Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2212-697X
  • E-ISSN: 2212-6988

Abstract

Exosomes, small extracellular vesicles involved in intercellular communication, have emerged as promising tools in cancer treatment. Their ability to transport therapeutic agents like miRNAs and proteins directly to tumour cells highlights their role in gene therapy, immunotherapy, and drug delivery. Exosomes modulate the tumour microenvironment by promoting metastasis, angiogenesis, and immune suppression, making them central to cancer pathogenesis. Recent advancements focus on engineering exosomes for targeted therapies, enhancing precision in cancer treatment while minimizing toxicity. Preclinical studies demonstrate exosomes' ability to target tumour cells and cross biological barriers, with clinical trials investigating their use as biomarkers, drug carriers, and diagnostic tools. For example, exosome-based miRNA signatures are being explored for early cancer detection, while exosomes derived from mesenchymal stem cells are tested to enhance curcumin bioavailability in rectal and lung cancer. With ongoing research and trials, exosomes hold significant potential for personalized cancer therapies, early detection, and non-invasive diagnostics.

Loading

Article metrics loading...

/content/journals/ccand/10.2174/012212697X314534250402175738
2025-04-17
2025-12-07
Loading full text...

Full text loading...

References

  1. IslamM.M. KumarA. KumarA. MukherjeeD. KumarM. Emerging trends in novel drug delivery systems for the effective treatment of oral cancer.Curr. Cancer Ther. Rev.20242011610.2174/0115733947315782240524073802
    [Google Scholar]
  2. IslamM.M. RaikwarS. Revolutionizing oral cancer treatment: Immunotherapeutic approaches.Curr. Cancer Ther. Rev.2024201910.2174/0115733947290954240402060311
    [Google Scholar]
  3. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  4. SinghK. SethiP. DattaS. Advances in gene therapy approaches targeting neuro-inflammation in neurodegenerative diseases.Ageing Res. Rev.20249810232110.1016/j.arr.2024.102321 38723752
    [Google Scholar]
  5. KučukN. PrimožičM. KnezŽ. LeitgebM. Exosomes engineering and their roles as therapy delivery tools, therapeutic targets, and biomarkers.Int. J. Mol. Sci.20212217954310.3390/ijms22179543 34502452
    [Google Scholar]
  6. LinY. LuY. LiX. Biological characteristics of exosomes and genetically engineered exosomes for the targeted delivery of therapeutic agents.J. Drug Target.202028212914110.1080/1061186X.2019.1641508 31280623
    [Google Scholar]
  7. XuZ. ZengS. GongZ. YanY. Exosome-based immunotherapy: A promising approach for cancer treatment.Mol. Cancer202019116010.1186/s12943‑020‑01278‑3 33183286
    [Google Scholar]
  8. AgarwalS. AgarwalV. AgarwalM. SinghM. Exosomes: Structure, biogenesis, types and application in diagnosis and gene and drug delivery.Curr. Gene Ther.202020319520610.2174/1566523220999200731011702 32787759
    [Google Scholar]
  9. RenX. XuR. XuC. SuJ. Harnessing exosomes for targeted therapy: Strategy and application.Biomaterials Translational2024514658 39220669
    [Google Scholar]
  10. BurkovaE.E. SedykhS.E. NevinskyG.A. Human placenta exosomes: Biogenesis, isolation, composition, and prospects for use in diagnostics.Int. J. Mol. Sci.2021224215810.3390/ijms22042158 33671527
    [Google Scholar]
  11. MoeinzadehL. Razeghian-JahromiI. Zarei-BehjaniZ. BagheriZ. RazmkhahM. Composition, biogenesis, and role of exosomes in tumor development.Stem Cells Int.20222022111210.1155/2022/8392509 36117723
    [Google Scholar]
  12. LeeY.J. ShinK.J. ChaeY.C. Regulation of cargo selection in exosome biogenesis and its biomedical applications in cancer.Exp. Mol. Med.202456487788910.1038/s12276‑024‑01209‑y 38580812
    [Google Scholar]
  13. RößlingA-K. Kleine-VehnJ. DünserK. Membrane delivery to the vacuole and the multifunctional roles of vacuoles Endosymbiotic organelle acquisition: solutions to the problem of protein localization and membrane passage.Springer2024261286
    [Google Scholar]
  14. WaqasM.Y. JavidM.A. NazirM.M. Extracellular vesicles and exosome: Insight from physiological regulatory perspectives.J. Physiol. Biochem.202278357358010.1007/s13105‑022‑00877‑6 35102530
    [Google Scholar]
  15. Hullin-MatsudaF. ColosettiP. RabiaM. Luquain-CostazC. DeltonI. Exosomal lipids from membrane organization to biomarkers: Focus on an endolysosomal-specific lipid.Biochimie2022203779210.1016/j.biochi.2022.09.016 36184001
    [Google Scholar]
  16. GopaldassN. ChenK.E. CollinsB. MayerA. Assembly and fission of tubular carriers mediating protein sorting in endosomes.Nat. Rev. Mol. Cell Biol.2024251076578310.1038/s41580‑024‑00746‑8 38886588
    [Google Scholar]
  17. SimeoneP. BolognaG. LanutiP. Extracellular vesicles as signaling mediators and disease biomarkers across biological barriers.Int. J. Mol. Sci.2020217251410.3390/ijms21072514 32260425
    [Google Scholar]
  18. StocksC.J. LiX. StowJ.L. New advances in innate immune endosomal trafficking.Curr. Opin. Cell Biol.20248910239510.1016/j.ceb.2024.102395 38970837
    [Google Scholar]
  19. XuM. JiJ. JinD. The biogenesis and secretion of exosomes and multivesicular bodies (MVBs): Intercellular shuttles and implications in human diseases.Genes Dis.20231051894190710.1016/j.gendis.2022.03.021 37492712
    [Google Scholar]
  20. WangY. XiaoT. ZhaoC. LiG. The regulation of exosome generation and function in physiological and pathological processes.Int. J. Mol. Sci.202325125510.3390/ijms25010255 38203424
    [Google Scholar]
  21. BuleP. AguiarS.I. Aires-Da-SilvaF. DiasJ.N.R. Chemokine-directed tumor microenvironment modulation in cancer immunotherapy.Int. J. Mol. Sci.20212218980410.3390/ijms22189804 34575965
    [Google Scholar]
  22. YangG. JiJ. LiuZ. Multifunctional MnO2 nanoparticles for tumor microenvironment modulation and cancer therapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2021136e172010.1002/wnan.1720 33908171
    [Google Scholar]
  23. ZhouY. RenX. HouZ. WangN. JiangY. LuanY. Engineering a photosensitizer nanoplatform for amplified photodynamic immunotherapy via tumor microenvironment modulation.Nanoscale Horiz.20216212013110.1039/D0NH00480D 33206735
    [Google Scholar]
  24. WangH. YungM.M.H. NganH.Y.S. ChanK.K.L. ChanD.W. The impact of the tumor microenvironment on macrophage polarization in cancer metastatic progression.Int. J. Mol. Sci.20212212656010.3390/ijms22126560 34207286
    [Google Scholar]
  25. ParkJ.E. DuttaB. TseS.W. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift.Oncogene201938265158517310.1038/s41388‑019‑0782‑x 30872795
    [Google Scholar]
  26. GuoW. QiaoT. DongB. LiT. LiuQ. XuX. The effect of hypoxia-induced exosomes on anti-tumor immunity and its implication for immunotherapy.Front. Immunol.20221391598510.3389/fimmu.2022.915985 35812406
    [Google Scholar]
  27. HanC. ZhangC. WangH. ZhaoL. Exosome-mediated communication between tumor cells and tumor-associated macrophages: Implications for tumor microenvironment.OncoImmunology20211011887552
    [Google Scholar]
  28. LiC. GuanN. LiuF. T7 peptide-decorated exosome-based nanocarrier system for delivery of Galectin-9 siRNA to stimulate macrophage repolarization in glioblastoma.J. Neurooncol.202316219310810.1007/s11060‑023‑04257‑y 36854924
    [Google Scholar]
  29. ZhouW. ZhouY. ChenX. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment.Biomaterials202126812054610.1016/j.biomaterials.2020.120546 33253966
    [Google Scholar]
  30. LinH.J. LiuY. CarolandK. LinJ. Polarization of cancer-associated macrophages maneuver neoplastic attributes of pancreatic ductal adenocarcinoma.Cancers (Basel)20231513350710.3390/cancers15133507 37444617
    [Google Scholar]
  31. ShahA.A. KamalM.A. AkhtarS. Tumor angiogenesis and VEGFR-2: Mechanism, pathways and current biological therapeutic interventions.Curr. Drug Metab.2021221505910.2174/18755453MTEwxNzQ0x 33076807
    [Google Scholar]
  32. HanY. ZhangL. ZhangC. DissanayakaW.L. Guiding lineage specific differentiation of SHED for target tissue/organ regeneration.Curr. Stem Cell Res. Ther.202116551853410.2174/1574888X15666200929125840 32990539
    [Google Scholar]
  33. SoleimanjahiH. HabibianA. Novel anti-angiogenic strategies in cancer drug development.Anti-Angiogenesis Drug Discovery and Development.Bentham Books202051255010.2174/9789811432873120050006
    [Google Scholar]
  34. MarzoT. La MendolaD. The effects on angiogenesis of relevant inorganic chemotherapeutics.Curr. Top. Med. Chem.2021211738610.2174/18734294MTExaODgdz 33243124
    [Google Scholar]
  35. TanS. XiaL. YiP. Exosomal miRNAs in tumor microenvironment.J. Exp. Clin. Cancer Res.20203916710.1186/s13046‑020‑01570‑6 32299469
    [Google Scholar]
  36. DuJ. LiangY. LiJ. ZhaoJ.M. LinX.Y. Gastric cancer cell-derived exosomal microRNA-23a promotes angiogenesis by targeting PTEN.Front. Oncol.20201032610.3389/fonc.2020.00326 32232005
    [Google Scholar]
  37. OlejarzW. Kubiak-TomaszewskaG. ChrzanowskaA. LorencT. Exosomes in angiogenesis and anti-angiogenic therapy in cancers.Int. J. Mol. Sci.20202116584010.3390/ijms21165840 32823989
    [Google Scholar]
  38. BouzariB. MohammadiS. BokovD.O. Angioregulatory role of miRNAs and exosomal miRNAs in glioblastoma pathogenesis.Biomed. Pharmacother.202214811276010.1016/j.biopha.2022.112760 35228062
    [Google Scholar]
  39. DallavalasaS. BeerakaN.M. BasavarajuC.G. The role of tumor associated macrophages (TAMs) in cancer progression, chemoresistance, angiogenesis and metastasis-current status.Curr. Med. Chem.202128398203823610.2174/1875533XMTE20ODIe4 34303328
    [Google Scholar]
  40. GolhaniV. RayS.K. MukherjeeS. Role of microRNAs and long non-coding RNAs in regulating angiogenesis in human breast cancer: A molecular medicine perspective.Curr. Mol. Med.2022221088289310.2174/1566524022666211217114527 34923940
    [Google Scholar]
  41. MallaR.R. ShailenderG. KamalM.A. Exosomes: Critical mediators of tumour microenvironment reprogramming.Curr. Med. Chem.202128398182820210.2174/0929867328666201217105529 33334279
    [Google Scholar]
  42. IlkhaniK. BastamiM. DelgirS. SafiA. TalebianS. AlivandM-R. The engaged role of tumor microenvironment in cancer metabolism: Focusing on cancer-associated fibroblast and exosome mediators.Anticancer. Agents Med. Chem.2021212254266
    [Google Scholar]
  43. HaynesN.M. ChadwickT.B. ParkerB.S. The complexity of immune evasion mechanisms throughout the metastatic cascade.Nat. Immunol.202425101793180810.1038/s41590‑024‑01960‑4 39285252
    [Google Scholar]
  44. RayS.K. MukherjeeS. Consequences of extracellular matrix remodeling in headway and metastasis of cancer along with novel immunotherapies: A great promise for future endeavor.Anticancer. Agents Med. Chem.20222271257127110.2174/1871520621666210712090017
    [Google Scholar]
  45. PerroneM. Role of transcription factor Atf3 in the bone marrow microenvironment during breast cancer development: A response marker or an active player of tumourigenesis?United KingdomOpen University2021
    [Google Scholar]
  46. ZhouJ. ZhengR. ZhangS. Gastric and esophageal cancer in China 2000 to 2030: Recent trends and short‐term predictions of the future burden.Cancer Med.20221181902191210.1002/cam4.4586 35148032
    [Google Scholar]
  47. NakazawaN. SohdaM. UbukataY. Changes in the Gustave Roussy immune score as a powerful prognostic marker of the therapeutic sensitivity of nivolumab in advanced gastric cancer: A multicenter, retrospective study.Ann. Surg. Oncol.202229127400740610.1245/s10434‑022‑12226‑4 35857197
    [Google Scholar]
  48. SchwarzenbachH. Potential of exosomes as therapeutics and therapy targets in cancer patients.Int J Transl Med20244224726110.3390/ijtm4020015
    [Google Scholar]
  49. RaghaniN.R. ChorawalaM.R. MahadikM. PatelR.B. PrajapatiB.G. ParekhP.S. Revolutionizing cancer treatment: Comprehensive insights into immunotherapeutic strategies.Med. Oncol.20244125110.1007/s12032‑023‑02280‑7 38195781
    [Google Scholar]
  50. Sheudeen AbubakarA. George-OpudaI. AugustineU.A. AdlineE.B-C. ElekimaI. Gene therapy advancements for precision cancer treatment: Challenges and opportunities in Sub-Saharan Africa–Nigeria perspective.Asian J Biochem Genet Mol Biol20241612535
    [Google Scholar]
  51. ArvanitisC.D. FerraroG.B. JainR.K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases.Nat. Rev. Cancer2020201264110.1038/s41568‑019‑0205‑x 31601988
    [Google Scholar]
  52. BelkhodjaF. Targeted therapy to overcome the blood-brain barrier in treating Glioblastoma.bachelorthesis: Hochschule Rhein-Waal2023
    [Google Scholar]
  53. ZengW. WenZ. ChenH. DuanY. Exosomes as carriers for drug delivery in cancer therapy.Pharm. Res.202340487388710.1007/s11095‑022‑03224‑y 35352281
    [Google Scholar]
  54. ZengH. GuoS. RenX. WuZ. LiuS. YaoX. Current strategies for exosome cargo loading and targeting delivery.Cells20231210141610.3390/cells12101416 37408250
    [Google Scholar]
  55. JangS.C. KimO.Y. YoonC.M. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors.ACS Nano2013797698771010.1021/nn402232g 24004438
    [Google Scholar]
  56. HadlaM. PalazzoloS. CoronaG. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models.Nanomedicine201611182431244110.2217/nnm‑2016‑0154 27558906
    [Google Scholar]
  57. WeiH. ChenJ. WangS. A nanodrug consisting of doxorubicin and exosome derived from mesenchymal stem cells for osteosarcoma treatment in vitro.Int. J. Nanomedicine2019148603861010.2147/IJN.S218988 31802872
    [Google Scholar]
  58. PascucciL. CoccèV. BonomiA. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery.J. Control. Release201419226227010.1016/j.jconrel.2014.07.04225084218
    [Google Scholar]
  59. SaariH Lázaro-IbáñezE ViitalaT Vuorimaa-LaukkanenE SiljanderP YliperttulaM. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells.J Control Release2015220Pt B7273710.1016/j.jconrel.2015.09.03126390807
    [Google Scholar]
  60. AgrawalA.K. AqilF. JeyabalanJ. Milk-derived exosomes for oral delivery of paclitaxel.Nanomedicine20171351627163610.1016/j.nano.2017.03.001 28300659
    [Google Scholar]
  61. SalarpourS. ForootanfarH. PournamdariM. Ahmadi-ZeidabadiM. EsmaeeliM. PardakhtyA. Paclitaxel incorporated exosomes derived from glioblastoma cells: Comparative study of two loading techniques.Daru201927253353910.1007/s40199‑019‑00280‑5 31317441
    [Google Scholar]
  62. ZhangX. LiuL. TangM. LiH. GuoX. YangX. The effects of umbilical cord-derived macrophage exosomes loaded with cisplatin on the growth and drug resistance of ovarian cancer cells.Drug Dev. Ind. Pharm.20204671150116210.1080/03639045.2020.1776320 32482115
    [Google Scholar]
  63. LiJ. LiN. WangJ. M1 macrophage-derived exosome-encapsulated cisplatin can enhance its anti-lung cancer effect.Minerva Med.20231145634641 32272830
    [Google Scholar]
  64. LiuG. LuoY. HouP. PRPS2 enhances resistance to cisplatin via facilitating exosomes-mediated macrophage M2 polarization in non-small cell lung cancer.Immunol. Invest.20225151423143610.1080/08820139.2021.1952217 34251965
    [Google Scholar]
  65. ZhengX. MaN. WangX. Exosomes derived from 5-fluorouracil-resistant colon cancer cells are enriched in GDF15 and can promote angiogenesis.J. Cancer202011247116712610.7150/jca.49224 33193874
    [Google Scholar]
  66. YangH. XieS. LiangB. Exosomal IDH1 increases the resistance of colorectal cancer cells to 5-Fluorouracil.J. Cancer202112164862487210.7150/jca.58846 34234856
    [Google Scholar]
  67. ZhangW. HuangX. Stem cell membrane-camouflaged targeted delivery system in tumor.Mater. Today Bio20221610037710.1016/j.mtbio.2022.100377 35967738
    [Google Scholar]
  68. ButreddyA. KommineniN. DudhipalaN. Exosomes as naturally occurring vehicles for delivery of biopharmaceuticals: Insights from drug delivery to clinical perspectives.Nanomaterials2021116148110.3390/nano11061481 34204903
    [Google Scholar]
  69. LuoM. LeeL.K.C. PengB. ChoiC.H.J. TongW.Y. VoelckerN.H. Delivering the promise of gene therapy with nanomedicines in treating central nervous system diseases.Adv. Sci.2022926220174010.1002/advs.202201740 35851766
    [Google Scholar]
  70. YeY. ZhangX. XieF. An engineered exosome for delivering sgRNA:Cas9 ribonucleoprotein complex and genome editing in recipient cells.Biomater. Sci.20208102966297610.1039/D0BM00427H 32342086
    [Google Scholar]
  71. LiZ. ZhouX. WeiM. In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9.Nano Lett.2019191192810.1021/acs.nanolett.8b02689 30517011
    [Google Scholar]
  72. GeeP. LungM.S.Y. OkuzakiY. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping.Nat. Commun.2020111133410.1038/s41467‑020‑14957‑y 32170079
    [Google Scholar]
  73. MunagalaR. AqilF. JeyabalanJ. Exosome-mediated delivery of RNA and DNA for gene therapy.Cancer Lett.2021505587210.1016/j.canlet.2021.02.011 33610731
    [Google Scholar]
  74. MotofeiI.G. Nobel Prize for immune checkpoint inhibitors, understanding the immunological switching between immuno] suppression and autoimmunity.Expert Opin. Drug Saf.202221559961210.1080/14740338.2022.2020243 34937484
    [Google Scholar]
  75. ChoudharyS.G. PotdarP.D. Review on tumour microenvironment cell types associated with metastatic cancer.Diseases & Research20233210110910.54457/DR.202302001
    [Google Scholar]
  76. SouzaA.G. ColliL.M. Extracellular vesicles and interleukins: Novel frontiers in diagnostic and therapeutic for cancer.Front. Immunol.20221383692210.3389/fimmu.2022.836922 35386696
    [Google Scholar]
  77. PfeilA. Mammary tumor microenvironment reprogramming in response to pyruvate carboxylase modulation.Proceedings of the American Association for Cancer Research Annual Meeting2021
    [Google Scholar]
  78. HieberC. GrabbeS. BrosM. Counteracting immunosenescence-which therapeutic strategies are promising?Biomolecules2023137108510.3390/biom13071085 37509121
    [Google Scholar]
  79. AlvesE. McLeishE. BlancafortP. CoudertJ.D. GaudieriS. Manipulating the NKG2D receptor-ligand axis using CRISPR: Novel technologies for improved host immunity.Front. Immunol.20211271272210.3389/fimmu.2021.712722 34456921
    [Google Scholar]
  80. LiuT. SunL. JiY. ZhuW. Extracellular vesicles in cancer therapy: Roles, potential application, and challenges.Biochim. Biophys. Acta Rev. Cancer202418793189101
    [Google Scholar]
  81. RastogiS. SharmaV. BhartiP.S. The evolving landscape of exosomes in neurodegenerative diseases: Exosomes characteristics and a promising role in early diagnosis.Int. J. Mol. Sci.202122144010.3390/ijms22010440 33406804
    [Google Scholar]
  82. SzwedowiczU. ŁapińskaZ. Gajewska-NarynieckaA. ChoromańskaA. Exosomes and other extracellular vesicles with high therapeutic potential: Their applications in oncology, neurology, and dermatology.Molecules2022274130310.3390/molecules27041303 35209095
    [Google Scholar]
  83. Di BellaM.A. Overview and update on extracellular vesicles: Considerations on exosomes and their application in modern medicine.Biology202211680410.3390/biology11060804 35741325
    [Google Scholar]
  84. GurungS. PerocheauD. TouramanidouL. BaruteauJ. The exosome journey: From biogenesis to uptake and intracellular signalling.Cell Commun. Signal.20211914710.1186/s12964‑021‑00730‑1 33892745
    [Google Scholar]
  85. LobbR.J. BeckerM. Wen WenS. Optimized exosome isolation protocol for cell culture supernatant and human plasma.J. Extracell. Vesicles2015412703110.3402/jev.v4.27031 26194179
    [Google Scholar]
  86. PatelG.K. KhanM.A. ZubairH. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications.Sci. Rep.201991533510.1038/s41598‑019‑41800‑2 30926864
    [Google Scholar]
  87. MercadalM. HerreroC. López-RodrigoO. Impact of extracellular vesicle isolation methods on downstream mirna analysis in semen: A comparative study.Int. J. Mol. Sci.20202117594910.3390/ijms21175949 32824915
    [Google Scholar]
  88. KurianT.K. BanikS. GopalD. ChakrabartiS. MazumderN. Elucidating methods for isolation and quantification of exosomes.A review. Mol. Biotechnol.202163424926610.1007/s12033‑021‑00300‑3 33492613
    [Google Scholar]
  89. ShirejiniS.Z. InciF. The Yin and Yang of exosome isolation methods: Conventional practice, microfluidics, and commercial kits.Biotechnol. Adv.20225410781410.1016/j.biotechadv.2021.107814 34389465
    [Google Scholar]
  90. MartinhoJMS Engineering and characterization of novel denaturing platforms for automated release of mirnas from carrier proteins and exosomes.Masters in micro and nanotechnologies engineering: NOVA University Lisbon2022
    [Google Scholar]
  91. MartinsT.S. VazM. HenriquesA.G. A review on comparative studies addressing exosome isolation methods from body fluids.Anal. Bioanal. Chem.202341571239126310.1007/s00216‑022‑04174‑5 35838769
    [Google Scholar]
  92. ColaoI.L. Development of a process step for the high purity recovery of exosome material from a regenerative cell product: UCL.University College London2021
    [Google Scholar]
  93. RaiA. FangH. FatmousM. A protocol for isolation, purification, characterization, and functional dissection of exosomes.Methods Mol. Biol.2021226110514910.1007/978‑1‑0716‑1186‑9_9
    [Google Scholar]
  94. SidhomK. ObiP.O. SaleemA. A review of exosomal isolation methods: Is size exclusion chromatography the best option?Int. J. Mol. Sci.20202118646610.3390/ijms21186466 32899828
    [Google Scholar]
  95. Castillo-RomeroK.F. SantacruzA. González-ValdezJ. Production and purification of bacterial membrane vesicles for biotechnology applications: Challenges and opportunities.Electrophoresis2023441-210712410.1002/elps.202200133 36398478
    [Google Scholar]
  96. ComfortN. CaiK. BloomquistT.R. StraitM.D. FerranteA.W.Jr BaccarelliA.A. Nanoparticle tracking analysis for the quantification and size determination of extracellular vesicles.J. Vis. Exp.2021169e6244710.3791/62447‑v 33843938
    [Google Scholar]
  97. MalenicaM. VukomanovićM. KurtjakM. Perspectives of microscopy methods for morphology characterisation of extracellular vesicles from human biofluids.Biomedicines20219660310.3390/biomedicines9060603 34073297
    [Google Scholar]
  98. FanY. PionneauC. CocozzaF. Differential proteomics argues against a general role for CD9, CD81 or CD63 in the sorting of proteins into extracellular vesicles.J. Extracell. Vesicles20231281235210.1002/jev2.12352 37525398
    [Google Scholar]
  99. TheodorakiM.N. HongC.S. DonnenbergV.S. DonnenbergA.D. WhitesideT.L. Evaluation of exosome proteins by on‐bead flow cytometry.Cytometry A202199437238110.1002/cyto.a.24193 33448645
    [Google Scholar]
  100. StamJ. BartelS. BischoffR. WoltersJ.C. Isolation of extracellular vesicles with combined enrichment methods.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2021116912260410.1016/j.jchromb.2021.122604 33713953
    [Google Scholar]
  101. DavidsonS.M. BoulangerC.M. AikawaE. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: From exosomes to microvesicles.Cardiovasc. Res.20231191456310.1093/cvr/cvac031 35325061
    [Google Scholar]
/content/journals/ccand/10.2174/012212697X314534250402175738
Loading
/content/journals/ccand/10.2174/012212697X314534250402175738
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test