Skip to content
2000
Volume 12, Issue 3
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background: Protein hydroxyproline is one type of post translational modification (PTM). Because protein sequence contains many uncharacterized residues of P, the question that needs to be answered is: Which ones can be hydroxylated, and which ones cannot? The solution will not only give a deeper understanding of the hydroxylation mechanism but can also lead to drug development. The evergrowing demand for better handling of protein sequences in the post-genomic age presents new prediction challenges. Objective: To address these challenges, developing computational methods to identify these sites quickly and accurately is our objective. Method: We propose a new approach for predicting hydroxyproline using the deep learning model known as the convolutional neural network (CNN), and employed a pseudo amino acid composition (PseAAC) to identify these proteins and used the position-specific scoring matrix (PSSM) to represent samples as input to the CNN model. Results and Conclusion: In our experiment, K-fold cross-validation testing on benchmark datasets further demonstrated the potential for CNN identification of protein hydroxyproline as well as other PTM type proteins.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/1574893612666170221152848
2017-06-01
2025-09-04
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/1574893612666170221152848
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test