar]
-
YazdianF.
Aptamer-functionalized quantum dots for targeted cancer therapy.
In:Aptamers engineered nanocarriers for cancer therapy.Amsterdam, NetherlandsElsevier
2023295315
10.1016/B978‑0‑323‑85881‑6.00012‑9
[Google Scholar]
-
AlbayatiT.M.
AlardhiS.M.
KhalbasA.H.
Comprehensive review of mesoporous silica nanoparticles: Drug loading, release, and applications as hemostatic agents.
ChemistrySelect2024923202400450
10.1002/slct.202400450
[Google Scholar]
-
WuH.
DingX.
ChenY.
CaiY.
YangZ.
JinJ.
EGFR-targeted humanized single chain antibody fragment functionalized silica nanoparticles for precision therapy of cancer.
Int. J. Biol. Macromol.2023253Pt 8127538
10.1016/j.ijbiomac.2023.12753837866562
[Google Scholar]
-
KimY.
KimJ.
EomS.
Protein nanoparticles simultaneously displaying trail and EGFR-binding ligands effectively induce apoptotic cancer cell death and overcome EGFR-TKI resistance in lung cancer.
ACS Appl. Mater. Interfaces202517172513925151
10.1021/acsami.5c0402140237189
[Google Scholar]
-
DjermaneR.
NietoC.
VegaM.A.
del ValleE.M.M.
EGFR-targeting polydopamine nanoparticles co-loaded with 5-fluorouracil, irinotecan, and leucovorin to potentially enhance metastatic colorectal cancer therapy.
Sci. Rep.202414129265
10.1038/s41598‑024‑80879‑039587206
[Google Scholar]
-
MehtaM.
BuiT.A.
CareA.
DengW.
Targeted polymer lipid hybrid nanoparticles for in-vitro siRNA therapy in triple-negative breast cancer.
J. Drug Deliv. Sci. Technol.202498105911
10.1016/j.jddst.2024.105911
[Google Scholar]
-
Rahmani KheyrollahiM.
MohammadnejadJ.
EidiA.
JafaryH.
Synthesis and in vitro study of surface-modified and anti-EGFR DNA aptamer conjugated chitosan nanoparticles as a potential targeted drug delivery system.
Heliyon2024101938904
10.1016/j.heliyon.2024.e3890439435057
[Google Scholar]
-
[Google Scholar]
-
DukeE.S.
StaplefordL.
DreznerN.
FDA approval summary: Mobocertinib for metastatic non–small cell lung cancer with] EGFR Exon 20 Insertion Mutations.
Clin. Cancer Res.2023293508512
10.1158/1078‑0432.CCR‑22‑207236112541
[Google Scholar]
-
GrigorescuA.C.
2024: Ten years of progress in EGFRm NSCLC.Oncol Hemat20246831417
[Google Scholar]
-
MilaneL.
AmijiM.
Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: Impact on translational nanomedicine.
Drug Deliv. Transl. Res.202111413091315
10.1007/s13346‑021‑00911‑y33512669
[Google Scholar]
-
ShandilyaR
PathakN
LohiyaNK
SharmaRS
MishraPK
Nanotechnology in reproductive medicine: Opportunities
for clinical translation
Clin Exp Reprod Med 202047(4)24562
10.5653/cerm.2020.0365033227186
[Google Scholar]
/content/journals/ccand/10.2174/012212697X377694250715132428