Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2212-697X
  • E-ISSN: 2212-6988

Abstract

The EGFR, a major receptor tyrosine kinase in the HER family, controls cell growth and division its extracellular and intracellular tyrosine kinase domains. Ligand binding and receptor dimerization stimulate downstream pathways such as KRAS-BRAF-MEK-ERK, which are critical for cell proliferation, survival, and angiogenesis. Dysregulation of EGFR is linked to cancer development by encouraging uncontrolled cell proliferation, resistance to apoptosis, and metastases. Anti-EGFR medicines, including monoclonal antibodies (., cetuximab) that prevent ligand binding and tyrosine kinase inhibitors (., gefitinib), suppress abnormal EGFR signaling to slow cancer growth. Their usefulness is, however, constrained by issues, such as drug resistance, off-target effects, and limited potency in specific tumors. By using nanoparticles, including liposomes, polymeric nanoparticles, and quantum dots, for accurate drug administration, decreased systemic toxicity, and circumvention of resistance mechanisms, nanotechnology-based techniques have been developed to improve EGFR-targeted therapy. Functionalized nanoparticles improve effectiveness and make combo treatments possible by permitting regulated drug release and active targeting. These developments hold promise for addressing present constraints and offering individualized treatment choices. Comprehending EGFR signaling and using nanotechnology continue to be essential for creating more potent, focused cancer treatments.

Loading

Article metrics loading...

/content/journals/ccand/10.2174/012212697X377694250715132428
2025-01-01
2025-10-09
Loading full text...

Full text loading...

References

  1. BurgessA.W. Regulation of signaling from the epidermal growth factor family.J. Phys. Chem. B2022126397475748510.1021/acs.jpcb.2c0415636169380
    [Google Scholar]
  2. UlfoL. CostantiniP.E. Di GiosiaM. DanielliA. CalvaresiM. EGFR-targeted photodynamic therapy.Pharmaceutics202214224110.3390/pharmaceutics1402024135213974
    [Google Scholar]
  3. PoorasamyJ. GargD. BhartiJ. Overexpression of ErbB-1 (EGFR) protein in eutopic endometrium of infertile women with severe ovarian endometriosis during the ‘implantation window’ of menstrual cycle.Reprod. Med.20223428029610.3390/reprodmed3040022
    [Google Scholar]
  4. SankarapandianV. RajendranR.L. MirukaC.O. A review on tyrosine kinase inhibitors for targeted breast cancer therapy.Pathol. Res. Pract.202426315560710.1016/j.prp.2024.15560739326367
    [Google Scholar]
  5. ShettyS.R. Recent advances on epidermal growth factor receptor as a molecular target for breast cancer therapeutics.Anticancer. Agents Med. Chem.202121141783179210.2174/1871520621666201222143213
    [Google Scholar]
  6. LiY. MaoT. WangJ. Toward the next generation EGFR inhibitors: An overview of osimertinib resistance mediated by EGFR mutations in non-small cell lung cancer.Cell Commun. Signal.20232117110.1186/s12964‑023‑01082‑837041601
    [Google Scholar]
  7. PourmadadiM. MohammadzadehV. Sadat MohammadiZ. Advances in erlotinib delivery systems: Addressing challenges and exploring opportunities in EGFR-targeted cancer therapies.Inorg. Chem. Commun.202416111211410.1016/j.inoche.2024.112114
    [Google Scholar]
  8. ZhangJ. LiY. GuoS. ZhangW. FangB. WangS. Moving beyond traditional therapies: The role of nanomedicines in lung cancer.Front. Pharmacol.202415136334610.3389/fphar.2024.136334638389925
    [Google Scholar]
  9. NwankwoE.I. Innovative drug delivery methods for combating antimicrobial resistance.Inter Med Sci Res J2024481710.51594/imsrj.v4i8.1454
    [Google Scholar]
  10. ElumalaiK. SrinivasanS. ShanmugamA. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment.Biomed Technol2024510912210.1016/j.bmt.2023.09.001
    [Google Scholar]
  11. RoszkowskiS. DurczynskaZ. Advantages and limitations of nanostructures for biomedical applications.Adv. Clin. Exp. Med.202534344745610.17219/acem/18684638860712
    [Google Scholar]
  12. JoshiP. VermaK. Kumar SemwalD. DwivediJ. SharmaS. Mechanism insights of curcumin and its analogues in cancer: An update.Phytother. Res.202337125435546310.1002/ptr.798337649266
    [Google Scholar]
  13. MenonS. Dynamical modeling of the core gene network and mutation in transitional cell carcinoma.J. Emerg. Technol. Innov. Res.2023101218
    [Google Scholar]
  14. GattaA. Novel anti-glioblastoma therapeutic vaccines based on optimal stimulation of tumor specific CD4+ T helper cells.Anno Accademico202417
    [Google Scholar]
  15. RahmanM.A. IslamF. HasanM. Monoclonal antibody: A cell specific immunotherapy to treat cancer.Int. J. Basic Clin. Pharmacol.202312229030210.18203/2319‑2003.ijbcp20230404
    [Google Scholar]
  16. YanY. Frontiers in oncology.In: Targeted cancer therapies, from small molecules to antibodies.Lausanne, SwitzerlandFrontiers2023272
    [Google Scholar]
  17. CaswellD.R. GuiP. MayekarM.K. The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance.Nat. Genet.2024561607310.1038/s41588‑023‑01592‑838049664
    [Google Scholar]
  18. HanR. LuC. HuC. Brigatinib, a newly discovered AXL inhibitor, suppresses AXL-mediated acquired resistance to osimertinib in EGFR-mutated non-small cell lung cancer.Acta Pharmacol. Sin.20244561264127510.1038/s41401‑024‑01237‑438438582
    [Google Scholar]
  19. KumarP. ManglaB. JavedS. Gefitinib: An updated review of its role in the cancer management, its nanotechnological interventions, recent patents and clinical trials.Rec Pat Anticancer Drug Discov202318444846910.2174/157489281866622102616494036305149
    [Google Scholar]
  20. WangC. ZhangY. ZhangT. Epidermal growth factor receptor dual-target inhibitors as a novel therapy for cancer: A review.Int. J. Biol. Macromol.2023253Pt 712744010.1016/j.ijbiomac.2023.12744037839594
    [Google Scholar]
  21. ShahbazM. ImranM. AlsagabyS.A. Anticancer, antioxidant, ameliorative and therapeutic properties of kaempferol.Int. J. Food Prop.20232611140116610.1080/10942912.2023.2205040
    [Google Scholar]
  22. DickersonH. DiabA. Al MusaimiO. Epidermal growth factor receptor tyrosine kinase inhibitors in cancer: Current use and future prospects.Int. J. Mol. Sci.202425181000810.3390/ijms25181000839337496
    [Google Scholar]
  23. Gonzalez-SanchezE. VaqueroJ. Caballero-DiazD. The hepatocyte epidermal growth factor receptor (EGFR) pathway regulates the cellular interactome within the liver fibrotic niche.J. Pathol.20242634-548249510.1002/path.629938872438
    [Google Scholar]
  24. MurataniS. IchikawaS. EramiK. ItoS. Oxidative stress‐mediated epidermal growth factor receptor activation by cigarette smoke or heated tobacco aerosol in human primary bronchial epithelial cells from multiple donors.J. Appl. Toxicol.20234391347135710.1002/jat.446936946243
    [Google Scholar]
  25. MuluhT.A. LuX. ZhangY. Combined immunotherapy and targeted therapies for cancer treatment: Recent advances and future perspectives.Curr. Cancer Drug Targets202323425126410.2174/156800962366622102010460336278447
    [Google Scholar]
  26. WujcikD. EGFR as a target: Rationale for therapy.In: Seminars in oncology nursing.Amsterdam, NetherlandsElsevier200610.1016/j.soncn.2006.01.010
    [Google Scholar]
  27. GłuszakP. Xerosis as the toxicity of novel anti-cancer therapies—pathophysiology and management.Forum Dermatol2023925010.5603/FD.a2023.0004
    [Google Scholar]
  28. TrenkerR. DiwanjiD. BinghamT. VerbaK.A. JuraN. Structural dynamics of the active HER4 and HER2/HER4 complexes is finely tuned by different growth factors and glycosylation.eLife202412RP9287310.7554/eLife.9287338498590
    [Google Scholar]
  29. IyerR.S. NeedhamS.R. GaldadasI. Drug-resistant EGFR mutations promote lung cancer by stabilizing interfaces in ligand-free kinase-active EGFR oligomers.Nat. Commun.2024151213010.1038/s41467‑024‑46284‑x38503739
    [Google Scholar]
  30. KotE.F. GoncharukS.A. FrancoM.L. Structural basis for the transmembrane signaling and antidepressant-induced activation of the receptor tyrosine kinase TrkB.Nat. Commun.2024151931610.1038/s41467‑024‑53710‑739472452
    [Google Scholar]
  31. AnwarS. YokotaT. Navigating the complex landscape of fibrodysplasia ossificans progressiva: From current paradigms to therapeutic frontiers.Genes (Basel)20231412216210.3390/genes1412216238136984
    [Google Scholar]
  32. RaoP.P. ZhaoY. HuangR. Check for updates chapter 2.Computat Mod Drugs Again Alzheimer’s Dis 202320351
    [Google Scholar]
  33. SherE.F. DNA Pole Inhibition in Triple-Negative Breast Cancer (TNBC) Leads to Robust Tumor Control and NF-kB-Mediated Inflammation.New YorkNew York University2024
    [Google Scholar]
  34. AlbagoushS. ZubairM. LimaiemF. Tissue Evaluation for HER2 Tumor Marker.Treasure Island, FloridaStatPearls2024
    [Google Scholar]
  35. ManglaB. MittalP. KumarP. AggarwalG. Multifaceted role of erlotinib in various cancer: Nanotechnology intervention, patent landscape, and advancements in clinical trials.Med. Oncol.202441717310.1007/s12032‑024‑02414‑538864966
    [Google Scholar]
  36. MarquesA.C. Antibody-functionalized nanoparticles for targeted drug delivery in cancer therapy.In: handbook of cancer and immunology. Cham: Springer 202314310.1007/978‑3‑030‑80962‑1_297‑1
    [Google Scholar]
  37. ZhaoH. LiY. ChenJ. Environmental stimulus-responsive mesoporous silica nanoparticles as anticancer drug delivery platforms.Colloids Surf. B Biointerfaces202423411375810.1016/j.colsurfb.2024.11375838241892
    [Google Scholar]
  38. ChengR. SantosH.A. Smart nanoparticle‐based platforms for regulating tumor microenvironment and cancer immunotherapy.Adv. Healthc. Mater.2023128220206310.1002/adhm.20220206336479842
    [Google Scholar]
  39. DuanC. YuM. XuJ. LiB.Y. ZhaoY. KankalaR.K. Overcoming cancer multi-drug resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges.Biomed. Pharmacother.202316211464310.1016/j.biopha.2023.11464337031496
    [Google Scholar]
  40. GargP. MalhotraJ. KulkarniP. HorneD. SalgiaR. SinghalS.S. Emerging therapeutic strategies to overcome drug resistance in cancer cells.Cancers20241613247810.3390/cancers1613247839001539
    [Google Scholar]
  41. HuangP. WangC. DengH. ZhouY. ChenX. Surface engineering of nanoparticles toward cancer theranostics.Acc. Chem. Res.202356131766177910.1021/acs.accounts.3c0012237314368
    [Google Scholar]
  42. TanK.F. In LLA, Vijayaraj Kumar P. Surface functionalization of gold nanoparticles for targeting the tumor microenvironment to improve antitumor efficiency.ACS Appl. Bio Mater.2023682944298110.1021/acsabm.3c0020237435615
    [Google Scholar]
  43. SrirangaT. Controlled Drug Delivery System: A Comprehensive Review on Existing and Novel Technologies.Mod Res Pharma Sci20249923
    [Google Scholar]
  44. EwiiU.E. Novel drug delivery systems: Insight into self-powered and nano-enabled drug delivery systems.ChinaNano TransMed2024100042
    [Google Scholar]
  45. AskarizadehM. EsfandiariN. HonarvarB. SajadianS.A. Azdarpour A. Kinetic modeling to explain the release of medicine from drug delivery systems.ChemBioEng Rev.20231061006104910.1002/cben.202300027
    [Google Scholar]
  46. KhalbasA.H. AlbayatiT.M. AliN.S. SalihI.K. Drug loading methods and kinetic release models using of mesoporous silica nanoparticles as a drug delivery system: A review.S. Afr. J. Chem. Eng.20245026128010.1016/j.sajce.2024.08.013
    [Google Scholar]
  47. GautamS. LakhanpalI. SonowalL. GoyalN. Recent advances in targeted drug delivery using metal-organic frameworks: Toxicity and release kinetics.Next Nanotech20233-410002710.1016/j.nxnano.2023.100027
    [Google Scholar]
  48. BurandeA.S. EGFR targeted paclitaxel and piperine co-loaded liposomes for the treatment of triple negative breast cancer.AAPS PharmSciTech202021112
    [Google Scholar]
  49. EloyJ.O. RuizA. de LimaF.T. EGFR-targeted immuno] liposomes efficiently deliver docetaxel to prostate cancer cells.Colloids Surf. B Biointerfaces202019411118510.1016/j.colsurfb.2020.11118532574928
    [Google Scholar]
  50. GuH. ShiR. XuC. EGFR-targeted liposomes combined with Ginsenoside Rh2 inhibit triple-negative breast cancer growth and metastasis.Bioconjug. Chem.20233461157116510.1021/acs.bioconjchem.3c0020737235785
    [Google Scholar]
  51. JiaD YangY YuanF Increasing the antitumor efficacy of doxorubicin liposomes with coupling an anti-EGFR affibody in EGFR-expressing tumor models.Int J Pharm 202058611954110.1016/j.ijpharm.2020.11954132544521
    [Google Scholar]
  52. SoleimaniA. MirzaviF. Nikoofal-SahlabadiS. CD73 downregulation by EGFR-targeted liposomal CD73 siRNA potentiates antitumor effect of liposomal doxorubicin in 4T1 tumor-bearing mice.Sci. Rep.20221211042310.1038/s41598‑022‑14392‑735729230
    [Google Scholar]
  53. KumariL. EhsanI. MondalA. Cetuximab-conjugated PLGA nanoparticles as a prospective targeting therapeutics for non-small cell lung cancer.J. Drug Target.202331552153610.1080/1061186X.2023.219935037010248
    [Google Scholar]
  54. EmamiF. DuwaR. BanstolaA. WooS.M. KwonT.K. YookS. Dual receptor specific nanoparticles targeting EGFR and PD-L1 for enhanced delivery of docetaxel in cancer therapy.Biomed. Pharmacother.202316511502310.1016/j.biopha.2023.11502337329708
    [Google Scholar]
  55. BhattacharyaS. Anti-EGFR-mAb and 5-fluorouracil conjugated polymeric nanoparticles for colorectal cancer.Recent Patents Anticancer Drug Discov.20211618410010.2174/22123970MTEyvNTYd333349222
    [Google Scholar]
  56. DuwaR. BanstolaA. EmamiF. JeongJ-H. LeeS. YookS. Cetuximab conjugated temozolomide-loaded poly (lactic-co-glycolic acid) nanoparticles for targeted nanomedicine in EGFR overexpressing cancer cells.J. Drug Deliv. Sci. Technol.20206010192810.1016/j.jddst.2020.101928
    [Google Scholar]
  57. RevillaG. Al QtaishN. CaruanaP. Lenvatinib-loaded poly(lactic-co-glycolic acid) nanoparticles with epidermal growth factor receptor antibody conjugation as a preclinical approach to therapeutically improve thyroid cancer with aggressive behavior.Biomolecules20231311164710.3390/biom1311164738002329
    [Google Scholar]
  58. YuA.Y.H. FuR-H. HsuS. Epidermal growth factor receptors siRNA-conjugated collagen modified gold nanoparticles for targeted imaging and therapy of lung cancer.Mater. Today Adv.20211210019110.1016/j.mtadv.2021.100191
    [Google Scholar]
  59. AnisuzzmanM. KomallaV. TarkistaniM.A.M. KayserV. Anti-tumor activity of novel nimotuzumab-functionalized gold nanoparticles as a potential immunotherapeutic agent against skin and lung cancers.J. Funct. Biomater.202314840710.3390/jfb1408040737623652
    [Google Scholar]
  60. HuangS. HuangG. The utilization of quantum dot labeling as a burgeoning technique in the field of biological imaging.RSC Advances20241429208842089710.1039/D4RA04402A38957578
    [Google Scholar]
  61. QiL. LiuS. PingJ. Recent advances in fluorescent nanoparticles for stimulated emission depletion imaging.Biosensors202414731410.3390/bios1407031439056590
    [Google Scholar]
  62. ChoiM.J. LeeY.K. ChoiK.C. Tumor-targeted erythrocyte membrane nanoparticles for theranostics of triple-negative breast cancer.Pharmaceutics202315235010.3390/pharmaceutics1502035036839675
    [Google Scholar]
  63. YazdianF. Aptamer-functionalized quantum dots for targeted cancer therapy.In:Aptamers engineered nanocarriers for cancer therapy.Amsterdam, NetherlandsElsevier202329531510.1016/B978‑0‑323‑85881‑6.00012‑9
    [Google Scholar]
  64. AlbayatiT.M. AlardhiS.M. KhalbasA.H. Comprehensive review of mesoporous silica nanoparticles: Drug loading, release, and applications as hemostatic agents.ChemistrySelect202492320240045010.1002/slct.202400450
    [Google Scholar]
  65. WuH. DingX. ChenY. CaiY. YangZ. JinJ. EGFR-targeted humanized single chain antibody fragment functionalized silica nanoparticles for precision therapy of cancer.Int. J. Biol. Macromol.2023253Pt 812753810.1016/j.ijbiomac.2023.12753837866562
    [Google Scholar]
  66. KimY. KimJ. EomS. Protein nanoparticles simultaneously displaying trail and EGFR-binding ligands effectively induce apoptotic cancer cell death and overcome EGFR-TKI resistance in lung cancer.ACS Appl. Mater. Interfaces20251717251392515110.1021/acsami.5c0402140237189
    [Google Scholar]
  67. DjermaneR. NietoC. VegaM.A. del ValleE.M.M. EGFR-targeting polydopamine nanoparticles co-loaded with 5-fluorouracil, irinotecan, and leucovorin to potentially enhance metastatic colorectal cancer therapy.Sci. Rep.20241412926510.1038/s41598‑024‑80879‑039587206
    [Google Scholar]
  68. MehtaM. BuiT.A. CareA. DengW. Targeted polymer lipid hybrid nanoparticles for in-vitro siRNA therapy in triple-negative breast cancer.J. Drug Deliv. Sci. Technol.20249810591110.1016/j.jddst.2024.105911
    [Google Scholar]
  69. Rahmani KheyrollahiM. MohammadnejadJ. EidiA. JafaryH. Synthesis and in vitro study of surface-modified and anti-EGFR DNA aptamer conjugated chitosan nanoparticles as a potential targeted drug delivery system.Heliyon202410193890410.1016/j.heliyon.2024.e3890439435057
    [Google Scholar]
  70. SyedY.Y. Amivantamab: First approval.Drugs202181111349135310.1007/s40265‑021‑01561‑734292533
    [Google Scholar]
  71. DukeE.S. StaplefordL. DreznerN. FDA approval summary: Mobocertinib for metastatic non–small cell lung cancer with] EGFR Exon 20 Insertion Mutations.Clin. Cancer Res.202329350851210.1158/1078‑0432.CCR‑22‑207236112541
    [Google Scholar]
  72. GrigorescuA.C. 2024: Ten years of progress in EGFRm NSCLC.Oncol Hemat20246831417
    [Google Scholar]
  73. MilaneL. AmijiM. Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: Impact on translational nanomedicine.Drug Deliv. Transl. Res.20211141309131510.1007/s13346‑021‑00911‑y33512669
    [Google Scholar]
  74. ShandilyaR PathakN LohiyaNK SharmaRS MishraPK Nanotechnology in reproductive medicine: Opportunities for clinical translationClin Exp Reprod Med 202047(4)2456210.5653/cerm.2020.0365033227186
    [Google Scholar]
/content/journals/ccand/10.2174/012212697X377694250715132428
Loading
/content/journals/ccand/10.2174/012212697X377694250715132428
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer treatment; EGFR; HER; monoclonal antibodies; nanotechnology; quantum dots
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test