Abstract
BackgroundCyclooxygenase-2 (COX-2) is induced in response to proinflammatory conditions, and it is not only a key enzyme in the inflammatory process, but also seems to be highly expressed in various types of cancer cells. On the other hand, it is well documented that chemical compounds with spiro scaffolds in their structure could be effective chemical agents against cancer types.
ObjectiveIn this study, the cytotoxicity effects of spiroisoxazoline derivatives containing a spiro-bridge of naphthalinone and chromanone were investigated.
MethodsThe cytotoxicity effects of compounds 7a-7h were evaluated by performing the MTT assay on the HT-29 (colorectal cancer), MCF-7 (breast cancer), and HEK-293 (normal kidney) cell lines. After that, a compound with high yield and remarkable cytotoxic activity was selected to analyze the cell cycle and apoptosis mechanism.
ResultsThe most effective cytotoxic activity was observed on HT-29 and MCF-7 cell lines of compounds 7b (IC50 value: 1.07±0.28 µM) and 7f (IC50 value: 11.92±1.07 µM). None of the compounds had a toxic effect on normal HEK-293 cells, except for compound 7g with an IC50 value of 21.30±16.14 µM, whose effect was much lower than that of cisplatin and doxorubicin, known as anti-cancer agents. Subsequently, compound 7e with significant yield and cytotoxic activity was investigated to evaluate cell cycle and apoptosis. The result showed that compound 7e induced significant G0/G1 cell cycle arrest and apoptosis in HT-29 cells.
ConclusionThe selective COX-2 inhibitor compounds with spiroisoxazoline core structure could be suitable scaffolds for cytotoxic effects.
©
2024 Bentham Science Publishers
Article metrics loading...
/content/journals/ccand/10.2174/012212697X274833240408033609
2024-07-11
2025-10-08
-
/content/journals/ccand/10.2174/012212697X274833240408033609
dcterms_title,dcterms_subject,pub_keyword
-contentType:Contributor -contentType:Concept -contentType:Institution
10
5
Full text loading...
[Citing articles]
[Web of Science]
[Medline]
References
-
TorreL.A.
SiegelR.L.
WardE.M.
JemalA.
Global cancer incidence and mortality rates and trends—an update.
Cancer Epidemiol. Biomarkers Prev.20162511627
10.1158/1055‑9965.EPI‑15‑057826667886
[Google Scholar]
-
MantovaniA.
AllavenaP.
SicaA.
BalkwillF.
Cancer-related inflammation.
Nature20084547203436444
10.1038/nature0720518650914
[Google Scholar]
-
TodoricJ.
AntonucciL.
KarinM.
Targeting inflammation in cancer prevention and therapy.
Cancer Prev. Res.2016912895905
10.1158/1940‑6207.CAPR‑16‑020927913448
[Google Scholar]
-
HosseiniF.
Mahdian-ShakibA.
Jadidi-NiaraghF.
Anti‐inflammatory and anti‐tumor effects of α-l-guluronic acid (G2013) on cancer-related inflammation in a murine breast cancer model.
Biomed. Pharmacother.201898793800
10.1016/j.biopha.2017.12.11129571248
[Google Scholar]
-
KarinM.
Nuclear factor-κB in cancer development and progression.
Nature20064417092431436
10.1038/nature0487016724054
[Google Scholar]
-
LiuB.
QuL.
YanS.
Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity.
Cancer Cell Int.2015151106
10.1186/s12935‑015‑0260‑726549987
[Google Scholar]
-
[Google Scholar]
-
LiuX-H.
YaoS.
KirschenbaumA.
LevineA.C.
NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells.Cancer Res.19985819424542499766645
[Google Scholar]
-
CaoY.
PearmanA.T.
ZimmermanG.A.
McIntyreT.M.
PrescottS.M.
Intracellular unesterified arachidonic acid signals apoptosis.
Proc. Natl. Acad. Sci.200097211128011285
10.1073/pnas.20036759711005842
[Google Scholar]
-
PengH.L.
ZhangG.S.
LiuJ.H.
GongF.J.
LiR.J.
Dup-697, a specific COX-2 inhibitor, suppresses growth and induces apoptosis on K562 leukemia cells by cell-cycle arrest and caspase-8 activation.
Ann. Hematol.2008872121129
10.1007/s00277‑007‑0385‑417999062
[Google Scholar]
-
SheQ.B.
SolitD.B.
YeQ.
O’ReillyK.E.
LoboJ.
RosenN.
The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells.
Cancer Cell200584287297
10.1016/j.ccr.2005.09.00616226704
[Google Scholar]
-
LiuB.
ShiZ.
FengJ.
TaoH.
Celecoxib, a cyclooxygenase‐2 inhibitor, induces apoptosis in human osteosarcoma cell line MG‐63
via down‐regulation of PI3K/Akt.
Cell Biol. Int.2008325494501
10.1016/j.cellbi.2007.10.00818078766
[Google Scholar]
-
SobolewskiC.
CerellaC.
DicatoM.
GhibelliL.
DiederichM.
The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies.
Int. J. Cell Biol.20102010121
10.1155/2010/21515820339581
[Google Scholar]
-
CaoY.
PrescottS.M.
Many actions of cyclooxygenase‐2 in cellular dynamics and in cancer.
J. Cell. Physiol.20021903279286
10.1002/jcp.1006811857443
[Google Scholar]
-
StewartZ.A.
WestfallM.D.
PietenpolJ.A.
Cell-cycle dysregulation and anticancer therapy.
Trends Pharmacol. Sci.2003243139145
10.1016/S0165‑6147(03)00026‑912628359
[Google Scholar]
-
NakanishiY.
KamijoR.
TakizawaK.
HatoriM.
NagumoM.
Inhibitors of cyclooxygenase-2 (COX-2) suppressed the proliferation and differentiation of human leukaemia cell lines.
Eur. J. Cancer2001371215701578
10.1016/S0959‑8049(01)00160‑511506967
[Google Scholar]
-
MasferrerJ.L.
IsaksonP.C.
SeibertK.
Cyclooxygenase-2 inhibitors: A new class of anti-inflammatory agents that spare the gastrointestinal tract.
Gastroenterol. Clin. North Am.1996252363372
10.1016/S0889‑8553(05)70252‑19229578
[Google Scholar]
-
[Google Scholar]
-
WolfeM.M.
LichtensteinD.R.
SinghG.
Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs.
N. Engl. J. Med.19993402418881899
10.1056/NEJM19990617340240710369853
[Google Scholar]
-
NussmeierN.A.
WheltonA.A.
BrownM.T.
Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery.
N. Engl. J. Med.20053521110811091
10.1056/NEJMoa05033015713945
[Google Scholar]
-
AbolhasaniH.
ZarghiA.
AbolhasaniA.
Design, synthesis and
in vitro cytotoxicity evaluation of new 3′, 4′-bis (3, 4, 5-trisubstituted)-4‘H-spiro [indene-2, 5’-isoxazol]-1 (3H)-one derivatives as promising anticancer agents.
Lett. Drug Des. Discov.2014111011491161
10.2174/1570180811666140704172442
[Google Scholar]
-
AbolhasaniH.
DastmalchiS.
Hamzeh-MivehroudM.
DaraeiB.
ZarghiA.
Design, synthesis and biological evaluation of new tricyclic spiroisoxazoline derivatives as selective COX-2 inhibitors and study of their COX-2 binding modes
via docking studies.
Med. Chem. Res.2016255858869
10.1007/s00044‑016‑1534‑x
[Google Scholar]
-
SakhujaR.
PandaS.S.
KhannaL.
KhuranaS.
JainS.C.
Design and synthesis of spiro[indole-thiazolidine]spiro[indole-pyrans] as antimicrobial agents.
Bioorg. Med. Chem. Lett.2011211854655469
10.1016/j.bmcl.2011.06.12121782421
[Google Scholar]
-
YoussefM.M.
AminM.A.
Microwave assisted synthesis of some new heterocyclic spiro-derivatives with potential antimicrobial and antioxidant activity.
Molecules2010151288278840
10.3390/molecules1512882721131902
[Google Scholar]
-
VelikorodovA.V.
IonovaV.A.
DegtyarevO.V.
SukhenkoL.T.
Synthesis and antimicrobial and antifungal activity of carbamate-functionized spiro compounds.
Pharm. Chem. J.20134612715719
10.1007/s11094‑013‑0876‑7
[Google Scholar]
-
Abdel-RahmanA.H.
KeshkE.M.
HannaM.A.
El-BadyS.M.
Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents.
Bioorg. Med. Chem.200412924832488
10.1016/j.bmc.2003.10.06315080944
[Google Scholar]
-
RajA.A.
RaghunathanR.
SrideviKumari MR, Raman N. Synthesis, antimicrobial and antifungal activity of a new class of spiro pyrrolidines.
Bioorg. Med. Chem.2003113407419
10.1016/S0968‑0896(02)00439‑X12517436
[Google Scholar]
-
UmamatheswariS.
BalajiB.
RamanathanM.
KabilanS.
Synthesis, antimicrobial evaluation and QSAR studies of novel piperidin-4-yl-5-spiro-thiadiazoline derivatives.
Bioorg. Med. Chem. Lett.2010202369096914
10.1016/j.bmcl.2010.10.00221035335
[Google Scholar]
-
HafezH.N.
HegabM.I.
Ahmed-FaragI.S.
El-GazzarA.B.A.
A facile regioselective synthesis of novel spiro-thioxanthene and spiro-xanthene-9′,2-[1,3,4]thiadiazole derivatives as potential analgesic and anti-inflammatory agents.
Bioorg. Med. Chem. Lett.2008181645384543
10.1016/j.bmcl.2008.07.04218667305
[Google Scholar]
-
Abdel-RahmanM.A.
HusseinE.M.
HusseinM.A.
Synthesis and characterization of novel anti-inflammatory poly(spiro thiazolidinone)s.
Des. Monomers Polym.2016197650660
10.1080/15685551.2016.1198881
[Google Scholar]
-
PoojariS.
Anti-inflammatory, antibacterial and molecular docking studies of novel spiro-piperidine quinazolinone derivatives.
J. Taibah Univ. Sci.2017113497511
10.1016/j.jtusci.2016.10.003
[Google Scholar]
-
KumarR.S.
AntonisamyP.
AlmansourA.I.
Functionalized spirooxindole-indolizine hybrids: Stereoselective green synthesis and evaluation of anti-inflammatory effect involving TNF-α and nitrite inhibition.
Eur. J. Med. Chem.2018152417423
10.1016/j.ejmech.2018.04.06029751235
[Google Scholar]
-
AbolhasaniH.
ZarghiA.
Hamzeh-MivehroudM.
AlizadehA.A.
Shahbazi MojarradJ.
DastmalchiS.
In-silico investigation of tubulin binding modes of a series of novel antiproliferative spiroisoxazoline compounds using docking studies.Iran. J. Pharm. Res.201514114114725561920
[Google Scholar]
-
ChandeM.S.
VermaR.S.
BarveP.A.
KhanwelkarR.R.
VaidyaR.B.
AjaikumarK.B.
Facile synthesis of active antitubercular, cytotoxic and antibacterial agents: A Michael addition approach.
Eur. J. Med. Chem.2005401111431148
10.1016/j.ejmech.2005.06.00416040160
[Google Scholar]
-
GirgisA.S.
MabiedA.F.
StawinskiJ.
Synthesis and DFT studies of an antitumor active spiro-oxindole.
New J. Chem.2015391080178027
10.1039/C5NJ01109D
[Google Scholar]
-
GirgisA.S.
PandaS.S.
FaragI.S.A.
Synthesis, and QSAR analysis of anti-oncological active spiro-alkaloids.
Org. Biomol. Chem.201513617411753
10.1039/C4OB02149E25502495
[Google Scholar]
-
NunesR.C.
RibeiroC.J.A.
Monteiro Â, Rodrigues CMP, Amaral JD, Santos MMM.
In vitro targeting of colon cancer cells using spiropyrazoline oxindoles.
Eur. J. Med. Chem.2017139168179
10.1016/j.ejmech.2017.07.05728800455
[Google Scholar]
-
ReddyC.N.
NayakV.L.
ManiG.S.
Synthesis and biological evaluation of spiro[cyclopropane-1,3′-indolin]-2′-ones as potential anticancer agents.
Bioorg. Med. Chem. Lett.2015252045804586
10.1016/j.bmcl.2015.08.05626330077
[Google Scholar]
-
NajimN.
BathichY.
ZainM.M.
HamzahA.S.
ShaameriZ.
Evaluation of the bioactivity of novel spiroisoxazoline typecompounds against normal and cancer cell lines.
Molecules2010151293409353
10.3390/molecules1512934021169884
[Google Scholar]
-
SaxenaR.
GuptaG.
ManoharM.
Spiro-oxindole derivative 5-chloro-4′,5′-diphenyl-3′-(4-(2-(piperidin-1-yl) ethoxy) benzoyl) spiro[indoline-3,2′-pyrrolidin]-2-one triggers apoptosis in breast cancer cells
via restoration of p53 function.
Int. J. Biochem. Cell Biol.201670105117
10.1016/j.biocel.2015.11.00326556313
[Google Scholar]
-
EldehnaW.M.
EL-Naggar DH, Hamed AR, Ibrahim HS, Ghabbour HA, Abdel-Aziz HA. One-pot three-component synthesis of novel spirooxindoles with potential cytotoxic activity against triple-negative breast cancer MDA-MB-231 cells.
J. Enzyme Inhib. Med. Chem.2018331309318
10.1080/14756366.2017.141727629281924
[Google Scholar]
-
AbolhasaniH.
ZarghiA.
AbolhasaniA.
DastmalchiS.
In vitro cytotoxicity of indanonic spiroisoxazolin derivatives as anticancer agents.Iranian Cong Physio Pharma20152213104
[Google Scholar]
-
ZarghiA.
ArfaeiS.
Selective COX-2 inhibitors: A review of their structure-activity relationships.Iran. J. Pharm. Res.201110465568324250402
[Google Scholar]
-
Al HouariG.
KerbalA.
BennaniB.
BabaM.F.
DaoudiM.
HaddaT.B.
Drug design of new antitubercular agents: 1, 3-dipolar cycloaddition reaction of para-substituted-benzadoximes and 3-para-methoxy-benzyliden-isochroman-4-ones.
ARKIVOC2008124250
10.3998/ark.5550190.0009.c05
[Google Scholar]
-
AbolhasaniA.
HeidariF.
NooriS.
MousaviS.
AbolhasaniH.
Cytotoxicity evaluation of dimethoxy and trimethoxy indanonic spiroisoxazolines against cancerous liver cells.Curr. Chem. Biol.202014103847
[Google Scholar]
-
AbolhasaniH
DastmalchiS
ZarghiA
AbolhasaniA
Hamzeh-MivehrodM.
Design & synthesis of novel 4'-(4-(methylsulfonyl)phenyl) 3'-p-substituted phenyl-4'H-spiro[chroman-3,5’-isoxazol]-4-one as selective COX-2 inhibitors.Res Pharma Sci2013
[Google Scholar]
-
AbolhasaniH.
ZarghiA.
Komeili MovahhedT.
AbolhasaniA.
DaraeiB.
DastmalchiS.
Design, synthesis and biological evaluation of novel indanone containing spiroisoxazoline derivatives with selective COX-2 inhibition as anticancer agents.
Bioorg. Med. Chem.202132115960
10.1016/j.bmc.2020.11596033477020
[Google Scholar]
-
AbolhasaniA.
BiriaD.
AbolhasaniH.
ZarrabiA.
KomeiliT.
Investigate of the role of glucose decorated chitosan and PLGA nanoparticles as blocking agents to glucose transporters of tumor cells.Int. J. Nanomedicine20191495359546
[Google Scholar]
-
MarashiyanM.
KalhorH.
GanjiM.
RahimiH.
Effects of tosyl-l-arginine methyl ester (TAME) on the APC/c subunits: An
in silico investigation for inhibiting cell cycle.
J. Mol. Graph. Model.202097107563
10.1016/j.jmgm.2020.10756332066079
[Google Scholar]
-
KalhorH.
SadeghiS.
MarashiyanM.
Identification of new DNA gyrase inhibitors based on bioactive compounds from streptomyces: structure-based virtual screening and molecular dynamics simulations approaches.
J. Biomol. Struct. Dyn.2020383791806
10.1080/07391102.2019.158878430916622
[Google Scholar]
-
KalhorH.
SadeghiS.
AbolhasaniH.
KalhorR.
RahimiH.
Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches.
J. Biomol. Struct. Dyn.202240312991315
10.1080/07391102.2020.182481632969333
[Google Scholar]
-
KalhorH.
RahimiH.
Akbari EidgahiM.R.
Teimoori-ToolabiL.
Novel small molecules against two binding sites of wnt2 protein as potential drug candidates for colorectal cancer: A structure based virtual screening approach.Iran. J. Pharm. Res.202019216017433224221
[Google Scholar]
-
HarrisR.E.
AlshafieG.A.
Abou-IssaH.
SeibertK.
Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor.Cancer Res.20006082101210310786667
[Google Scholar]
-
ShengH.
ShaoJ.
KirklandS.C.
Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2.
J. Clin. Invest.199799922542259
10.1172/JCI1194009151799
[Google Scholar]
-
SinghB.
CookK.R.
VincentL.
HallC.S.
MartinC.
LucciA.
Role of COX-2 in tumorospheres derived from a breast cancer cell line.
J. Surg. Res.20111681e39e49
10.1016/j.jss.2010.03.00320462604
[Google Scholar]
-
Singh-RangerG.
MokbelK.
The role of cyclooxygenase-2 (COX-2) in breast cancer, and implications of COX-2 inhibition.
Eur. J. Surg. Oncol.2002287729737
10.1053/ejso.2002.132912431470
[Google Scholar]
-
LiuW.
ReinmuthN.
StoeltzingO.
Cyclooxygenase-2 is up-regulated by interleukin-1 β in human colorectal cancer cells via multiple signaling pathways.Cancer Res.200363133632363612839952
[Google Scholar]
-
Singh-RangerG.
SalhabM.
MokbelK.
The role of cyclooxygenase-2 in breast cancer (Review).
Breast Cancer Res. Treat.20081092189198
10.1007/s10549‑007‑9641‑517624587
[Google Scholar]
-
ComşaŞ.
CîmpeanA.M.
RaicaM.
The story of MCF-7 breast cancer cell line: 40 years of experience in research.Anticancer Res.20153563147315426026074
[Google Scholar]
-
IncelerN.
OzkanY.
TuranN.N.
KahramanD.C.
Cetin-AtalayR.
BaytasS.N.
Design, synthesis and biological evaluation of novel 1,3-diarylpyrazoles as cyclooxygenase inhibitors, antiplatelet and anticancer agents.
MedChemComm201895795811
10.1039/C8MD00022K30108969
[Google Scholar]
-
LiX.
QiuZ.
JinQ.
ChenG.
GuoM.
Cell cycle arrest and apoptosis in HT-29 cells induced by dichloromethane fraction from Toddalia asiatica (L.) Lam.
Front. Pharmacol.20189629
10.3389/fphar.2018.0062929950999
[Google Scholar]
-
SwiftL.H.
GolsteynR.M.
Cytotoxic amounts of cisplatin induce either checkpoint adaptation or apoptosis in a concentration‐dependent manner in cancer cells.
Biol. Cell20161085127148
10.1111/boc.20150005626871414
[Google Scholar]
-
PautyJ.
CôtéM.F.
RodrigueA.
VelicD.
MassonJ.Y.
FortinS.
Investigation of the DNA damage response to SFOM-0046, a new small-molecule drug inducing DNA double-strand breaks.
Sci. Rep.20166123302
10.1038/srep2330227001483
[Google Scholar]
-
SongS.
DuL.
JiangH.
ZhuX.
LiJ.
XuJ.
Paris saponin I sensitizes gastric cancer cell lines to cisplatin
via cell cycle arrest and apoptosis.
Med. Sci. Monit.20162237983803
10.12659/MSM.89823227755523
[Google Scholar]
-
PfefferC.
SinghA.
Apoptosis: A target for anticancer therapy.
Int. J. Mol. Sci.2018192448
10.3390/ijms1902044829393886
[Google Scholar]
/content/journals/ccand/10.2174/012212697X274833240408033609